Abstract
Let $\mathcal{D} (R^n)$ be the class of all $C^{\infty}$–functions on $R^n$ with compact support. For a multi-index $\alpha$ we denote $\mathcal{D}^{\alpha} (R^n) = \{\mathcal{D}^{\alpha} \varphi : \varphi \in \mathcal{D} (R^n)\}$. We give a direct sum decomposition of $\mathcal{D} (R^n)$ by $\mathcal{D}^{\alpha} (R^n)$ and its complementary space.
Information
Published: 1 January 2006
First available in Project Euclid: 16 December 2018
zbMATH: 1118.46037
MathSciNet: MR2277832
Digital Object Identifier: 10.2969/aspm/04410179
Subjects:
Primary:
46E10
Keywords:
complementary space
,
derivative space
,
Schwartz class
Rights: Copyright © 2006 Mathematical Society of Japan