Abstract
We show that $f \in L^p (X ; m)$ implies $|f| dm \in S_{K}^{1}$ for $p \gt D$ with $D \gt 0$, where $S_{K}^{1}$ is a subfamily of Kato class measures relative to a semigroup kernel $p_t (x, y)$ of a Markov process associated with a (non-symmetric) Dirichlet form on $L^2 (X ; m)$. We only assume that $p_t (x, y)$ satisfies the Nash type estimate of small time depending on $D$. No concrete expression of $p_t (x,y)$ is needed for the result.
Information
Published: 1 January 2006
First available in Project Euclid: 16 December 2018
zbMATH: 1116.31005
MathSciNet: MR2277833
Digital Object Identifier: 10.2969/aspm/04410193
Subjects:
Primary:
31C15
,
31C25
,
31-XX
,
60G52
,
60J25
,
60J45
,
60J60
,
60J65
,
60J75
,
60JXX
Keywords:
Brownian motion
,
Brownian motion penetrating fractals
,
Dirichlet form
,
Dynkin class
,
Green kernel
,
heat kernel
,
Kato class
,
Markov process
,
Nash type inequality
,
relativistic Hamiltonian process
,
Resolvent kernel
,
semigroup kernel
,
Sobolev inequality
,
Symmetric $\alpha$-stable process
,
ultracontractivity
Rights: Copyright © 2006 Mathematical Society of Japan