VOL. 80 | 2019 Singular MASAs in type III factors and Connes' Bicentralizer Property
Cyril Houdayer, Sorin Popa

Editor(s) Masaki Izumi, Yasuyuki Kawahigashi, Motoko Kotani, Hiroki Matui, Narutaka Ozawa

Adv. Stud. Pure Math., 2019: 109-122 (2019) DOI: 10.2969/aspm/08010109

Abstract

We show that any type $\mathrm{III}_1$ factor with separable predual satisfying Connes' Bicentralizer Property (CBP) has a singular maximal abelian $\ast$-subalgebra that is the range of a normal conditional expectation. We also investigate stability properties of CBP under finite index extensions/restrictions of type $\mathrm{III}_1$ factors.

Information

Published: 1 January 2019
First available in Project Euclid: 21 August 2019

zbMATH: 07116424
MathSciNet: MR3966585

Digital Object Identifier: 10.2969/aspm/08010109

Subjects:
Primary: 46L10 , 46L36

Keywords: Connes' bicentralizer property , Singular maximal abelian $\ast$-subalgebras , Type $\mathrm{III}$ factors

Rights: Copyright © 2019 Mathematical Society of Japan

PROCEEDINGS ARTICLE
14 PAGES


Back to Top