PROXIMITY ON FUNCTION SPACES

By

Fu Pei-Ren

Introduction

It has been 30 years since V. A. Efremovič [1] introduced the concept of proximity in 1951. A lot of works have been done and the theory is being perfected. But it is a pity that there is no paper on various proximity on function space.

In this paper we first consider the proximity characterizing the point-wise convergence on function space. Then we investigate the proximity characterizing the uniform convergence on a function space and a condition under which the proximity becomes joint proximally continuous. Last, we study the proximity characterizing the uniform convergence of the function space on a family of subsets and its related properties.

1. Proximity of point-wise convergence

For the definitions and notations used in this section are see to [2]. Let X be a set, (Y, \mathcal{J}) be a proximity space, and $F \subset Y^X$. Let

 $A(x) = \{f(x) : f \in A\}$ for each $A \subset F$, $x \in X$.

DEFINITION 1.1. The relative proximity $\underset{x \in X}{\times} \mathcal{G}_x | F$ with respect to F is called proximity of point-wise convergence on F, denote by ρ -proximity on F or $\mathcal{G}^X | F$ for short, where $\underset{x \in X}{\times} \mathcal{G}_x$ is the product proximity of the family of proximity spaces $\{(Y_x, \mathcal{G}_x) : x \in X\}$, and $Y_x = Y$, $\mathcal{G}_x = \mathcal{G}$, for each $x \in X$.

By Definition 1.1, we have the following:

PROPOSITION 1.1. Let A, $B \subset F$. Then $A \mathcal{J}^X | FB$ iff for any finite decomposition of A and B:

$$A = \bigcup_{i=1}^{p} A_{i}, \qquad B = \bigcup_{j=1}^{q} B_{j},$$

there are i and j such that $A_i(x)\mathcal{J}B_j(x)$ for each $x \in X$.

PROPOSITION 1.2. Suppose that the evaluation map $e_x: F \to Y$ is defined by Received May 29, 1984. Revised December 19, 1984.

Fu Pei-Ren

 $e_x(f) = f(x)(f \in F)$ for each $x \in X$, then proximity $\mathcal{S}^x | F$ on F is the coarsest proximity on F, which makes every evaluation map e_x proximally continuous for each $x \in X$, in other words, $\mathcal{S}^x | F = \sup \{e_x^{-1}(\mathcal{S}) : x \in X\}$.

It is known that the topology of a product proximity space is equal to the product of the topology of each coordinate space, and the product topology is the topology of point-wise convergence. Besides, the convergence with respect to the proximity is the convergence with of the topology induced by the same proximity. Thus we have:

THEOREM 1.1. The net $\{f_{\alpha} : \alpha \in D\} \mathcal{J}^{X} | F$ -converges to $f \in F$ in a proximity space $(F, \mathcal{J}^{X} | F)$ iff the net $\{f_{\alpha}(x) : \alpha \in D\}$ \mathcal{J} -converges to f(x) in Y for each $x \in X$.

It is known that a proximity space (Y, \mathcal{G}) is compact iff the topological space $(Y, \mathcal{G}_{\mathcal{G}})$ induced by it is compact. By Tychonoff's Theorem, we have the following immediately.

THEOREM 1.2. Let (Y, \mathcal{J}) be a compact proximity space, then $(F, \mathcal{J}^X | F)$ is a compact proximity space iff (a) $f \in Y^X \setminus F$ implies $\{f\} \overline{\mathcal{J}^X} F$.

If (Y, \mathcal{S}) is separated, then the condition (a) is also a necessary condition under which $(F, \mathcal{S}^X | F)$ is a compact proximity space.

PROOF. The fact that (Y, \mathcal{S}) is a compact proximity space implies that $(Y, \mathcal{I}_{\mathcal{S}})$ is a compact topological space. By Tychonoff's Theorem $(Y^X, \mathcal{I}_{\mathcal{S}}^X)$ is a compact topological space. The condition (a) shows that F is a $\mathcal{I}_{\mathcal{S}}x$ -closed set of Y^X , and $\mathcal{I}_{\mathcal{S}}^X = \mathcal{I}_{\mathcal{S}}x$, thus $(F, \mathcal{I}_{\mathcal{S}}^X|F)$ is a compact topological space and so is $(F, \mathcal{I}_{\mathcal{S}}\mathcal{I}_{\mathcal{F}})$, which means that $(F, \mathcal{I}^X|F)$ is a compact proximity space.

If (Y, \mathcal{J}) is separated, then (Y^X, \mathcal{J}^X) is separated, and hence the topology $\mathcal{I}_{\mathcal{J}X}$ is T_2 . Thus the condition (a) is the necessary condition under which $(F, \mathcal{J}^X | F)$ is a compact space.

The condition under which (Y, \mathcal{S}) is a compact space may be weakened.

THEOREM 1.3. Let (Y, \mathcal{S}) be a proximity space, then the sufficient condition under which $(F, \mathcal{S}^{X}|F)$ is a compact proximity space is

(a) $f \in Y^X \setminus F$ implies $\{f\} \overline{\mathcal{J}^X} F$.

(b) F(x) has a compact closure for each $x \in X$ in the topology $\mathfrak{T}_{\mathcal{J}}$ in Y.

Furthermore if (Y, \mathcal{G}) is separated, then (a) and (b) are necessary conditions

under which $(F, \mathcal{G}^{X}|F)$ is a compact proximity space.

PROOF. Suppose that \mathfrak{x} is a $\mathscr{G}^{\mathfrak{X}}|F$ -compressed filter base in F. Then $e_{\mathfrak{X}}(\mathfrak{x})$ is a \mathscr{G} -compressed filter base in Y for each $\mathfrak{x} \in X$. By (b), $F(\mathfrak{x})^-$ (the closure of the set $F(\mathfrak{x})$ in the $\mathscr{T}_{\mathscr{G}}$ in Y) is $\mathscr{T}_{\mathscr{G}}$ -compact, and hence \mathscr{G} -compact. Thus $e_{\mathfrak{x}}(\mathfrak{x})$ is a \mathscr{G} -compressed filter base in $F(\mathfrak{x})^-$, so there is a $\mathfrak{y} \in F(\mathfrak{x})^-$ such that $e_{\mathfrak{x}}(\mathfrak{x}) \mathscr{G}$ -converges to \mathfrak{y} denoted by $f(\mathfrak{x})$. Thus we get an $f \in Y^{\mathfrak{X}}$, and \mathfrak{x} point-wisely converges to f, and hence $\mathfrak{x} \mathscr{G}^{\mathfrak{X}}$ -converges to f. By condition (a), $f \in F$, and hence $\mathfrak{x} \mathscr{G}^{\mathfrak{X}}|F$ -converges to $f \in \mathfrak{x}$, that is $(F, \mathscr{G}^{\mathfrak{X}}|F)$ is a compact proximity space.

For each $x \in X$, since $(F, \mathcal{J}^X | F)$ is a compact proximity space, $F(x) = e_x(F)$ is $\mathcal{I}_{\mathcal{J}}$ -compact. Furthermore, since (Y, \mathcal{J}) is separated, $(Y, \mathcal{I}_{\mathcal{J}})$ is a T_2 -space. Thus F(x) is $\mathcal{I}_{\mathcal{J}}$ -closed, that is $F(x)^- = F(x)$ is $\mathcal{I}_{\mathcal{J}}$ -compact.

2. Joint proximal continuity

DEFINITION 2.1. Let (X, \mathcal{P}) and (Y, \mathcal{S}) be proximity spaces, $F \subset Y^X$, and \mathcal{R} be a proximity on F. If \mathcal{R} makes a function $P: F \times X \to Y$, defined by P(f, x) = f(x), $(\mathcal{R} \times \mathcal{P}, \mathcal{S})$ -proximally continuous, then we call \mathcal{R} a joint proximally continuous proximity on F, denoted by J. P. C.-proximity for short. And we denote the family of all $(\mathcal{P}, \mathcal{S})$ -proximally continuous functions by C(X, Y).

PROPOSITION 2.1. If there is a J. P. C.-proximity on F, then $F \subset C(X, Y)$.

PROOF. Suppose that \mathscr{R} is a J. P. C.-proximity on F. For each $f \in F$, $A \subset X$, $B \subset X$ if $A \mathscr{P} B$, then

$$(f \times A) \mathfrak{R} \times \mathfrak{P}(f \times B) \tag{2.1}$$

In fact, for any finite decomposition of $(f \times A)$ and $(f \times B)$

$$f \times A = \bigcup_{i=1}^{n} f \times A_{i} \qquad f \times B = \bigcup_{j=1}^{m} f \times B_{j},$$

accordingly, we have a finite decomposition of A, B

$$A = \bigcup_{i=1}^n A_i, \qquad B = \bigcup_{j=1}^m B_j.$$

Thus there are i and j such that $A_i \mathcal{P} B_j$. Furthermore we have

$$p_1(f \times A_i) = \{f\}, \quad p_1(f \times B_j) = \{f\},$$

and hence $p_1(f \times A_i) \mathcal{R} p_1(f \times B_j)$. Note that

$$p_2(f \times A_i) = A_i, \qquad p_2(f \times B_j) = B_j,$$

thus $p_2(f \times A_i) \mathscr{P} p_2(f \times B_j)$. $(p_1 \text{ and } p_2 \text{ represent the projections on } F \text{ and on } X$ respectively). And by the definition of product proximity (2.1) holds.

Fu Pei-Ren

Furthermore we have $P(f \times A) = f(A)$, $P(f \times B) = f(B)$. With the fact that the map P is $(\mathcal{R} \times \mathcal{P}, \mathcal{S})$ -proximally continuous, it follows that $f(A)\mathcal{S}f(B)$, which means, f is a $(\mathcal{P}, \mathcal{S})$ -proximally continuous map, $f \in C(X, Y)$.

For further discussion of joint proximal continuity, we first obtain a sufficient and necessary condition of proximal continuity, then give the concept of the family of equiproximally continuous functions (The terms and notations used in the following can be seen in [3]).

THEOREM 2.1. Suppose that (X, \mathcal{P}) and (Y, \mathcal{J}) are proximity spaces. $f: X \rightarrow Y$. *Y.* Then f is $(\mathcal{P}, \mathcal{J})$ -proximally continuous iff for each \mathcal{J} -uniform cover $\mathcal{A} = \{A_i: i=1, 2, \dots, n\}$ on Y, there is a \mathcal{P} -uniform cover $\mathcal{B} = \{B_j: j=1, 2, \dots, m\}$ on X such that for each B_j , there is an A_i satisfying $f(B_j) \subset A_i$.

PROOF. Suppose that $\mathcal{V}_{\mathcal{P}}$ on X and $\mathcal{V}_{\mathcal{I}}$ on Y stand for totally bounded uniformities which are compatible with \mathcal{P} and \mathcal{J} , respectively.

Necessity: Suppose that $\mathcal{A}' = \{A'_k : k=1, 2, \dots, l\}$ is a star-refinement \mathcal{J} uniform cover of \mathcal{A} , then $V' = \bigcup_{k=1}^{l} A'_k \times A'_k \in \mathcal{OV}_{\mathcal{J}}$. The fact that f is $(\mathcal{P}, \mathcal{J})$ proximally continuous implies that f is $(\mathcal{OV}_{\mathcal{P}}, \mathcal{OV}_{\mathcal{J}})$ -uniformly continuous. Then there is a \mathcal{P} -uniform cover $\mathcal{B} = \{B_j : j=1, 2, \dots, m\}$ on X. Suppose that $f(x_0)$ $\in A'_{k_0}$ for a fixed $x_0 \in B_j$, then $(f(x_0), f(x)) \in V'$ for each $x \in B_j$. Thus there is an index k such that $(f(x_0), f(x)) \in A'_k \times A'_k$, which means $f(x_0) \in A'_{k_0} \times A'_k$, and hence $f(x) \in (A'_{k_0})^*$ and \mathcal{A}' is a star-refienment of \mathcal{A} , and there is an $A_i \in \mathcal{A}$ such that $(A'_{k_0})^* \subset A_i$, thus $f(B_j) \subset A_i$.

Sufficiency: Suppose C, $D \subset X$ and $C \mathcal{P}D$. By the hypothesis, for any \mathcal{J} -uniform cover $\mathcal{A} = \{A_i : i=1, 2, \dots, n\}$, on Y, there is a \mathcal{P} -uniform cover $\mathcal{B} = \{B_j : j=1, 2, \dots, m\}$ on X and there is an A_i such that $f(B_j) \subset A_i$ for each B_j . Since $C \mathcal{P}D$, there is a B_j such that $C \cap B_j \neq \emptyset$ and $D \cap B_j \neq \emptyset$. Therefore, $f(C) \cap A_i \neq \emptyset$ and $f(D) \cap A_i \neq \emptyset$. This means $f(C)\mathcal{J}f(D)$, and hence f is a $(\mathcal{P}, \mathcal{J})$ -proximally continuous map.

DEFINITION 2.2. Suppose that (X, \mathcal{P}) and (Y, \mathcal{J}) are proximity spaces, $F \subset Y^X$. If for each \mathcal{J} -uniform cover $\mathcal{A} = \{A_i : i=1, 2, \dots, n\}$ on Y, there is a \mathcal{P} -uniform cover $\mathcal{B} = \{B_j : j=1, 2, \dots, m\}$ on X such that for each $f \in F$, $B_j \in \mathcal{B}$ there is an $A_i \in \mathcal{A}$ such that $f(B_j) \subset A_i$, then F is called a family of $(\mathcal{P}, \mathcal{J})$ -equiproximally continuous functions.

We obtain the following from Theorem 2.1 and Definition 2.2.

PROPOSITION 2.2. If F is a family of $(\mathcal{P}, \mathcal{J})$ -equiproximally continuous functions, then $F \subset C(X, Y)$.

3. Uniformly convergent proximity

Let X be a set, (Y, \mathcal{V}) be a uniform space, and $F \subset Y^X$. For $V \in \mathcal{V}$, let

$$W(V) = \{(f, g) \in F \times F : (f(x), g(x)) \in V, \text{ for each } x \in X\}$$

We have known that the uniformity with $\{W(V): V \in \mathcal{CV}\}$ as a base is called the uniformity of uniform convergence, denoted by u.c.-uniformity on F.

DEFINITION 3.1. The proximity on F generated by a u.c.-uniformity on F is called the *uniformly convergent proximity*, denoted by u.c.-proximity, or is called u.c.-proximity induced by CV.

PROPOSITION 3.1. Suppose that \mathcal{R} is a u.c.-proximity on F, $A \subset F$ and $B \subset F$, then $A \mathcal{R} B$ iff for each $V \in \mathcal{V}$, there are $f \in A$ and $g \in B$ such that $(f(x), g(x)) \in V$ for each $x \in X$.

THEOREM 3.1. Let \mathfrak{R} be a u.c.-proximity on F, then the net $\{f_{\alpha} : \alpha \in D\}$ in F \mathfrak{R} -converges to $f \in F$ iff the net \mathbb{V} -uniformly converges to f on X.

PROOF. Suppose $G \subset F$ and $\{f\} \,\overline{\mathcal{R}} F \setminus G$. Thus there is a $V \in \mathcal{C} V$ such that for each $g \in F \setminus G$ there is an $x \in X$ such that

$$(f(x), g(x)) \in V \tag{3.1}$$

We choose a symmetric element $U \in \mathcal{V}$ such that $U \circ U \subset V$. Since the net $\{f_{\alpha} : \alpha \in D\}$ uniformly converges to f on X, there is an $\alpha_0 \in D$ such that

$$(f(x), f_{\alpha}(x)) \in U$$
 for each $\alpha \ge \alpha_0, x \in X$. (3.2)

If $\{f_{\alpha}: \alpha \ge \alpha_0, \alpha \in D\} \mathcal{R}F \setminus G$, then there is an $\alpha, \alpha \ge \alpha_0$ and $\alpha \in D$, and a $g \in F \setminus G$, such that

$$(f_{\alpha}(x), g(x)) \in U$$
 for each $x \in X$. (3.3)

By (3.2) and (3.3), $(f(x), g(x)) \in U \circ U \subset V$ for any $x \in X$, which contradicts (3.1), hence $\{f_{\alpha} : \alpha \geq \alpha_0, \alpha \in D\} \not \in F \setminus G$. Which means the net $\{f_{\alpha} : \alpha \in D\} \not \in C$ converges to f.

Let G = W(V)[f] for each symmetric element $V \in \mathcal{V}$, then $\{f\} \ \overline{\mathcal{R}} F \setminus G$. Otherwise, there must be a $g \in G$ such that $(f(x), g(x)) \in V$ for each $x \in X$, that means $g \in W(V)[f]$, a desired contradiction.

Since the net $\{f_{\alpha} : \alpha \in D\}$ \mathcal{R} -converges to f, there is an $\alpha_0 \in D$ such that

$$\{f_{\alpha}: \alpha \geq \alpha_0, \alpha \in D\} \,\overline{\mathcal{R}} F \setminus G.$$

Hence $f_{\alpha} \in G$ for each $\alpha \ge \alpha_0$, which implies $(f(x), f_{\alpha}(x)) \in V$ for each $x \in X$. This means $\{f_{\alpha} : \alpha \in D\}$ CV-uniformly converges to an f on X.

THEOREM 3.2. Let (X, \mathcal{P}) and (Y, \mathcal{J}) be proximity spaces and F be a family of $(\mathcal{P}, \mathcal{J})$ -equiproximally continuous functions. Then the u. c.-proximity \mathcal{R} on Finduced by $CV_{\mathcal{J}}$, a totally bounded uniformity and is compatible with \mathcal{J} , is J. P. C.proximity.

PROOF. Take arbitrary $C \subset F \times X$, $D \subset F \times X$, such that $C \mathscr{R} \times \mathscr{P}D$, and a \mathscr{J} uniform cover $\mathscr{A} = \{A_i : i=1, 2, \dots, n\}$ on Y, we have a \mathscr{J} -uniform cover $\mathscr{A}' = \{A'_i : i=1, 2, \dots, n'\}$ on Y, which is a star-refinement of \mathscr{A} . By equicontinuity of F, there is a \mathscr{P} -uniform cover $\mathscr{B} = \{B_j : j=1, 2, \dots, m\}$ on X such that for each $f \in F$, $B_j \in \mathscr{B}$, there is an $A'_i \in \mathscr{A}'$ such that $f(B_j) \subset A'_i$. We take another \mathscr{P} -uniform cover \mathscr{B}' on X, as a star-refinement of \mathscr{B} .

Let $F_{ij} = \{f \in F : f(B'_j) \subset A'_i\},$ $C_{ij} = C \cap (F_{ij} \times B'_j),$ $D_{ij} = D \cap (F_{ij} \times B'_j).$

We obtain finite decompositions of C and $D: C = \bigcup C_{ij}, D = \bigcup D_{ij}$. There are (i, j) and (i', j'), such that $p_1(C_{ij}) \Re p_1(D_{i'j'})$ and $p_2(C_{ij}) \Re p_2(D_{i'j'})$. Hence there are $f \in p_1(C_{ij})$ and $g \in p_1(D_{i'j'})$. For each $x \in X$ there is an e such that $(f(x), g(x)) \in A'_e \times A'_e$, and there is a B'_{j_0} such that $p_2(C_{ij}) \times p_2(D_{i'j'}) \cap B'_{j_0} \times B'_{j_0} \neq \emptyset$. Also, $p_2(C_{ij}) \subset B'_j, p_2(D_{i'j'}) \subset B'_{j'}$, and hence $B'_j \times B'_{j'} \cap B'_{j_0} \times B'_{j_0} \neq \emptyset$.

And becaus of $f \in p_1(C_{ij})$, there is an $x \in B'_j$ such that $(f, x) \in C_{ij}$. Similarly $g \in p_1(D_{i'j'})$, there is an $x' \in B'_{j'}$ such that $(g, x) \in D_{i'j'}$, and hence $x, x' \in (B'_{j_0})^* \subset B_j$. Thus $(f(x), f(x')) \in A'_i \times A'_i$, $(g(x), g(x')) \in A'_k \times A'_k$ and $(f(x), g(x)) \in A'_e \times A'_e$, and hence $(f(x), g(x')) \in (A'_e)^* \times (A'_e)^*$. Note that $(A'_e)^* \subset A_i$. Which means both f(x) and g(x') belong to A_i . We have known that $(f, x) \in C, (g, x') \in D$, so $P(C) \cap A_i \neq \emptyset$ and $P(D) \cap A_i \neq \emptyset$, which implies that $P(C) \mathcal{P}(D)$.

THEOREM 3.3. Let (X, \mathcal{P}) be a proximity space, (Y, \mathcal{V}) be a uniform space, Y^{x} possess u. c.-proximity \mathcal{R} induced by \mathcal{V} and $\mathcal{G}_{\mathcal{V}}$ be a proximity on Y generated by \mathcal{V} . If a net of $(\mathcal{P}, \mathcal{G}_{\mathcal{V}})$ -proximally continuous maps $\{f_{\alpha} : \alpha \in D\}$ \mathcal{R} -converges to f in Y^{x} , then f is a $(\mathfrak{T}, \mathcal{G}_{\mathcal{V}})$ -proximally continuous map.

PROOF. If f is not a $(\mathcal{P}, \mathcal{J}_{\mathcal{V}})$ -proximally continuous map, there is $A \subset X$, $B \subset X$, $A \mathcal{P} B$, but $f(A) \overline{\mathcal{J}}_{\mathcal{V}} f(B)$. Thus there is a symmetric element $V \in \mathcal{V}$ such that

294

Proximity on Function Spaces

$$(f(x), f(y)) \in V$$
 for each $x \in A, y \in B$ (3.4)

Choose a symmetric element $U \in \mathcal{O}$ such that $U \circ U \circ U \subset V$, since the net $\{f_{\alpha} : \alpha \in D\}$ \mathcal{R} -converges to f there is an $\alpha_0 \in D$ such that

$$(f(x), f_{\alpha}(x)) \in U$$
 for each $\alpha \ge \alpha_0, x \in X$. (3.5)

From the $(\mathcal{P}, \mathcal{G}_{\mathcal{V}})$ -proximal continuity of f_{α} , we know $f_{\alpha}(A)\mathcal{G}_{\mathcal{V}}f_{\alpha}(B)$, implying there are $a \in A$ and $b \in B$ such that

$$(f_{\alpha}(a), f_{\alpha}(b)) \in U.$$
(3.6)

By (3.5), we obtain

$$(f(a), f_{\alpha}(a)) \in U. \tag{3.7}$$

$$(f(b), f_{\alpha}(b)) \in U.$$

$$(3.8)$$

By (3.6), (3.7) and (3.8), we have

$$(f(a), f(b)) \in U \circ U \circ U \subset V.$$

$$(3.9)$$

where $a \in A$, $b \in B$, which contradicts (3.4).

COROLLARY. Under the hypothesis of the theorem, the family C(X, Y) of all $(\mathcal{P}, \mathcal{I}_{\mathcal{V}})$ -proximally continuous functions is a $\mathcal{I}_{\mathcal{R}}$ -closed set in $Y^{\mathbf{X}}$.

4. Uniformly convergent proximity on a family of subsets

Let X be a set, (Y, \mathcal{V}) be a uniform space, $F \subset Y^X$ and \mathcal{K} be a family of subsets of X closed for finite union, in other words, if $K_1 \in \mathcal{K}$, $K_2 \in \mathcal{K}$, then $K_1 \cup K_2 \in \mathcal{K}$.

THEOREM 4.1. Suppose that S is a binary relation on the family of all subsets of F. If for each $A \subset F$, $B \subset F$, ASB iff for each $V \in CV$, $K \in \mathcal{K}$, there are $f \in A$ and $g \in B$ such that $(f(x), g(x)) \in V$ for each $x \in K$, then S is a proximity on F.

PROOF. It is obvious that S satisfies $(P_1)-(P_4)$ (cf. [2]). If $A\bar{S}C$, and $B\bar{S}C$, then there are $V_1 \in \mathcal{V}$ and $K_1 \in \mathcal{K}$ such that for each $f \in A$, $g \in C$, there is an $x_1 \in K_1$ such that $(f(x_1), g(x_1)) \notin V$, and there are $V_2 \in \mathcal{V}$ and $K_2 \in \mathcal{K}$ such that for each $\varphi \in B$, $g \in C$, there is an $x_2 \in K_2$ such that $(\varphi(x_2), g(x_2)) \notin V_2$.

Thus there are $V = V_1 \cap V_2 \in \mathcal{C}$ and $K = K_1 \cup K_2 \in \mathcal{K}$ such that there is an $x \in K_1 \cup K_2$ satisfying $(\phi(x), g(x)) \notin V$ for each $\phi \in A \cup B$, $g \in C$. So it satisfies (P_5) .

If ASB, then there are $V \in \mathcal{V}$ and $K \in \mathcal{K}$, for each $f \in A$, $g \in B$, there is an $x \in K$ such that

295

Fu Pei-Ren

$$(f(x), g(x)) \in V. \tag{4.1}$$

Take a symmetric element $U \in CV$, such that $U \circ U \subset V$. Let

$$P = \{ f \in F : \text{ there is a } g \in A, (f(x), g(x)) \in U \text{ for each } x \in K \},$$

 $Q = \{f \in F: \text{ there is a } g \in B, (f(x), g(x)) \in U \text{ for each } x \in K\},\$

If $P \cap Q \neq \emptyset$, then there is $f \in P \cap Q$, $g \in A$, $g' \in B$ such that $(f(x), g(x)) \in U$ and $(f(x), g'(x)) \in U$ for each $x \in K$, thus $(g(x), g'(x)) \in V$ for each $x \in K$. It is contrary to (4.1). So $P \cap Q = \emptyset$.

In addition, there are $U \in CV$ and $K \in \mathcal{K}$ such that there must be an $x \in X$ such that $(g(x), f(x)) \notin U$ for each $g \in A, f \in F \setminus P$. Hence $A\bar{S}F \setminus P$. Similarly, $B\bar{S}F \setminus Q$. Which means that (P_6) is satisfied and S is a proximity on F.

DEFINITION 4.1. The proximity on F defined by Theorem 4.1 is called the uniformly convergent proximity on \mathcal{K} induced by \mathcal{CV} , denoted by (\mathcal{K}) u.c.-proximity.

In view of Definition 4.1, we obtain the following proposition immediately:

PROPOSITION 4.1. If the (\mathcal{K}_1) u. c.-proximity on F induced by $\subset V$ is S_1 and (\mathcal{K}_2) u. c.-proximity is S_2 , then:

(a) If $\mathcal{K}_1 \subset \mathcal{K}_2$, then $\mathcal{S}_1 < \mathcal{S}_2$,

(b) If there is a $K_0 \in \mathcal{K}_2$ such that $K_0 \supset \bigcup_{K \in \mathcal{K}_1} K$, then $S_1 < S_2$,

(c) u. c.-proximity is more refined than any other (\mathcal{K}) u. c.-proximity,

(d) If \mathcal{K}_0 consists of all finite subsets of X, then (\mathcal{K}_0) u. c.-proximity is the coarsest one of all (\mathcal{K}) u. c.-proximity satisfying $\bigcup_{K \in \mathcal{K}} K = X$. $((\mathcal{K}_0)$ u. c.-proximity is called a point-wise convergent u. c.-proximity).

THEOREM 4.2. Suppose that the (\mathcal{K}) u. c.-proximity on F induced by \mathbb{CV} is S, then a net $\{f_{\alpha} : \alpha \in D\}$ in F S-converges to $f \in F$ iff the net \mathbb{CV} -uniformly converges to f on K for each $K \in \mathcal{K}$.

The concept of joint proximally continuous proximity may be generalized to the family \mathcal{K} of subsets of X.

DEFINITION 4.2. Let (X, \mathcal{P}) and (Y, \mathcal{J}) be proximity spaces, $F \subset Y^X$ and \mathcal{K} be a family of subsets of X which is closed for finite join operation. If there is a proximity \mathcal{R} such that $P: F \times K \rightarrow Y$ (P(f, x)=f(x)) is a $(\mathcal{R} \times \mathcal{P} | K, \mathcal{J})$ -proximally continuous map for each $K \in \mathcal{K}$, then \mathcal{R} is called a *joint proximally continuous proximity on* \mathcal{K} on F, denoted by (\mathcal{K}) J. P. C.-proximity for short.

296

Theorem 3.2 can be generalized as follows:

THEOREM 4.3. Let (X, \mathcal{P}) and (Y, \mathcal{I}) be proximity spaces, F be a family of $(\mathcal{P}, \mathcal{I})$ -equiproximally continous functions and \mathcal{K} be a family of subsets which is closed for finite join operation. Then the (\mathcal{K}) u. c.-prox!mity \mathcal{R} on F induced by $\mathcal{CV}_{\mathcal{I}}$ is a (\mathcal{K}) J. P. C.-proximity.

The proofs of above two theorems are omitted.

References

- [1] Еfremovič, V. А. (Ефремович, В. А.), Инфинитезимальные пространства, ДАН СССР 76 (1951), 341-343.
- [2] Császár, A., General topology, Budapest, (1978).
- [3] Engelking, R., General topology, PWN. Warsaw, (1977).
- [4] Arens, R., A topology for spaces of transformations, Ann. of Math., 47 (1946), 480-495.
- [5] Arens, R. and Dugundji, J., Topologies for function spaces, Pacific J. of Math., 1 (1951), 5-31.
- [6] Stevenson, F.W., Product proximities, Fund. Math., 76 (1972), 157-166.
- [7] Naimpally, S.A. and Warrack, B.D., Proximity spaces, Cambridge, (1970).
- [8] Kelley, J.L., General topology, New York, (1955).

Mathematics Department Heilongjiang University Harbin China