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“LOCAL” VS. “GLOBAL” PARAMETERS—BREAKING THE
GAUSSIAN COMPLEXITY BARRIER

BY SHAHAR MENDELSON1

Technion—Israel Institute of Technology

We show that if F is a convex class of functions that is L-sub-Gaussian,
the error rate of learning problems generated by independent noise is equiv-
alent to a fixed point determined by “local” covering estimates of the class
(i.e., the covering number at a specific level), rather than by the Gaussian
average, which takes into account the structure of F at an arbitrarily small
scale. To that end, we establish new sharp upper and lower estimates on the
error rate in such learning problems.

1. Introduction. The focus of this article is on the question of prediction.
Given a class of functions F defined on a probability space (�,μ) and an un-
known target random variable Y , one would like to identify an element of F whose
“predictive capabilities” are (almost) the best possible in the class. The notion of
“best” is measured via the pointwise cost of predicting f (x) instead of y, and the
best function in the class is the one that minimizes the average cost. Here, we will
consider the squared loss: the cost of predicting f (x) rather than y is (f (x)− y)2,
and if X is distributed according to μ, the goal is to identify

f ∗ = argmin
f ∈F

E
(
f (X) − Y

)2 = argmin
f ∈F

∥∥f (X) − Y
∥∥2
L2

,

where the expectation is taken with respect to the joint distribution of X and Y on
the product space � ×R.

The information at one’s disposal is rather limited: a random sample (Xi, Yi)
N
i=1,

selected according to the N -product of the joint distribution of X and Y . And, us-
ing this data, one must produce some (random) f ∈ F .

DEFINITION 1.1. Given a sample size N and a class F defined on (�,μ), a
learning procedure is a map � : (�×R)N → F . For a set Y of admissible targets,
� performs with confidence 1 − δ and accuracy Ep if for every Y ∈ Y , and setting
f̃ = �((Xi, Yi)

N
i=1),

E
((

f̃ (X) − Y
)2|(Xi, Yi)

N
i=1

) ≤ E
(
f ∗(X) − Y

)2 + Ep
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with probability at least 1 − δ relative to the N -product of the joint distribution of
X and Y .

The accuracy (or prediction error) Ep is a function of F , N and δ, and may
depend on certain properties of the target Y as well, for example, its norm in some
Lq space.

A fundamental problem in learning theory is to identify the features of the un-
derlying class F and of the set of admissible targets Y that govern Ep . Moreover,
a question of particular significance is the way in which Ep scales with the sample
size N (the so-called error rate). This question has been studied extensively, and
we refer the reader to the manuscripts [2, 3, 5, 8, 10, 11, 15] for more information
on its history and on some more recent progress.

The aim of this article is to obtain matching upper and lower bounds on Ep , at
least, under some additional assumptions.

1.1. Ep and the structure of F . Before diving into an accurate (and somewhat
technical) description of our results, let us present a brief overview, trying to put
the question at hand in some perspective.

It is well understood that some notion that captures the “statistical size” of F

must play a dominant role in the characterization of Ep . However, and regardless
of the notion of size one uses, there are situations in which geometric obstructions
distort the effect the size of F has on Ep .

A simple, yet in some sense generic example of such a distorted behaviour is
when F = {f1, f2} and Y is a 1/

√
N -perturbation of the midpoint (f1 + f2)/2.

Although F is clearly a small class, one may show that no learning procedure can
perform with an error rate that is better than c/

√
N , having been given a sample

of cardinality N (see, e.g., [1]). On the other hand, and based solely on the size
of F , one would expect a much faster error rate for problems involving such a
class—exhibiting the distortion in Ep .

This type of distortion may be avoided by imposing additional geometric condi-
tions on F and Y , which ensure that all the admissible targets in Y are located in a
favourable position relative of F (see [9] for an accurate definition of “a favourable
position”). For instance, one may show that if F ⊂ L2(μ) is compact and convex,
any target Y ∈ L2 is in a favourable position relative to F ; hence, regardless of the
target Y , there is no distortion in Ep for convex classes.

To avoid potential geometric obstructions, we will focus on the study of the
error rate only when F is a convex class.

Intuitively, once the geometric obstructions have been removed, Ep should de-
pend on two key features of F :

• The right notion of the class’ intrinsic complexity, which captures the difficulty
of prediction problems for targets of the form Y = f (X), for some f ∈ F .
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• The way class members interact with the “noise” Y −f ∗(X) [and the reason for
calling Y − f ∗(X) “the noise” originates from the case Y = f (X) + W , where
f ∈ F and W is independent of X].

Recent results [6, 10, 11] show that this intuitive description is indeed true. More-
over, and as will be explained in greater detail in what follows, the “intrinsic com-
plexity” of F and the way class members interact with Y − f ∗(X) may be upper
bounded by controlling the suprema of two empirical processes. Thus, for a con-
vex class, the question of an upper bound on Ep is reduced to obtaining upper
estimates on the suprema of those empirical processes. Moreover, it is well under-
stood (see, e.g., [16]) that one may obtain such upper bounds using random L2

covering numbers; that is, the number of balls of a given radius, and with respect
to the random distance d2(f,h) = N−1 ∑N

i=1(f −h)2(Xi) endowed by the sample
(X1, . . . ,XN), that are needed to cover the indexing class. What is the key point
in the context of this article, is that the upper bounds are given by an aggregate
functional—a so-called entropy integral—which takes into account the random
covering numbers at an arbitrary small scale, rather than the covering numbers at
a single, well-chosen scale.

Unfortunately, random covering numbers are a notoriously difficult object to
handle. In the past, it has been standard practice to control them using other com-
plexity parameters of the indexing class, like the combinatorial dimension (e.g.,
the VC-dimension or its scale-sensitive versions). Another alternative it to assume
that F is a sub-Gaussian class (see Definition 2.1), in which case the empirical en-
tropy integral may be replaced by the expectation of the supremum of the Gaussian
process indexed by certain subsets of F , or by an entropy integral generated by the
L2(μ) covering numbers of F . Again, all these parameters take into account the
structure of the class at an arbitrary small scale, and as such, are of global nature.

In contrast, known lower bounds on Ep are based on a different approach and on
“local” parameters—specifically, on the L2(μ) covering numbers of F at a single
level. Thus, and somewhat roughly put, the question we would like to study is
whether the true behaviour of Ep is determined by parameters of a global nature
(an entropy integral that takes into account the covering numbers at an arbitrarily
small level, Gaussian averages associated with the class, etc.), or of a local nature
(covering numbers at one level).

It should be noted that prior to this work, there were no known results bridging
the gap between the global upper bounds and the local lower ones—except when
the two happen to be equivalent. However, in general, there is a gap between the
global and the local (see more on that in Section 2.4 and in the supplementary
material to this article [13]).

The next section is devoted to a more accurate description of the problem and
the parameters involved.
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2. The “global” and the “local”. From here on, let F ⊂ L2(μ) be a convex
class of functions (thus preventing geometric obstructions that distort Ep).

Recall that the centred, canonical Gaussian process indexed by F is a random
process that assigns to each f ∈ F a centred Gaussian variable Gf . The covariance
structure of the process is given by EGf Gh = Ef h, that is, it is endowed by the
inner product in L2(μ).

A Gaussian process is bounded if supf ∈F Gf is bounded almost surely, and
here we will ignore the question of the measurability of supf ∈F Gf . For the same
reason, we set

E‖G‖F = sup
{
E sup

f ∈F ′
Gf : F ′ ⊂ F,F ′ is finite

}
.

We refer the reader to the books [4, 7, 16] for more information on Gaussian pro-
cesses.

DEFINITION 2.1. A class F ⊂ L2(μ) is L-sub-Gaussian with respect to the
measure μ if for every p ≥ 2 and every f,h ∈ F ∪ {0},

‖f − h‖Lp(μ) ≤ L
√

p‖f − h‖L2(μ),

and if the centred canonical Gaussian process {Gf : f ∈ F } is bounded.

A survey on the properties of sub-Gaussian classes may be found in [4, 6, 7, 14,
16].

EXAMPLE. Let T ⊂ R
n be convex. For every t ∈ T , set ft = 〈t, ·〉 and put

FT = {ft : t ∈ T }. Hence, FT is the class of linear functionals generated by T , and
since T is convex, so is FT .

Denote by ‖ ‖�n
2

the standard Euclidean norm on R
n. Recall that a probability

measure μ on R
n is isotropic if it is symmetric and satisfies∫

Rn
〈t, x〉2 dμ(x) = ‖t‖2

�n
2

for every t ∈R
n.

If X is distributed according to an isotropic measure μ, and if for every z ∈ R
n and

p ≥ 2, (E|〈z,X〉|p)1/p ≤ L
√

p‖z‖�n
2
, then FT is an L-sub-Gaussian class. Indeed,

for every ft , fs ∈ FT and p ≥ 2,

‖fs − ft‖Lp(μ) = (
E

∣∣〈X, s − t〉∣∣p)1/p ≤ L
√

p‖s − t‖�n
2
= L

√
p‖fs − ft‖L2(μ).

There are numerous examples of isotropic, L-sub-Gaussian measures on R
n

for L that is an absolute constant, independent of the dimension or of any other
parameter. To name a few, the standard Gaussian measure on R

n; the uniform
measure on {−1,1}n; any n-product measure given by X = (x1, . . . , xn) that is
endowed by n independent copies of a mean-zero, variance 1, random variable x
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that satisfies ‖x‖Lp ≤ c
√

p for every p ≥ 2; and the normalized volume measure
on the set n1/pBn

p , where Bn
p is the unit ball of normed space �n

p = (Rn,‖ ‖�p) and
p ≥ 2.

For a reason that will become clear later, we will not study a general class of
admissible targets Y , but rather consider targets of the form Y = f (X) + W for
some f ∈ F and W that is orthogonal to span(F )—the linear span of F [and of
course, if W /∈ L2(μ) one considers orthogonality relative to the natural L2 space
to which both F and W belong].

One significant example that fits the setup we shall study is when W is a mean-
zero random variable that is independent of X. Also, observe that for such targets
the minimizer in F of h → E(h(X) − Y)2 is f , and thus Ep = ‖f̃ − f ‖2

L2(μ).
With that in mind, let us formulate the question we would like to explore.

QUESTION 2.2. Let F ⊂ L2(μ) be a compact, convex class that is L-sub-
Gaussian with respect to μ. Given targets of the form Y = f (X) + W as above,
find matching upper and lower bounds (up to constants) on Ep .

2.1. Global parameters and upper bounds. A relatively standard way of es-
tablishing upper bounds Ep is the following decomposition of the squared excess
loss: let Y be the unknown target and recall that f ∗ = argminf ∈F ‖f (X) − Y‖L2 .
For every f ∈ F , let �f (X,Y ) = (f (X) − Y)2 and set

LF
f (X,Y ) = (�f − �f ∗)(X,Y ) = (

f (X) − Y
)2 − (

f ∗(X) − Y
)2

(2.1)
= 2

(
f ∗(X) − Y

)(
f − f ∗)

(X) + (
f − f ∗)2

(X).

For a sample (Xi, Yi)
N
i=1 consisting of N independent copies of (X,Y ), let PNh =

1
N

∑N
i=1 h(Xi, Yi) and set

f̂ = argmin
f ∈F

PN�f = argmin
f ∈F

PNLF
f ,

where the second equality holds because LF
f is a shift of each �f by the same

function �f ∗ .
The learning procedure that assigns to every sample (Xi, Yi)

N
i=1 the function

f̂ ∈ F is called Empirical Risk Minimization (ERM), and f̂ is the empirical risk
minimizer.

Clearly, LF
f ∗ = 0; thus, for every sample (Xi, Yi)

N
i=1, PNLF

f̂
≤ 0, implying that

members of the random set {f ∈ F : PNLF
f > 0} cannot be empirical risk mini-

mizers. Moreover, the decomposition (2.1) provides one with a way of identifying
the random set in question. Indeed, assume that (Xi, Yi)

N
i=1 is a sample for which,

if ‖f − f ∗‖L2 ≥ r , one has

(2.2)
1

N

N∑
i=1

(
f − f ∗)2

(Xi) ≥ κ
∥∥f − f ∗∥∥2

L2
,



1840 S. MENDELSON

and setting ξ = f ∗(X) − Y and ξi = f ∗(Xi) − Yi ,

(2.3)

∣∣∣∣∣ 1

N

N∑
i=1

ξi

(
f − f ∗)

(Xi) −Eξ
(
f − f ∗)

(X)

∣∣∣∣∣ ≤ κ

4

∥∥f − f ∗∥∥2
L2

.

Observe that by the characterization of the metric projection onto a closed convex
set in an inner product space, one has

(2.4) Eξ
(
f − f ∗)

(X) ≥ 0 for every f ∈ F.

Hence, if (2.2) and (2.3) hold for the sample (Xi, Yi)
N
i=1, then for every f ∈ F that

satisfies ‖f − f ∗‖L2 ≥ r ,

PNLF
f ≥ 1

N

N∑
i=1

(
f − f ∗)2

(Xi) − 2

∣∣∣∣∣ 1

N

N∑
i=1

ξi

(
f − f ∗)

(Xi) −Eξ
(
f − f ∗)

(X)

∣∣∣∣∣
+Eξ

(
f − f ∗)

(X) ≥ (
κ − 2(κ/4)

)
r2 > 0;

in particular, {f ∈ F : ‖f − f ∗‖L2 ≥ r} ⊂ {f ∈ F : PNLF
f > 0}, and thus ‖f̂ −

f ∗‖L2 < r .

REMARK 2.3. This argument had been used in [11] and was extended further
in [10], showing that

E
(
LF

f̂
|(Xi, Yi)

N
i=1

) ≤ r2

for general convex losses � and not just for the squared loss.

In what follows, we shall refer to the process f → 1
N

∑N
i=1(f − f ∗)2(Xi) as

the quadratic component and to f → 1
N

∑N
i=1 ξi(f − f ∗)(Xi) − Eξ(f − f ∗)(X)

as the multiplier component [the name of the latter originating from the multipliers
(ξi)

N
i=1 that do not depend on f ∈ F ]. Observe that if Y = f (X) for some f ∈ F

then ξ = 0 and the multiplier component is trivial.
With the decomposition of the squared loss at our disposal, let us define two

parameters that can be used to measure the complexity of F . It turns out that
one captures the class’ intrinsic complexity via the quadratic component, while
the other governs the interaction class members have with the noise ξ , via the
multiplier component.

Let F ⊂ L2(μ). Set F − h = {f − h : f ∈ F } and F − F = {f − h : f,h ∈ F },
and put D to be the unit ball in L2(μ).

DEFINITION 2.4. For κ1, κ2 > 0 let

(2.5) rM(κ1, f ) = inf
{
r > 0 : E‖G‖(F−f )∩rD ≤ κ1r

2
√

N
}

and

(2.6) rQ(κ2, f ) = inf
{
r > 0 : E‖G‖(F−f )∩rD ≤ κ2r

√
N

}
.
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Put

rM(κ1) = sup
f ∈F

rM(κ1, f ) and rQ(κ2) = sup
f ∈F

rQ(κ2, f ).

As may be indicated by their names, rM is used to govern the multiplier com-
ponent and rQ controls the quadratic component.

It is important to stress the global nature of rQ and rM . The two depend on Gaus-
sian oscillations of the form E‖G‖(F−f )∩rD . And although (F − f ) ∩ rD is a lo-
calized set—obtained by intersecting F −f with a ball of radius r , E‖G‖(F−f )∩rD

is not determined solely by the structure of F − f at a scale that is proportional
to r . In fact, it is straightforward to construct examples in which E‖G‖(F−f )∩rD

is dictated by a subset of F − f consisting of functions whose L2(μ) norms are
well below r . Moreover, this global behaviour cannot be avoided: E‖G‖(F−f )∩rD

often captures the true nature of the quadratic and multiplier components, and the
two are highly affected by the “richness” of F around f at every level—even by
functions that are very close to the centre f .

An upper estimate on Ep using the complexity parameters rM and rQ has been
established in [6], and here it is formulated only in the context we are interested
in—for targets of the form Y = f (X) + W for W that is orthogonal to span(F ).

THEOREM 2.5. For every L ≥ 1, there exist constants c1, c2, c3 and c4 that
depend only on L for which the following holds. Let F ⊂ L2(μ) be a compact,
convex, L-sub-Gaussian class of functions, set Y = f (X) + W for f ∈ F and W

that is orthogonal to span(F ). Assume further that for every p ≥ 2, ‖W‖Lp ≤
L

√
p‖W‖L2 .

There is a learning procedure (empirical risk minimization performed in F ) for
which, if

r ≥ 2 max
{
rM

(
c0/‖W‖L2

)
, rQ(c1)

} ≡ r∗,
then with probability at least 1 − 2 exp(−c2N min{1, (r∗)2/‖W‖2

L2
}), the error of

the procedure is at most Ep ≤ r2.

As mentioned previously, one may also provide upper bounds on Ep using the
notion of covering numbers, and thanks to the sub-Gaussian assumption, the cov-
ering numbers in question are with respect to the L2(μ) norm.

DEFINITION 2.6. Let B be a unit ball of a normed space. Set N (A,B) to
be the minimal number of centres a1, . . . , an ∈ A for which A ⊂ ⋃n

i=1(ai + B).
(ai)

n
i=1 is called a cover of A with respect to B .

An r-cover is a cover with respect to rB = {rb : b ∈ B}—the ball of radius
r—rather than with respect to B .

M(A, rB) is the cardinality of a maximal r-separated subset of A with respect
to the given norm, that is, the cardinality of the largest subset (ai)

m
i=1 ⊂ A for

which ‖ai − aj‖ ≥ r for every i �= j .
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It is standard to verify that M(A,2B) ≤ N (A,B) ≤ M(A,B) (see, e.g., Theo-
rem 1.2.1 in [4]). Moreover, a fundamental fact in the theory of Gaussian processes
is that there is an absolute constant2 c for which

E‖G‖F ≤ c

∫ diam(F,L2(μ))

0

√
logN (F, εD)dε.

This entropy integral bound, due to Dudley (see, e.g., [4, 16]), serves as a further
indication of the global nature of E‖G‖(F−f )∩rD , as the estimate requires infor-
mation on the L2(μ) covering numbers of F at an arbitrarily small scale.

2.2. Local parameters and lower bounds. Unlike the global nature of the up-
per bounds described above, the known lower bounds on Ep are based on the car-
dinality of a well-separated subset of F at a single level. We will outline the reason
why that is natural in what follows, but first let us introduce the two “local” coun-
terparts of rM and rQ.

DEFINITION 2.7. For η1, η2 > 0, set

λM(η1, f ) = inf
{
r > 0 : logM

(
(F − f ) ∩ 4rD, (r/2)D

) ≤ η2
1r

2N
}

and

λQ(η2, f ) = inf
{
r > 0 : logM

(
(F − f ) ∩ 4rD, (r/2)D

) ≤ η2
2N

}
.

Put d = diam(F,L2(μ)) and set

λM(η1) = min
{

sup
f ∈F

λM(η1, f ), d/4
}
,

and

λQ(η2) = min
{

sup
f ∈F

λQ(η2, f ), d/4
}
.

The connection between the global and local parameters is another fundamental
fact in the theory of Gaussian processes—Sudakov’s inequality (see, e.g., [7]):
there is an absolute constant c for which, for every H ⊂ L2(μ),

c sup
ε>0

ε log1/2 M(H, εD) ≤ E‖G‖H .

Note that rM(κ1) ≤ 4r if for every f ∈ F , E‖G‖(F−f )∩4rD ≤ κ1(4r)2
√

N . Apply-
ing Sudakov’s inequality to H = (F − f ) ∩ 4rD and for the choice of ε = r/2,
one has

c(r/2) log1/2 M
(
(F − f ) ∩ 4rD, (r/2)D

) ≤ E‖G‖(F−f )∩4rD ≤ 16κ1r
2
√

N,

2Here and throughout the article, absolute constants are simply fixed positive numbers that are
independent of any other parameter associated with the problem.
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which shows that λM(c1κ1) ≤ r . A similar observation is true for rQ and λQ.
Hence, λM and λQ, which are not affected by the structure of F at a level below
r/2, are indeed smaller than rQ and rM , respectively.

The following is an example of a lower bound on Ep in terms of λM .

THEOREM 2.8 ([6]). There exist absolute constants c1 and c2 for which the
following holds. Let F be a class of functions, set W to be a centred normal random
variable that is independent of X, and for every f ∈ F put Yf = f (X) + W . If �

is a learning procedure that performs for every target Yf with confidence at least
3/4, then there is some Yf for which Ep ≥ c1λ

2
M(c2/‖W‖L2).

Let us emphasize once again that while there are cases in which the estimates in
Theorem 2.5 and Theorem 2.8 coincide, it is not the generic situation, and typically
there is a gap between the two.

2.3. The main results. Given that in the generic problem there is a gap between
the two sets of parameters, one must face the obvious question: which of the two
captures the correct behaviour of Ep? Is it the “global” pair, rQ and rM , or the
“local” one of λQ and λM?

Our main result is that the “local” parameters are the right answer—at least
in the setup outlined above. To that end, we shall improve the upper bound in
Theorem 2.5 from dependence on the global parameters to a dependence on the
local ones. We will also add the component missing from Theorem 2.8, namely, a
lower bound in term of λQ.

THEOREM 2.9. For every L > 1 and q > 2, there are constants c0, . . . , c5
that depend only of q and L for which the following holds. Let F ⊂ L2(μ) be a
compact, convex, L-sub-Gaussian class of functions with respect to μ. There is a
learning procedure � : (� × R)N → F , for which, if Y = f (X) + W for f ∈ F

and W ∈ Lq that is orthogonal to span(F ), then with probability at least

1 − 2 exp
(−c0N min

{
1, λ2

M

(
c1/‖W‖Lq

)}) − c2
logq N

N(q/2)−1 ,

Ep ≤ c3 max
{
λ2

M

(
c1

‖W‖Lq

)
, λ2

Q(c4)

}
+ r2

Q(c4) exp
(−c5 exp(N)

)
.

Note that W need not be sub-Gaussian—Theorem 2.9 is valid even for a heavy-
tailed noise. Also, the term r2

Q(c4) exp(−c5 exp(N)) is almost certainly an artifact
of the proof, but in any case, it is significantly smaller than the dominating term in
any reasonable example.

The proof of Theorem 2.9 is based on a rather obvious idea: “erasing” all the
fine structure of F , by replacing the class with an appropriate separated subset.
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The difficultly in such an approach is that by changing the geometry of F , one
re-introduces the geometric obstructions that distort Ep and which have been men-
tioned previously.

To complement Theorem 2.9, we also obtain the following lower bound.

THEOREM 2.10. There exist absolute constants c0 and c1 for which the fol-
lowing holds. Let F ⊂ L2(μ) be a class of functions and let � be any learn-
ing procedure that performs with confidence 7/8 for any target of the form
Yf = f (X) + W for f ∈ F and W ∈ L2 that is orthogonal to span(F ).

(a) If F is convex and centrally-symmetric,3 then for any W ∈ L2 that is or-
thogonal to span(F ), there is some f ∈ F , for which, for Yf as above,

Ep ≥ c0λ
2
Q(c1).

(b) Let W be a centred random variable with density exp(−φ) for an even
function φ that satisfies supt∈R |φ′′(t)| ≤ κ . If W is independent of X, there is
some f ∈ F for which, for Yf as above,

Ep ≥ c0λ
2
M(c1κ).

In particular, if W is a centred, normal random variable, there is some f ∈ F for
which, for Yf as above,

Ep ≥ c0λ
2
M

(
c1

‖W‖L2

)
.

The obvious outcome of Theorem 2.9 and Theorem 2.10 is that if W is a centred
Gaussian random variable that is independent of X, then for any convex, centrally-
symmetric, L-sub-Gaussian class F , the upper and lower estimates match [up to
the parasitic and negligible term r2

Q(c4) exp(−c5 exp(N)) in the upper bound]:
when considering targets of the form Y = f (X) + W for f ∈ F ,

Ep ∼ max
{
λ2

Q(c1), λ
2
M

(
c2/‖W‖L2

)}
.

REMARK 2.11. One should note that there were no known lower bounds
based on λQ prior to this work. Also, the Gaussian version of part (b) of Theo-
rem 2.10 is well known (see, e.g., [15]), but existing proofs seem to rely heavily
on the fact that W is Gaussian. The proof we shall present holds in a more general
situation than part (b) (see Theorem 5.6, below). It is based on a new volumetric
argument which we believe to be of independent interest and which we will now
outline.

3F is centrally-symmetric if the fact that f ∈ F implies that −f ∈ F .
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To explain why a lower bound based on the cardinality of a separated subset of
F at a specific level is possible, assume that a procedure f̃ is accurate up to an
error of ε for every target of the form Y = f (X) + W , for f ∈ F and W that is
mean-zero and is independent of X. Thus, a procedure performs well on the sample
(Xi, f (Xi)+Wi)

N
i=1 if the function f̃ it generates given the sample satisfies ‖f̃ −

f ‖2
L2

≤ ε.

Let ‖f1 − f2‖2
L2

≥ 2ε, fix a sample X = (Xi)
N
i=1 and set

z1 = (
f1(Xi)

)N
i=1 and z2 = (

f2(Xi)
)N
i=1.

Consider the sets Aj(X) ⊂ R
N , j = 1,2, each consisting of all (w1, . . . ,wN) ∈

R
N on which f̃ performs well after being given (Xi, Yi)

N
i=1 = (Xi, fj (Xi) +

wi)
N
i=1 as data. Note that the sets z1 + A1(X) and z2 + A2(X) must be disjoint,

because for each t ∈ zj + Aj(X), the pair (X, t) is mapped by the procedure to a
ball of radius

√
ε around fj —but the two balls do not intersect.

This simple argument will be used in Section 5 to show that a 2
√

ε-separated
subset of F endows a collection of disjoint subsets of R

N [that depends on
(Xi)

N
i=1]; the high confidence of f̃ implies that for most samples (Xi)

N
i=1, each

one of the disjoint subsets must have a nonnegligible probability with respect to
the measure endowed on R

N by (W1, . . . ,WN). Therefore, the number of subsets
in the collection, which is the cardinality of the separated set, cannot be too big.

REMARK 2.12. Let us mention that if F happens to be convex and centrally
symmetric, what is essentially the “richest” shift of F is the 0-shift. Indeed, since
F − F = 2F = {2f : f ∈ F }, it is evident that for every f ∈ F

(F − f ) ∩ 4rD ⊂ (F − F) ∩ 4rD = 2(F ∩ 2rD).

This fact makes one’s life much simpler when studying lower bounds, as it gives
an obvious choice of where to look. Indeed, the “richest” part of F is the hardest
part for a learning procedure to deal with—and that part is a neighbourhood of 0.

2.4. The Yang–Barron theorem. One result that seems similar to ours may be
found in the celebrated work of Yang and Barron [17].

Yang and Barron study various prediction problems and obtain upper and
lower bounds on the error rate that are of the order ε2

N , for εN that satisfies
logM(F, εD) = Nε2; as such, εN is closely related to λM . However, a closer in-
spection of [17] shows that there are substantial differences between those bounds
and ours.

To begin with, the setup in [17] is different: a function class consisting of uni-
formly bounded functions and the noise is independent Gaussian noise, both of
which are crucial to the proof (see Section 3.2 in [17]). Moreover, the upper esti-
mate is an existence result of a “good” procedure—rather than a specific choice of
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a procedure; the estimates hold in expectation and not with high probability; and
they do not tend to zero with the “noise level” of the problem (i.e., the variance of
the Gaussian noise).

All these differences are significant, but still are not a conclusive indication that
the results in [17] are of a different nature to ours. The key point is an assumption
that is at the heart of [17]: that the underlying class is “large”—in the sense that

(2.7) lim inf
ε→0

logM(F, (ε/2)D)

logM(F, εD)
= κ > 1.

It turns out that this assumption excludes all linear regression problems involving
classes of linear functionals that are indexed by subsets of Rn; in particular, all the
modern “high-dimensional” learning problems—as we now show.

EXAMPLE 2.13. Fix T ⊂ R
n and let FT = {〈t, ·〉 : t ∈ T } be the class of linear

functionals indexed by T . For the sake of simplicity, first assume that the underly-
ing measure μ is an isotropic measure on R

n; thus, the L2(μ) unit ball endowed
on R

n coincides with Bn
2 , the standard Euclidean unit ball in R

n.
If T ⊂ RBn

2 and has a nonempty interior, it also contains a Euclidean ball, say of
radius ρ > 0. Recall that by a straightforward volumetric estimate, if 0 < ε ≤ ρ/2
then (c1ρ/ε)n ≤ M(ρBn

2 , εBn
2 ) ≤ (c2ρ/ε)n for suitable absolute constants c1 and

c2. Thus, for ε small enough,

(2.8)
(

c1ρ

ε

)n

≤ M(T , εD) ≤
(

c2R

ε

)n

,

and κ [the liminf in (2.7)] is 1.
Also, κ = 1 even if μ is not isotropic, as long as it is not supported on a hy-

perplane. For a nontrivial μ, the L2(μ) unit ball endowed on R
n is an ellipsoid

with a nonempty interior; at very small scales ε, covering by such an ellipsoid is
equivalent to covering by εBn

2 .

Condition (2.7) has other implications whose proof may be found in the supple-
mentary material to this article [13]:

• If κ > 1, then the r/2 log-covering numbers of F and of F ∩ rD are, in some
sense, equivalent, which means that F is very rich locally.

• If κ > 1, then the local and global parameters, λM/λQ and rM/rQ respectively,
are equivalent. Indeed, for the sake of brevity let us ignore cases in which

lim sup
ε→0

logM(F, (ε/2)D)

logM(F, εD)
= � ≥ 4

(if � > 4 then the centred, canonical Gaussian process {Gf : f ∈ F } is not
bounded, while if � = 4, covering estimates are not enough to determine whether
the Gaussian process is bounded).
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Hence, the case that is comparable to ours is when � < 4. In that case, one
may show that for R ≤ R0, and for the “worst” f ∈ F ,

E‖G‖(F−f )∩RD ∼κ,� R log1/2 M
(
(F − f ) ∩ RD, (R/2)D

);
therefore, if κ > 1 and � < 4, the global parameters rM and rQ are equivalent
to the local ones λM and λQ, and there is nothing to be gained by the “local
analysis” we present in what follows.

3. Preliminaries. Let us begin with some natation. Throughout, absolute con-
stants are denoted by c, c1, . . . etc. Their value may change from line to line.
c(α) is a constant that depends only on the parameter α, and A ∼p B means that
c1(p)A ≤ B ≤ c2(p)A. We use κ1, κ2, η1, η2, etc. to denote fixed constants whose
value remains unchanged throughout the article.

In what follows, we will, at times, abuse notation and not specify the probabil-
ity space on which each random variable is defined. For example, ‖f − Y‖2

L2
=

E(f (X) − Y)2 and integration is with respect to the joint distribution of X and Y ,
while ‖f − h‖2

L2
= E(f − h)2(X), in which case integration is with respect to μ.

The same goes for the notion of orthogonality—where the underlying assumption
is that the functions involved belong to a single Hilbert space that contains L2(μ).

Recall that D the unit ball in L2(μ) and set star(F ) = {λf : f ∈ F 0 ≤ λ ≤ 1};
star(F ) is the star-shaped hull of F with 0. We say that F is star-shaped around 0
if star(F ) = F .

The following lemma is straightforward but still plays a crucial part in the proof
of Theorem 2.9.

LEMMA 3.1. Let T ⊂ W ⊂ L2(μ). For s > r > 0, set

φ(s, r) = sup
w∈W

N
(
T ∩ (w + sD), rD

)
.

Then:

1. φ(s, r) ≤ φ(s, s/2) · φ(s/2, r).
2. If T and W are star-shaped around 0 then

logφ(s, r) ≤ c0 log(2s/r) · logφ(4r, r)

for a suitable absolute constant c0.

PROOF. Fix w ∈ W and let t1, . . . , tN ∈ T ∩ (w + sD) be centres of a minimal
s/2-cover of that set. Note that for every 1 ≤ i ≤ N ,

T ∩ (w + sD) ∩ (
ti + (s/2)D

) ⊂ T ∩ (
ti + (s/2)D

)
,

and N (T ∩ (ti + (s/2)D), rD) ≤ φ(s/2, r), because ti ∈ T ⊂ W . Therefore,

sup
w∈W

N
(
T ∩ (w + sD), rD

) ≤ sup
w∈W

N
(
T ∩ (w + sD), (s/2)D

) · φ(s/2, r)
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and the first part follows.
Turning to the second part of the claim, assume that T and W are star-shaped

around 0. Let w ∈ W , set t1, . . . , tm to be a maximal s/2-separated subset of T ∩
(w + sD) with respect to the L2(μ) norm and put yi = (r/s)ti . Since T is star-
shaped around 0, yi ∈ T and (yi)

m
i=1 is an r/2-separated subset of (r/s)w + rD.

For the same reason, (r/s)w ∈ W and

M
(
T ∩ (w + sD), (s/2)D

) ≤ sup
v∈W

M
(
T ∩ (v + rD), (r/2)D

)
.

Using the standard connection between packing numbers and covering numbers
and taking the supremum over w,

φ(s, s/2) = sup
w∈W

N
(
T ∩ (w + sD), (s/2)D

)
≤ sup

w∈W

M
(
T ∩ (w + sD), (s/2)D

)
≤ sup

w∈W

M
(
T ∩ (w + rD), (r/2)D

)
.

Iterating the first part of the lemma,

logφ(s, r) ≤ c0 log2(2s/r) · sup
w∈W

logM
(
T ∩ (w + 4rD),2rD

)
≤ c0 log2(2s/r) · sup

w∈W

logN
(
T ∩ (w + 4rD), rD

)
= c0 log2(2s/r) · logφ(4r, r),

as claimed. �

Before we turn to the proof of the upper bound, let us revisit the complexity
parameters in question. Since F is a convex class, F − f is star-shaped around 0;
hence, if s > r

M
(
(F − f ) ∩ 4sD, (s/2)D

) ≤ M
(
(F − f ) ∩ 4rD, (r/2)D

)
.

In particular, if λM(η1, f ) < r then

logM
(
(F − f ) ∩ 4sD, (s/2)D

) ≤ η2
1Nr2 ≤ η2

1Ns2.

Hence, if r < λM(η1, f ) then logM((F − f ) ∩ 4rD, (r/2)D) ≥ η2
1Nr2, while

if r > λM(η1, f ), the reverse inequality holds.
A similar assertion holds for λQ, rM and rQ. The rather standard proof of those

facts, which is almost identical to the argument outlined above, is omitted.
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4. The upper bound. The path we will take in proving the upper bound is as
follows:

• Choose a “correct” level r using the parameters λM and λQ for well-chosen
constants η1 and η2.

• Replace F by V , a maximal r-separated subset of F with respect to the L2(μ)

norm, and study ERM in V . To that end, recall that f ∗ = argminf ∈F ‖f −Y‖L2 ,
set v0 = argminv∈V ‖v − Y‖L2 and observe that by the orthogonality of W to
span(F ), v0 is the nearest point in V to f ∗; thus, ‖v0 −f ∗‖L2 ≤ r and for every
v ∈ V ,∣∣E(

v0(X) − Y
)
(v − v0)(X)

∣∣ = ∣∣E(
v0 − f ∗)

(v − v0)(X)
∣∣ ≤ r‖v − v0‖L2 .

It follows that the empirical excess risk relative to V satisfies

PNLV
v ≥ 1

N

N∑
i=1

(v − v0)
2(Xi)

− 2

∣∣∣∣∣ 1

N

N∑
i=1

(
v0(Xi) − Yi

)
(v − v0)(Xi) −E

(
v0(X) − Y

)
(v − v0)(X)

∣∣∣∣∣
− 2r‖v − v0‖L2 .

• Next, one may study the corresponding quadratic and multiplier processes in-
dexed by appropriate subsets of V and show that with high probability, if
‖v − v0‖L2 ≥ c1r then PNLV

v > 0. Thus, ERM performed in V produces v̂

for which ‖v̂ − v0‖L2 ≤ c1r .
• Since ‖v0 − f ∗‖L2 ≤ r one has that on the same event ‖v̂ − f ∗‖L2 ≤ c2r , and

using the orthogonality of W to span(F ) once again,

E
(
LF

v̂ |(Xi, Yi)
N
i=1

) ≤ c3r
2,

as required.

Let F ⊂ L2(μ) be a compact, convex class of functions. Fix r > 0 that will be
named later and let V to be a maximal r-separated subset of F . Note that for every
v0 ∈ V , Fv0 = F − v0 is star-shaped around 0, and star(V − v0) ⊂ F − v0. Using
the notation of Lemma 3.1, let T = W = Fv0 , and for s > 2r > 0,

logN
((

star(V − v0)
) ∩ sD, rD

)
≤ logN (Fv0 ∩ sD, rD)

≤ sup
x∈F

logN
(
Fv0 ∩ (x − v0 + sD), rD

)
≤ c0 log(s/r) sup

x∈F

logN
(
Fv0 ∩ (x − v0 + 4rD), rD

)
= c0 log(s/r) sup

x∈F

logN
(
F ∩ (x + 4rD), rD

)
.
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Observe that F ∩ (x + 4rD) ⊂ ((F − x) ∩ 4rD) + x, implying that

logN
((

star(V − v0)
) ∩ sD, rD

)
(4.1)

≤ c0 log(s/r) · sup
x∈F

logN
(
(F − x) ∩ 4rD, rD

)
.

Clearly, the same estimate holds for (V − v0) ∩ sD, and since V − v0 is
r-separated,

log
∣∣(V − v0) ∩ sD

∣∣ = logM
(
(V − v0) ∩ sD, rD

)
≤ logN

(
(V − v0) ∩ sD, (r/2)D

)
≤ logN

(
Fv0 ∩ sD, (r/2)D

)
(4.2)

≤ c0 log(s/r) · sup
x∈F

logN
(
(F − x) ∩ 4rD, (r/2)D

)
≤ c0 log(s/r) · sup

x∈F

logM
(
(F − x) ∩ 4rD, (r/2)D

)
.

With that in mind, fix constants η1, η2, κ2 and κ3 that will be specified later, and
for that choice of constants, let r > 0 for which

sup
x∈F

logM
(
(F − x) ∩ 4rD, (r/2)D

) ≤ max
{
η2

1Nr2, η2
2N

}
,

and r ≥ rQ(κ2) exp(−κ3 exp(N)); that is,

(4.3) r ≥ max
{
λM(η1), λQ(η2), rQ(κ2) exp

(−κ3 exp(N)
)}

.

Following the path outlined earlier, the idea is to study ERM in V , given the data
(Xi, Yi)

N
i=1 generated by Y = f (X) + W for W that is orthogonal to span(F ). To

that end, one must control the multiplier and quadratic components in the decom-
position of the squared loss relative to V .

Let us begin with the analysis of the multiplier component.

LEMMA 4.1. Fix 0 < θ < 1, L > 1 and q > 2. There exist constants c0, c1
and c2 that depend only on L and q , and for which the following holds. Let F be a
convex, L-sub-Gaussian class, set ξ ∈ Lq for some q > 2 and put η1 = c0θ/‖ξ‖Lq .
If r is as in (4.3), then for every v0 ∈ V , with probability at least

1 − c1
logq N

N(q/2)−1 − 2 exp
(−c2η

2
1r

2N
)
,

sup
{v∈V :‖v−v0‖L2≥2r}

∣∣∣∣∣ 1

N

N∑
i=1

ξi

v − v0

‖v − v0‖2
L2

(Xi) −Eξ
v − v0

‖v − v0‖2
L2

∣∣∣∣∣ ≤ θ.

The proof of Lemma 4.1 is based on the following fact from [12].
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THEOREM 4.2. For L > 1 and q > 2, there exist constants c0, c1 and c2 that
depend only on L and q for which the following holds. Let ξ ∈ Lq , set H to be
an L-sub-Gaussian class and denote by dH = suph∈H ‖h‖L2 . For w,u ≥ 8, with
probability at least

1 − c0w
−q logq N

N(q/2)−1 − 2 exp
(
−c1u

2
(
E‖G‖H

LdH

)2)
,

sup
h∈H

∣∣∣∣∣ 1

N

N∑
i=1

ξih(Xi) −Eξh

∣∣∣∣∣ ≤ c2Lwu‖ξ‖Lq

E‖G‖H√
N

.

PROOF OF LEMMA 4.1. The proof consists of two parts: first, controlling
the process indexed by {f ∈ F : ‖f − v0‖L2 ≥ s} for s = (3/2)rM(η1, v0), and
then treating the process indexed by {v ∈ V : r ≤ ‖v − v0‖L2 ≤ s}. Clearly, with-
out loss of generality one may assume that r ≤ rM(η1, v0). By the regularity
of rM and since s > rM(η1, v0), it is evident that E‖G‖(F−v0)∩sD ≤ η1

√
Ns2.

Also, (F − v0) ∩ (s/4)D ⊂ (F − v0) ∩ sD, and since s/4 ≤ rM(η1, v0), one has
E‖G‖(F−v0)∩sD ≥ η1

√
Ns2/16.

Therefore, applying Theorem 4.2 to the set H = (F − v0) ∩ sD, there are con-
stants c1, c2 and c3 that depend only on q and L for which, with probability at
least 1 − c1N

−((q/2)−1) logq N − 2 exp(−c2η
2
1s

2N), if f ∈ F and ‖f − v0‖L2 ≤ s,∣∣∣∣∣ 1

N

N∑
i=1

ξi(f − v0)(Xi) −Eξ(f − v0)

∣∣∣∣∣ ≤ c3L‖ξ‖Lq η1s
2 = (∗).

Observe that (∗) ≤ θs2 if η1 ≤ θ/c3L‖ξ‖Lq . For such a choice of η1, if ‖f −
v0‖L2 = s then

(4.4)

∣∣∣∣∣ 1

N

N∑
i=1

ξi(f − v0)(Xi) −Eξ(f − v0)

∣∣∣∣∣ ≤ θ‖f − v0‖2
L2

,

and since F − v0 is star-shaped around 0, (4.4) holds on the same event for every
f ∈ F for which ‖f − v0‖ ≥ s.

Next, one has to control the process indexed by {v ∈ V : r ≤ ‖v − v0‖L2 < s}.
Set j0 = �s/r�, fix sj = 2j r for 0 ≤ j ≤ j0 and let Vj = star((V − v0) ∩ sjD). By
Theorem 4.2, on an event Aj , for every h ∈ Vj ,∣∣∣∣∣ 1

N

N∑
i=1

ξih(Xi) −Eξh

∣∣∣∣∣ ≤ c4(L, q)wjuj‖ξ‖Lq

E‖G‖Vj√
N

= (∗∗)j .

The aim it to ensure that (∗∗)j ≤ θs2
j /4 and that Aj is of high enough probability.

Indeed, on Aj , if v ∈ V and sj /2 ≤ ‖v − v0‖L2 ≤ sj ,∣∣∣∣∣ 1

N

N∑
i=1

ξih(Xi) −Eξh

∣∣∣∣∣ ≤ θ‖v − v0‖2
L2

.
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To that end, let wj = √
j , recall that dV = supv∈V ‖v‖L2 , and thus dVj

= sj = r2j .
Put

uj = max
{

8,
θ
√

Nr

4c4‖ξ‖Lq

· 2j

√
j

· dVj

E‖G‖Vj

}

and consider two cases: first, if uj > 8 then (∗∗)j ≤ θs2
j /4 and

Pr(Aj ) ≥ 1 − c5
logq N

jq/2N(q/2)−1 − 2 exp
(
−c6(q,L)

θ2

‖ξ‖2
Lq

· Nr2 · 22j

j

)
.

Alternatively, observe that if uj = 8, then

u2
j

(
E‖G‖Vj

dVj

)2
≥ c7(q,L) · θ2

‖ξ‖2
Lq

· Nr2 · 22j

j
.

By (4.2), Vj has at most |(V − v0)∩ sjD| extreme points, and as noted previously,

log
∣∣(V − v0) ∩ sjD

∣∣ ≤ c8 log(sj /r) · logM
(
Fv0 ∩ 4rD, (r/2)D

)
≤ c8 log(sj /r) · (η1

√
Nr)2.

Thus, applying standard properties of Gaussian processes

E‖G‖Vj
≤ c9dVj

· log1/2∣∣(V − v0) ∩ sjD
∣∣ ≤ c10sj log1/2

(
2sj

r

)
· η1

√
Nr

= c10η1
√

N

√
j

2j
s2
j ,

and in particular there are constants c11 and c12 that depend only on q and L for
which

sup
h∈Vj

∣∣∣∣∣ 1

N

N∑
i=1

ξih(Xi) −Eξh

∣∣∣∣∣ ≤ c11
‖ξ‖Lq√

j
· η1

√
j

2j
s2
j ≤ θs2

j /4

provided that η1 ≤ c12θ/‖ξ‖Lq .
It follows that in both cases, there are constants c13 and c14 that depend only on

q and L, and with probability at least

1 − c13
logq N

jq/2N(q/2)−1 − 2 exp
(−c14η

2
1 · Nr2 · 22j /j

)
,

sup
h∈Vj

∣∣∣∣∣ 1

N

N∑
i=1

ξih(Xi) −Eξh

∣∣∣∣∣ ≤ θs2
j /4.

One may conclude the proof by applying the union bound to this estimate for
0 ≤ j ≤ j0. �



“LOCAL” VS. “GLOBAL” PARAMETERS 1853

Next, let us turn to the infimum of the quadratic process

(4.5) inf{v∈V :‖v−v0‖L2≥cr}
1

N

N∑
i=1

(
(v − v0)

‖v − v0‖L2

)2
(Xi),

where r was selected in (4.3) for a well-chosen η2 and a suitable constant c.

LEMMA 4.3. For every L > 1 there exist constants c0, c1 and c2 that depend
only on L for which the following holds. For every v0 ∈ V , with probability at least
1 − 2 exp(−c0N), if v ∈ V and ‖v − v0‖L2 ≥ c1r then

1

N

N∑
i=1

(v − v0)
2(Xi) ≥ c2‖v − v0‖2

L2
.

The proof of Lemma 4.3 is similar to the one used in the analysis of the multi-
plier component: controlling relatively “large distances” in F , that is, when f ∈ F

for which ‖f − v0‖L2 ≥ (3/2)rQ(η2) ≡ s; and then “small distances” in V , that is,
v ∈ V for which r ≤ ‖v − v0‖L2 ≤ s [again, one may assume that r < rQ(η2)].

For the constant η2 (yet to be specified), one has:

• E‖G‖(F−v0)∩sD ≤ η2
√

Ns,
• for every 2r < t < s,

logN
((

star(V − v0)
) ∩ sD, tD

) ≤ c0 log(2s/t) · η2
2N

and

log
∣∣(star(V − v0)

) ∩ sD
∣∣ ≤ c0 log(2s/r) · η2

2N.

The required lower bound on the infimum of the quadratic process (4.5) is based
on estimates from [11] and [10], which will be formulated under the sub-Gaussian
assumption, rather than using the original (and much weaker) small-ball condition.

THEOREM 4.4. For every L > 1, there are constants κ4, κ5 and κ6 that depend
only on L for which the following holds. Let H be an L-sub-Gaussian class that
is star-shaped around zero. Set Hρ = H ∩ ρD and fix ρ for which

E‖G‖Hρ ≤ κ4
√

Nρ.

Then, with probability at least 1 − 2 exp(−κ5N),

inf{h∈H :‖h‖L2≥ρ}
1

N

N∑
i=1

(
h(Xi)

‖h‖L2

)2
≥ κ6.

We will apply Theorem 4.4 to the class H = (F − v0) ∩ sD (large distances)
and then to Vj = star((V − v0) ∩ sjD) for sj = 2j r (small distances).
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LEMMA 4.5. There exist absolute constants c0 and c1 for which the following
holds. For every s > ρ ≥ c0r ,

E‖G‖Vj∩ρD ≤ c1η2
√

N
(
ρ log3/2(2sj /ρ) + r log3/2(2s/r)

)
.

In particular, setting ρ = sj /2 for η2 = c2κ4, one has

E‖G‖Vj∩(sj /2)D ≤ κ4
√

N(sj/2).

PROOF. Fix ρ < sj and note that by Dudley’s entropy integral bound (see,
e.g., [7, 16]),

E‖G‖Vj∩ρD ≤ c1

∫ ρ

0
log1/2 N (Vj ∩ ρD, tD)dt

= c1

∫ r

0
log1/2 N (Vj ∩ ρD, tD)dt

+ c1

∫ ρ

r
log1/2 N (Vj ∩ ρD, tD)dt.

By (4.1), and since

Vj = star
(
(V − v0) ∩ sjD

) ⊂ (
star(V − v0)

) ∩ sjD,

it follows that for r < t < ρ,

logN (Vj ∩ ρD, rD) ≤ logN
((

star(V − v0)
) ∩ ρD, rD

)
≤c2 log(2ρ/r) · sup

x∈F

logN
(
(F − x) ∩ 4rD, rD

)
≤c2 log(2ρ/r) · η2

2N.

Turning to the case of 0 < t < r , observe that by (4.2),

log
∣∣(V − v0) ∩ sjD

∣∣ ≤ c2 log(2sj /r) · η2
2N = (∗)

and Vj is the union of at most exp(∗) “intervals” of the from [0, v − v0]. Hence,
for 0 < t < r ,

logN (Vj ∩ ρD, tD) ≤ c2
(
η2

2N log(2sj /r) + log(2ρ/t)
)
.

Now the first part of the claim follows from integration, and the second part is an
immediate outcome of the first. �

PROOF OF LEMMA 4.3. Combining Theorem 4.4 and Lemma 4.5 for η2 =
c0κ4, it follows that with probability at least 1−2 exp(−κ5N), if v ∈ V and sj /2 ≤
‖v − v0‖L2 ≤ sj ,

(4.6)
1

N

N∑
i=1

(v − v0)
2(Xi) ≥ κ6‖v − v0‖2

L2
.
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Repeating this argument for sj = 2j r and then applying it to the set Fv0 ∩ sD for
s = (3/2)rQ(η2), it is evident that if log2(s/r) ≤ exp(κ5N/2) then with probability
at least 1−2 exp(−κ5N/2), (4.6) holds for every v ∈ V that satisfies ‖v −v0‖L2 ≥
c1r . �

With all the ingredients in place, we may now conclude the proof of the upper
estimate.

Fix f ∈ F and set Y = f (X) + W for W ∈ Lq that is orthogonal to span(F ).
Let r , V and v0 as above, recall that for every v ∈ V ,

(4.7) ‖v − Y‖2
L2

= ‖W‖2
L2

+ ‖v − f ‖2
L2

,

and thus ‖v0 − f ‖L2 ≤ r . Moreover, for every v ∈ V , E(W · (v − v0)(X)) = 0 and∣∣E(
v0(X) − Y

)
(v − v0)(X)

∣∣ = ∣∣E(v0 − f )(X) · (v − v0)(X)
∣∣

≤ ‖v0 − f ‖L2 · ‖v − v0‖L2 ≤ r‖v − v0‖L2 .

By Lemma 4.3, with probability at least 1 − 2 exp(−κ5N/2), if v ∈ V and ‖v −
v0‖L2 ≥ c(L)r , then

1

N

N∑
i=1

(v − v0)
2(Xi) ≥ κ6‖v − v0‖2

L2
.

Using the notation of Lemma 4.1, set θ = κ6/4 and η1 = c0(q,L)θ/‖W‖Lq .
Hence, there are constants c1 and c2 that depend only on q and L, for which,
with probability at least

1 − c1
logq N

N(q/2)−1 − 2 exp
(−c2η

2
1r

2N
)
,

for every v ∈ V , ‖v − v0‖L2 ≥ 2r ,∣∣∣∣∣ 1

N

N∑
i=1

(
v0(Xi) − Yi

)
(v − v0)(Xi) −E

(
v0(X) − Y

)
(v − v0)(X)

∣∣∣∣∣
≤ κ6

4
‖v − v0‖2

L2
.

On the intersection of the two events and for a constant c3 = c3(q,L), if ‖v −
v0‖L2 ≥ c3r then

PNLV
v = 1

N

N∑
i=1

(v − v0)
2(Xi) + 2

N

N∑
i=1

(
v0(Xi) − Yi

)
(v − v0)(Xi)

≥ 1

N

N∑
i=1

(v − v0)
2(Xi) − 2

∣∣E(
v0(X) − Y

)
(v − v0)(X)

∣∣
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− 2

∣∣∣∣∣ 1

N

N∑
i=1

(
v0(Xi) − Yi

)
(v − v0)(Xi) −E

(
v0(X) − Y

)
(v − v0)(X)

∣∣∣∣∣
≥ κ6‖v − v0‖2

L2
− 2r‖v − v0‖L2 − (κ6/2)‖v − v0‖2

L2

≥ (κ6/4)‖v − v0‖2
L2

.

Thus, for every such sample, the empirical risk minimizer v̂ ∈ V satisfies that

‖v̂ − v0‖L2 ≤ c4r.

And, since W is orthogonal to span(F ),

E
(
LF

v̂ |(Xi, Yi)
N
i=1

) = ‖v̂ − Y‖2
L2

− ‖f − Y‖2
L2

= ‖v̂ − f − W‖2
L2

− ‖W‖2
L2

= ‖v̂ − f ‖2
L2

− 2E
(
W · (v̂ − f )(X)

)
≤ (‖v̂ − v0‖L2 + ‖v0 − f ‖L2

)2 ≤ (1 + c4)
2r2.

5. The lower bound. The lower estimates we present are based on a volu-
metric argument. The idea is that if a learning procedure is “too successful”, a
well-separated subset of F endows a collection of disjoint sets in R

N (each col-
lection depends on X1, . . . ,XN ). However, because of some volumetric constraint,
there is not “enough room” for such a collection to exist, leading to a contradiction.

The notions of volume are different in the two estimates: one is based on the
Lebesgue measure while the other is determined by the choice of the “noise” W .

DEFINITION 5.1. Let F be a class of functions and assume that X =
(x1, . . . , xN) ∈ �N . For every f ∈ F , set

K(f,X) = {
h ∈ F : h(xi) = f (xi) for every 1 ≤ i ≤ N

}
.

The set K(f,X) is called the version space of F associated with f and X.

In other words, K(f,X) consists of all the functions in F that agree with f

on X. Naturally, in the context of statistical learning theory, X will be a random
sample (Xi)

N
i=1, selected according to the underlying measure μ.

The diameter of the version space is a reasonable candidate for a lower bound
on the performance of any learning procedure: if W is mean-zero and independent
of X and (Yi)

N
i=1 = (f (Xi) + Wi)

N
i=1, a learning procedure cannot distinguish be-

tween f and any other function in the version space associated with f and (Xi)
N
i=1.

Hence, the largest typical diameter of a version space should be a lower estimate
on the performance of any learning procedure, as the following well-known fact
shows (see, e.g., [6]).
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THEOREM 5.2. Given a mean-zero random variable W that is independent of
X, for every f ∈ F set Yf = f (X) + W . If � is a learning procedure, then

sup
f ∈F

Pr
(∥∥�((

Y
f
i ,Xi

)N
i=1

) − f
∥∥
L2(μ) ≥ 1

4
diam

(
K(f,X),L2(μ)

)) ≥ 1/2,

where the probability is relative to the product measure endowed on (� ×R)N by
the N -product of the joint distribution of X and W .

As noted earlier, if W is orthogonal to span(F ), then for every h ∈ F and every
target Yf , ELf

h = ‖h−f ‖2
L2

. Thus, the largest typical diameter of a version space
K(f,X) is a lower bound on Ep for the set of admissible targets Y = {f (X) + W :
f ∈ F }.

This leads to the following question.

QUESTION 5.3. Given a class F defined on a probability space (�,μ), f ∈ F

and X= (x1, . . . , xN) ⊂ �N , find a lower estimate on diam(K(f,X),L2(μ)).

The first result of this section deals with Question 5.3.

THEOREM 5.4. There exists an absolute constant c for which the following
holds. Let F ⊂ L2(μ) be a convex and centrally-symmetric set. If

logM
(
F ∩ 2rD, (r/4)D

) ≥ cN,

then for every X = (x1, . . . , xN), diam(K(0,X),L2(μ)) ≥ r/8. In particular, for
any f ∈ F ,

diam
(
K(f/2,X),L2(μ)

) ≥ r/16.

Since F is star-shaped around 0, it follows that M(F ∩ 4rD, (r/2)D) ≤
M(F ∩ 2rD, (r/4)D). Therefore, Theorem 5.4 implies that if λQ(c,0) > r then
for every X = (x1, . . . , xN), diam(K(0,X),L2(μ)) ≥ r/8. In particular, for every
W ∈ L2 that is orthogonal to span(F ), the best possible error rate in F that holds
with probability 1/2 and for every target Yf = f (X) + W , is at least of the order
of λ2

Q(c,0) ≥ c1λ
2
Q(c).

PROOF. Let f1, . . . , fm be r/4-separated in F ∩ 2rD. Set

Ai = fi

2
+ 1

32
(F ∩ 2rD),

and observe that Ai ⊂ F ∩ 2rD. Also, for every h ∈ Ai , ‖(fi/2) − h‖L2 ≤ r/16.
Therefore, if hi ∈ Ai and h� ∈ A�, then ‖hi − h�‖L2 ≥ r/8.

Fix X = (x1, . . . , xN) and for A ⊂ F set

PX(A) = {(
h(Xi)

)N
i=1 : h ∈ A

} ⊂R
N,
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the coordinate projection of A associated with X. Note that for every 1 ≤ i ≤ m

(5.1) PX(Ai) = 1

2

(
fi(xj )

)N
j=1 + 1

32
PX(F ∩ 2rD)

and consider two possibilities.
First, if there are i �= � for which PX(Ai) ∩ PX(A�) �= ∅, there are hi ∈ Ai and

h� ∈ A� that satisfy hi −h� ∈ K(0,X), thus showing that diam(K(0,X),L2(μ)) ≥
r/8.

Otherwise, the sets PX(Ai) are disjoint subsets of PX(F ∩ 2rD). And, set-
ting T = PX(F ∩ 2rD), (5.1) implies that M(T , T /32) ≥ m. Since T is a con-
vex, centrally symmetric subset of R

N , a standard volumetric argument shows
that M(T , T /32) ≤ exp(cN) for a suitable absolute constant c. Hence, if m >

exp(cN), diam(K(0,X),L2(μ)) ≥ r/8, as claimed.
The second claim follows immediately from the first: if h is of (almost) maximal

L2(μ) distance from 0 in K(0,X) then for any f ∈ F , (h + f )/2 ∈ K(f/2,X);
thus diam(K(f/2,X),L2(μ)) ≥ r/16. �

Our final result is the “noise-dependent” lower bound. The result we shall prove
holds in a slightly more general situation than was formulated: we will assume that
the noise vector U = (W1, . . . ,WN) is symmetric, independent of X1, . . . ,XN , but
its coordinates need not be independent. For such a noise vector, a procedure �

performs with accuracy E and confidence 1−δ, if for every f ∈ F , with probability
at least 1 − δ, upon receiving the data (Xi, f (Xi) + Wi)

N
i=1,

∥∥�((
Xi,f (Xi) + Wi

)N
i=1

) − f
∥∥2
L2

≤ E .

Naturally, if (W1, . . . ,WN) has i.i.d. coordinates then E coincides with Ep for the
set of targets Y = f (X) + W .

The main assumption that will be needed in the proof of the lower bound is the
following.

ASSUMPTION 5.1. Assume that there is an nonincreasing, nonnegative func-
tion ρ : R+ →R+ for which, for every centrally symmetric set A ⊂ R

N and every
z ∈R

N ,

Pr(U ∈ A + z) ≥ ρ
(‖z‖�N

2

)
Pr(U ∈ A).

The most important example of a random vector that satisfies Assumption 5.1
is a Gaussian vector on R

N with covariance σIN , and in which case, ρ(‖z‖�N
2
) =

exp(−‖z‖2
�N

2
/2σ 2). But as the next lemma shows, a Gaussian vector is just one in

a rather large family of measures that satisfy Assumption 5.1.
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LEMMA 5.5. Let A ⊂ R
N be centrally symmetric and set z ∈ R

N . Let
W be a symmetric random variable with a density exp(−φ) and assume that
supt∈R |φ′′(t)| ≤ κ . If ν is the corresponding product measure on R

N , then

ν(z + A) ≥ exp
(−κ‖z‖2

�N
2
/2

) · ν(A).

PROOF. Observe that φ is an even function and that the density of ν is
exp(−∑N

i=1 φ(xi)). Therefore, if z = (zi)
N
i=1 then

ν(z + A) =
∫
z+A

exp

(
−

N∑
i=1

φ(xi)

)
dx =

∫
A

exp

(
−

N∑
i=1

φ(ti + zi)

)
dt = (∗).

Because φ has a bounded second derivative, it is evident that, for 1 ≤ i ≤ N ,

φ(ti + zi) ≤ φ(ti) + φ′(ti)zi + κz2
i /2.

Setting D�t = (φ′(ti))Ni=1,

(∗) ≥ exp
(−κ‖z‖2

�N
2
/2

) ∫
A

exp
(−〈D�t, z〉) exp

(
−

N∑
i=1

φ(ti)

)
dt

= exp
(−κ‖z‖2

�N
2
/2

)
ν(A) ·Eν|A exp

(−〈D�t, z〉),
where Eν|A is expectation with respect to the measure ν conditioned on A.

Since ν is a symmetric measure and A is centrally symmetric, ν|A is a sym-
metric measure as well, and because φ is an even function, Eν|A〈D�t, z〉 = 0.
Therefore, by Jensen’s inequality,

Eν|A exp
(−〈D�t, z〉) ≥ exp(−Eν|A〈D�t, z〉) = 1,

and the claim follows. �

THEOREM 5.6. There exists an absolute constant c for which the following
holds. Let F ⊂ L2(μ) be a class of functions, set U to be a symmetric random
vector that satisfies Assumption 5.1 and which is independent of (Xi)

N
i=1. If the

procedure � performs with accuracy E ≡ r2/36 and confidence 7/8, then

logM
(
F ∩ 4rD, (r/2)D

) ≤ 2 + log
(
ρ−1(c

√
Nr)

)
.

In particular, if (W1, . . . ,WN) has independent coordinates, distributed according
to a symmetric random variable W for which ρ(‖z‖�N

2
) = exp(−‖z‖2

�N
2
/2‖W‖2

L2
),

then

Ep ≥ c1λ
2
M

(
c2

‖W‖L2

)
.
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REMARK 5.7. Versions of Theorem 5.6 for U that has i.i.d. Gaussian coordi-
nates can be established in several different ways: for example, using information
theoretic tools (see Theorem 2.5 in [15], which is based on estimates on the KL-
divergence), or, alternatively, by applying the Gaussian isoperimetric inequality as
in [6]. The obvious downside is that these arguments rely on rather special proper-
ties of the noise, and thus do not seem to extend to the setup of Theorem 5.6.

PROOF. Recall that if τ = (xi, f (xi) + wi)
N
i=1 ∈ (� × R)N is a sample on

which � performs with accuracy E then ‖�(τ) − f ‖2
L2

≤ E .

Choose r that satisfies (r/2)2 = 9E and let (fj )
m
j=1 be a subset of F ∩ 4rD that

is r/2 separated in L2(μ). Fix X = (x1, . . . , xN) ∈ �N and set zj = (fj (xi))
N
i=1 ∈

R
N .
For every 1 ≤ j ≤ m, put

Aj(X) = {
(wi)

N
i=1 : �((

xi, fj (xi) + wi

)N
i=1

) ∈ fj + √
ED

} ⊂ R
N.

Thus, Aj(X) consists of all the vectors (wi)
N
i=1 ∈ R

N , for which, upon receiving
the data (xi, fj (xi) + wi)

N
i=1, � selects a point whose L2(μ) distance to fj is at

most r/6 = √
E .

Let ν be measure on R
N according to which U = (W1, . . . ,WN) is distributed.

Recall that U is independent of X1, . . . ,XN ; hence, if � performs with accuracy
E and with probability at least 7/8, then

μN ⊗ ν
({

(xi,wi)
N
i=1 : �((

xi, fj (xi) + wi

)N
i=1

) ∈ fj + √
ED

})
= μN ⊗ ν

({
(xi,wi)

N
i=1 : (wi)

N
i=1 ∈ Aj(X)

}) ≥ 7/8.

A standard Fubini argument shows that there is an event Cj ⊂ �N of μN proba-
bility at least 1/2, and for every X = (xi)

N
i=1 ∈ Cj , ν(Aj (X)) ≥ 3/4. Moreover, if

X ∈ Cj then by the symmetry of ν, ν(−Aj(X)) ≥ 3/4, and the centrally-symmetric
set Aj(X) ∩ −Aj(X) ⊂ Aj(X) satisfies that

ν
(
Aj(X) ∩ −Aj(X)

) ≥ 1/2.

Observe that if X ∈ Cj ∩ C�, the sets zj + Aj(X) and z� + A�(X) are disjoint,
because � maps zj +Aj(X) to an r/6-neighbourhood of fj and z� +A�(X) to an
r/6-neighbourhood of f�—but ‖fj − f�‖L2 ≥ r/2. Therefore,

m∑
j=1

1Cj
(X)ν

(
zj + (

Aj(X) ∩ −Aj(X)
)) ≤ 1.

Integrating with respect to μN ,
m∑

i=1

EX1Cj
(X)ν

(
zj + (

Aj(X) ∩ −Aj(X)
)) ≤ 1,
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and all that remains is to control EX1Cj
(X)ν(zj +(Aj (X)∩−Aj(X))) from below.

By Assumption 5.1,

ν
(
zj + (

Aj(X) ∩ −Aj(X)
)) ≥ ρ

(‖zj‖�N
2

) · ν(
Aj(X) ∩ −Aj(X)

)
,

and by Chebychev’s inequality, recalling that ‖fj‖L2 ≤ 4r ,

μN (‖zj‖2
�N

2
≤ c0Nr2) = μN

(
N∑

i=1

f 2
j (Xi) ≤ c0Nr2

)
≥ 3/4

for an appropriate choice of an absolute constant c0. Thus, for every 1 ≤ j ≤ m,
there is an event of μN measure at least 1/4 on which X ∈ Cj , ν(Aj (X) ∩
−Aj(X)) ≥ 3/4, and, since ρ is nonincreasing, ρ(‖z‖�N

2
) ≥ ρ(c0

√
Nr). There-

fore,

1 ≥
m∑

i=1

EX1Cj
(X)ν

(
zj + (

Aj(X) ∩ −Aj(X)
)) ≥ (3m/16)ρ(c0

√
Nr),

implying that

logm = logM
(
F ∩ 4rD, (r/2)D

) ≤ log 6 + log
(
1/ρ(c0

√
Nr)

)
,

as claimed.
Turning to the second part of the theorem, let � be a learning procedure that

performs with accuracy Ep for every target Yf = f (X) + W for f ∈ F and W

that is independent of X. Therefore, Ep = E and by the first part of the theorem for
ρ(t) = exp(−t2/2‖W‖2

L2
) and

√
E = r/6, one has

logM
(
F ∩ 4rD, (r/2)D

) ≤ log 6 + c1Nr2/‖W‖2
L2

.

Since F is convex and centrally symmetric, if 4r ≤ diam(F,L2(μ)) then F ∩
4D contains an interval of length 8r ; thus, logM(F ∩ 4rD, (r/2)D) ≥ 2 log 6,
implying that

logM
(
F ∩ 4rD, (r/2)D

) ≤ 2c1Nr2/‖W‖2
L2

.

Therefore, by the definition of λM , Ep ≥ c2λ
2
M(c3/‖W‖L2). �

The combination of Theorem 5.6 and Lemma 5.5 concludes the proof of Theo-
rem 2.10.

SUPPLEMENTARY MATERIAL

Supplement to “‘Local’ vs. ‘global’ parameters—breaking the Gaussian
complexity barrier” (DOI: 10.1214/16-AOS1510SUPP; .pdf). We prove two ob-
servations: the first shows that the setup of the Young–Barron theorem is different
from the one we study here, and the other is that for p > 1 there is a true gap
between the “local” and “global” complexities of Bn

p .

http://dx.doi.org/10.1214/16-AOS1510SUPP
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