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PROXIMITY ON FUNCTION SPACES

By

FU Pei-Ren

Introduction

It has been 30 years since V. A. Efremovi6 [1] introduced the concept of
proximity in 1951. A lot of works have been done and the theory is being

perfected. But it is a pity that there is no paper on various proximity on
function space.

In this paper we first consider the proximity characterizing the point-wise
convergence on function space. Then we investigate the proximity characteriz-
ing the uniform convergence on a function space and a condition under which
the proximity becomes joint proximally continuous. Last, we study the proximity
characterizing the uniform convergence of the function space on a family of
subsets and its related properties.

1. Proximity of point-wise convergence

For the definitions and notations used in this section are see to [2]. Let $X$

be a set, \langle $Y,$ $J$) be a proximity space, and $F\subset Y^{X}$ . Let

$A(x)=\{f(x);f\in A\}$ for each $A\subset F,$ $x\in X$ .
DEFINITION 1.1. The relative proximity $x\in X^{e}\times 9_{x}|F$ with respect to $F$ is called

proximity of point-wise convergence on $F$, denote by $\rho$ -proximity on $F$ or $j^{X}|F$ for
short, where $x\in\times_{x^{J_{x}}}$ is the product proximity of the family of proximity spaces

$\{(Y_{x}, J_{x});x\in X\}$ , and $Y_{x}=Y,$ $\prime 3_{x}=_{c}g$, for each $x\in X$.
By Definition 1.1, we have the following:

PROPOSITION 1.1. Let $A,$ $B\subset F$. Then $AJ^{x}|FB$ iff for any finite decomposi-
tion of $A$ and $B$ :

$A=\bigcup_{i=1}^{p}A_{i}$ , $B=\bigcup_{j\Rightarrow 1}^{q}B_{j}$ ,

there are $i$ and $j$ such that $A_{i}(x)JB_{j}(x)$ for each $x\in X$.

PROPOSITION 1.2. Suppose that the evaluation map $e_{x}$ : $F\rightarrow Y$ is defined by
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$e_{x}(f)=f(x)(f\in F)$ for each $x\in X$, then proximity $c9^{x}|F$ on $F$ is the coarsest pro-
ximity on $F$, which makes every evaluation map $e_{x}$ proximally continuous for each
$x\in X$, in other words, $g^{x}|F=Sup\{e_{x}^{-1}(\mathcal{J});x\in X\}$ .

It is known that the topology of a product proximity space is equal to the
product of the topology of each coordinate space, and the product topology is
the topology of point-wise convergence. Besides, the convergence with respect

to the proximity is the convergence with of the topology induced by the same
proximity. Thus we have:

THEOREM 1.1. The net $\{f_{\alpha} : \alpha\in D\}J^{X}|F$-converges to $f\in F$ in a proximity
space $(F, J^{x}|F)$ iff the net $\{f_{\alpha}(x):\alpha\in D\}J$-converges to $f(x)$ in $Y$ for each $x\in X$.

It is known that a proximity space $(Y, 9)$ is compact iff the topological

space $(Y, \sigma r_{J})$ induced by it is compact. By Tychonoff’s Theorem, we have the
following immediately.

THEOREM 1.2. Let $(Y, J)$ be a compact proximity space, then $(F, J^{X}|F)$ is a
compact proximity space iff

(a) $f\in Y^{X}\backslash F$ implies $\{f\}\overline{J^{X}}F$.

If $(Y, J)$ is separated, then the condition (a) is also a necessary condition
under which $(F, J^{x}|F)$ is a compact proximity space.

PROOF. The fact that $(Y, J)$ is a compact proximity space implies that
$(Y, \sigma\tau_{J})$ is a compact topological space. By Tychonoff’s Theorem $(Y^{x}, \xi r_{J}^{X})$ is a
compact topological space. The condition (a) shows that $F$ is a $\mathcal{F}_{J^{X}}$-closed set

of $Y^{x}$ , and $\mathcal{F}_{J}^{X}=\mathcal{F}_{J^{X}}$ , thus $(F, g_{J}^{X}|F)$ is a compact topological space and so is
$(F, \xi\Gamma_{J}x_{1F})$ , which means that $(F, J^{x}|F)$ is a compact proximity space.

If $(Y, J)$ is separated, then $(Y^{X}, J^{X})$ is separated, and hence the topology
$\mathcal{F}_{J^{X}}$ is $T_{2}$ . Thus the condition (a) is the necessary condition under which
$(F, c9^{x}|F)$ is a compact space.

The condition under which $(Y, t9)$ is a compact space may be weakened.

THEOREM 1.3. Let $(Y, J)$ be a proximity space, then the sufficient condition
under which $(F, 9^{X}|F)$ is a compact proximity space is

(a) $f\in Y^{X}\backslash F$ implies $\{f\}\overline{J^{X}}F$.
(b) $F(x)$ has a compact closure for each $x\in X$ in the topology $\mathcal{F}_{9}$ in $Y$.

Furthermore if $(Y, 9)$ is separated, then (a) and (b) are necessary conditions
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under which $(F, J^{x}|F)$ is a compact proximity space.
PROOF. Suppose that X is a $e9^{x}|F$-compressed filter base in $F$ . Then $e_{x}(X)$

is a 3-compressed filter base in $Y$ for each $x\in X$. By (b), $F(x)^{-}$ (the closure of
the set $F(x)$ in the $\mathcal{F}_{J}$ in $Y$ ) is $\xi\Gamma_{9}$ -compact, and hence J-compact. Thus $e_{x}(X)$

is a Y-compressed filter base in $F(x)^{-}$ , so there is a $y\in F(x)^{-}$ such that $e_{x}(X)$ J-

converges to $y$ denoted by $f(x)$ . Thus we get an $f\in Y^{x}$ , and X point-wisely

converges to $f$, and hence $\mathfrak{x}J^{x}$-converges to $f$. By condition (a), $f\in F$, and
hence $\mathfrak{x}J^{x}|F$-converges to $f\in x$ , that is $(F, J^{X}|F)$ is a compact proximity space.

For each $x\in X$, since $(F, \mathcal{J}^{x}|F)$ is a compact proximity space, $F(x)=e_{x}(F)$

is $\mathcal{F}_{J}$-compact. Furthermore, since $(Y, e9)$ is separated, $(Y, \sigma\tau_{J})$ is a $T_{2}$-space.

Thus $F(x)$ is $\sigma r_{J}$-closed, that is $F(x)^{-}=F(x)$ is $\sigma r_{J}$ -compact.

2. Joint proximal continuity

DEFINITION 2.1. Let (X, $\mathcal{P}$) and $(Y, J)$ be proximity spaces, $F\subset Y^{X}$ , and $R$

be a proximity on $F$. If $R$ makes a function $P:F\times X\rightarrow Y$, defined by $P(f, x)$

$=f(x),$ $(R\times \mathcal{P}, J)$-proximally continuous, then we call gl a joint proximally con-
tinuous proximity on $F$, denoted by J. P. C.-proximity for short. And we denote

the family of all $(\mathcal{P}, J)$-proximally continuous functions by $C(X, Y)$ .

PROPOSITION 2.1. If there is a J. P. C.-proximity on $F$, then $F\subset C(X, Y)$ .

PROOF. Suppose that $R$ is a J. P. C.-proximity on $F$. For each $f\in F,$ $A\subset X$,
$B\subset X$ if $A\mathcal{P}B$ , then

$(f\times A)R\times \mathcal{P}(f\times B)$ (2.1)

In fact, for any finite decomposition of $(f\times A)$ and $(f\times B)$

$f\times A=\bigcup_{i=1}^{n}f\times A_{i}$ $f\times B=\bigcup_{j=1}^{m}f\times B_{j}$ ,

accordingly, we have a finite decomposition of $A,$ $B$

$A=_{i}\bigcup_{=1}^{n}A_{i}$ , $B=\bigcup_{j=1}^{m}B_{j}$ .

Thus there are $i$ and $j$ such that $A_{i}\mathcal{P}B_{j}$ . Furthermore we have

$p_{1}(f\times A_{i})=\{f\}$ , $p_{1}(f\times B_{j})=\{f\}$ ,

and hence $p_{1}(f\times A_{i})Rp_{1}(f\times B_{j})$ . Note that

$p_{2}(f\times A_{i})=A_{i}$ , $p_{2}(f\times B_{j})=B_{j}$ ,

thus $p_{2}(f\times A_{i})\mathcal{P}p_{2}(f\times B_{j})$ . ($p_{1}$ and $p_{2}$ represent the projections on $F$ and on $X$

respectively). And by the definition of product proximity (2.1) holds.
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Furthermore we have $P(f\times A)=f(A),$ $P(f\times B)=f(B)$ . With the fact that

the map $P$ is $(R\times \mathcal{P}, J)$-proximally continuous, it follows that $f(A)Jf(B)$ , which
means, $f$ is a $(\mathcal{P}, J)$-proximally continuous map, $f\in C(X, Y)$ .

For further discussion of joint proximal continuity, we first obtain a sufficient

and necessary condition of proximal continuity, then give the concept of the
family of equiproximally continuous functions (The terms and notations used in
the following can be seen in [3]).

THEOREM 2.1. Suppose that (X, $\mathcal{P}$ ) and $(Y, J)$ are proximity spaces. $ f:X\rightarrow$

Y. Then $f$ is $(\mathcal{P}, 9)$-proximally continuous iff for each $J$-uniform cover $tA=$

$\{A_{i} : i=1,2, \cdots, n\}$ on $Y$, there is a $\mathcal{P}$-uniform cover $B=\{B_{j} : j=1,2, \cdots , m\}$

on $X$ such that for each $B_{j}$ , there is an $A_{i}$ satisfying $f(B_{j})\subset A_{i}$ .

PROOF. Suppose that $\mathcal{V}_{9}$ on $X$ and $\mathcal{V}_{J}$ on $Y$ stand for totally bounded

uniformities which are compatible with $\mathcal{P}$ and $J$ , respectively.

Necessity: Suppose that $\mathcal{A}^{\prime}=\{A_{k}^{\prime} : k=1,2, \cdots , l\}$ is a star-refinement J-

uniform cover of $\llcorner A$ , then $V^{\prime}=\bigcup_{k=1}^{l}A_{k}^{\prime}\times A_{k}^{\prime}\in \mathcal{V}_{J}$ . The fact that $f$ is $(\mathcal{P}, J)-$

proximally continuous implies that $f$ is $(\mathcal{V}_{\mathcal{P}}, \mathcal{V}_{J})$-uniformly continuous. Then
there is a $\mathcal{P}$-uniform cover $\mathscr{Q}=\{B_{j} : j=1,2, \cdots, m\}$ on $X$. Suppose that $f(x_{0})$

$\in A_{k_{0}}^{\prime}$ for a fixed $x_{0}\in B_{j}$ , then $(f(x_{0}), f(x))\in V^{\prime}$ for each $x\in B_{j}$ . Thus there is
an index $k$ such that $(f(x_{0}), f(x))\in A_{k}^{\prime}\times A_{k}^{\prime}$ , which means $f(x_{0})\in A_{k_{0}}^{\prime}\times A_{k}^{\prime}$ , and

hence $f(x)\in(A_{k0}^{\prime})^{*}$ and $A^{\prime}$ is a star-refienment of $\llcorner A$ , and there is an $A_{i}\in A$ such

that $(A_{k_{0}}^{\prime})*\subset A_{i}$ , thus $f(B_{j})\subset A_{i}$ .
Sufficiency: Suppose $C,$ $D\subset X$ and $C\mathcal{P}D$ . By the hypothesis, for any S-uniform

cover $\mathcal{A}=\{A_{i} : i=1,2, \cdots, n\}$ , on $Y$, there is a $\mathcal{P}$-uniform cover $B=\{B_{j}$ : $j=1,2,$ $\cdots$ ,

$m\}$ on $X$ and there is an $A_{i}$ such that $f(B_{j})\subset A_{i}$ for each $B_{j}$ . Since $C\mathcal{P}D$, there is a
$B_{j}$ such that $ C\cap B_{j}\neq\emptyset$ and $ D\cap B_{j}\neq\emptyset$ . Therefore, $ f(C)\cap A_{i}\neq\emptyset$ and $ f(D)\cap A_{i}\neq\emptyset$ .
This means $f(C)Jf(D)$ , and hence $f$ is a $(\mathcal{P}, t9)$-proximally continuous map.

DEFINITION 2.2. Suppose that (X, $\mathcal{P}$) and $(Y, J)$ are proximity spaces, $F\subset Y^{x}$ .
If for each .5-uniform cover $\mathcal{A}=\{A_{i} : i=1,2, \cdots , n\}$ on $Y$, there is a $\mathcal{P}$-uniform

cover $B=\{B_{j} : j=1,2, \cdots, m\}$ on $X$ such that for each $f\in F,$ $B_{j}\in 9$ there is
an $A_{i}\in_{\cup}t$ such that $f(B_{j})\subset A_{i}$ , then $F$ is called a family of $(\mathcal{P}, \mathcal{J})$-equiproximally
continuous functions.

We obtain the following from Theorem 2.1 and Definition 2.2.

PROPOSITION 2.2. If $FfS$ a family of $(\mathcal{P}, J)$-equiproximally continuous func-
tions, then $F\subset C(X, Y)$ .
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3. Uniformly convergent proximity

Let $X$ be a set, $(Y, \mathcal{V})$ be a uniform space, and $F\subset Y^{X}$ . For $V\in \mathcal{V}$ , let

$W(V)=$ { $(f,$ $g)\in F\times F:(f(x),$ $g(x))\in V$ , for each $x\in X$ }

We have known that the uniformity with $\{W(V):V\in \mathcal{V}\}$ as a base is
called the uniformity of uniform convergence, denoted by $u$ . $c$ .-uniformity on $F$.

DEFINITION 3.1. The proximity on $F$ generated by a $u$ . $c$ .-uniformity on $F$

is called the uniformly convergent proximity, denoted by $u$ . $c$ .-proximity, or is
called $u$ . $c$.-proximity induced by $\mathcal{V}$ .

PROPOSITION 3.1. Suppose that $R$ is a $u$ . $c$ .-proximity on $F$, $A\subset F$ and $ B\subset$

$F$, then $A\Re B$ iff for each $V\in \mathcal{V}$ , there are $f\in A$ and $g\in B$ such that $(f(x), g(x))$

$\in V$ for each $x\in X$.

THEOREM 3.1. Let $R$ be a $u$ . $c$ .-proximity on $F$ , then the net $\{f_{\alpha} : \alpha\in D\}$ in
FR-converges to $f\in F$ iff the net $\mathcal{V}$-uniformly converges to $f$ on $X$ .

PROOF. Suppose $G\subset F$ and $\{f\}RF\backslash G$ . Thus there is a $V\in \mathcal{V}$ such that
for each $g\in F\backslash G$ there is an $x\in X$ such that

$(f(x), g(x))\not\in V$ (3.1)

We choose a symmetric element $U\in \mathcal{V}$ such that $U\circ U\subset V$. Since the net
$\{f_{\alpha} : \alpha\in D\}$ uniformly converges to $f$ on $X$, there is an $\alpha_{0}\in D$ such that

$(f(x), f.(x))\in U$ for each $\alpha\geqq\alpha_{0},$ $x\in X$ . (3.2)

If $\{f_{\alpha} : \alpha\geqq\alpha_{0}, \alpha\in D\}g\iota F\backslash G$ , then there is an $\alpha,$
$\alpha\geqq\alpha_{0}$ and $\alpha\in D$ , and a

$g\in F\backslash G$ , such that

$(f_{\alpha}(x), g(x))\in U$ for each $x\in X$ . (3.3)

By (3.2) and (3.3), $(f(x), g(x))\in U\circ U\subset V$ for any $x\in X$, which contradicts
(3.1), hence $\{f_{\alpha} : \alpha\geqq\alpha_{0}, \alpha\in D\}RF\backslash G$ . Which means the net $\{f_{\alpha} : \alpha\in D\}R-$

converges to $f$.
Let $G=W(V)[f]$ for each symmetric element $V\in \mathcal{V}$ , then $\{f\}RF\backslash G$ . Other-

wise, there must be a $g\not\in G$ such that $(f(x), g(x))\in V$ for each $x\in X$, that means
$g\in W(V)[f]$ , a desired contradiction.

Since the net $\{f_{a} : \alpha\in D\}$ R-converges to $f$ , there is an $\alpha_{0}\in D$ such that

$\{f_{a} : \alpha\geqq\alpha_{0}, \alpha\in D\}$ Si2 $F\backslash G$ .
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Hence $f_{\alpha}\in G$ for each $\alpha\geqq\alpha_{0}$ , which implies $(f(x), f_{\alpha}(x))\in V$ for each $x\in X$.
This means $\{f_{\alpha} : \alpha\in D\}\mathcal{V}$-uniformly converges to an $f$ on $X$.

THEOREM 3.2. Let (X, $\mathcal{P}$ ) and $(Y, J)$ be proximity spaces and $F$ be a family

of $(\mathcal{P}, J)$-equiproximally continuous functions. Then the $u$ . c.-proximity $R$ on $F$

induced by $\mathcal{V}_{J}$ , a totally bounded uniformity and is compatible with $J$ , is J. P. C.-

proximity.

PROOF. Take arbitrary $C\subset F\times X,$ $D\subset F\times X$, such that $CR\times \mathcal{P}D$ , and a .9-

uniform cover $\cup\#=\{A_{i} : i=1,2, \cdots, n\}$ on $Y$, we have a .5-uniform cover $tA^{\prime}=$

$\{A_{i}^{\prime} : i=1,2, \cdots, n^{\prime}\}$ on $Y$, which is a star-refinement of (
$A$ . By equicontinuity

of $F$, there is a $\mathcal{P}$-uniform cover $B=\{B_{j} : j=1,2, \cdots, m\}$ on $X$ such that for

each $f\in F,$ $B_{j}\in B$ , there is an $A_{i}^{\prime}\in_{\llcorner}A^{\prime}$ such that $f(B_{j})\subset A_{i}^{\prime}$ . We take another
$\mathcal{P}$-uniform cover $\mathscr{Q}^{\prime}$ on $X$, as a star-refinement of $\mathscr{Q}$ .

Let $F_{ij}=\{f\in F:f(B_{j}^{\prime})\subset A_{i}^{\prime}\}$ ,

$C_{ij}=C\cap(F_{ij}\times B_{j}^{\prime})$ ,

$D_{ij}=D\cap(F_{ij}\times B_{j}^{\prime})$ .
We obtain finite decompositions of $C$ and $D:C=\cup C_{ij},$ $D=\cup D_{ij}$ . There are
$(i, j)$ and $(i^{\prime}, j^{\prime})$ , such that $p_{1}(C_{ij})Rp_{1}(D_{i^{\prime}j^{\prime}})$ and $p_{2}(C_{ij})\mathcal{P}p_{2}(D_{i^{\prime}j^{\prime}})$ . Hence there

are $f\in p_{1}(C_{ij})$ and $g\in p_{1}(D_{i^{\prime}j^{\prime}})$ . For each $x\in X$ there is an $e$ such that $(f(x)$ ,

$g(x))\in A_{e}^{\prime}\times A_{e}^{\prime}$ , and there is a $B_{J_{0}}^{\prime}$ such that $ p_{2}(C_{ij})\times p_{2}(D_{i^{\prime}j^{\prime}})\cap B_{j_{0}}^{\prime}\times B_{j_{0}}^{\prime}\neq\emptyset$ . Also,

$p_{2}(C_{ij})\subset B_{j}^{\prime},$ $p_{2}(D_{ij^{\prime}})\subset B_{j^{\prime}}^{\prime}$ , and hence $ B_{j}^{\prime}\times B_{j^{\prime}}^{\prime}\cap B_{j_{0}}^{\prime}\times B_{j_{0}}^{\prime}\neq\emptyset$ .
And becaus of $f\in p_{1}(C_{ij})$ , there is an $x\in B_{j}^{\prime}$ such that $(f, x)\in C_{ij}$ . Similarly

$g\in p_{1}(D_{i^{\prime}j^{r}})$ , there is an $x^{\prime}\in B_{j}^{\prime}$ , such that $(g, x)\in D_{i^{\prime}j^{\prime}}$ , and hence $x,$ $ x^{\prime}\in(B_{j_{0}}^{\prime})^{*}\subset$

$B_{j}$ . Thus $(f(x), f(x^{\prime}))\in A_{i}^{\prime}\times A_{i}^{\prime},$ $(g(x), g(x^{\prime}))\in A_{k}^{\prime}\times A_{k}^{\prime}$ and $(f(x), g(x))\in A_{e}^{\prime}\times A_{e}^{\prime}$ ,

and hence $(f(x), g(x^{\prime}))\in(A_{e}^{\prime})^{*}\times(A_{e}^{\prime})^{*}$ . Note that $(A_{e}^{\prime})^{*}\subset A_{i}$ . Which means both
$f(x)$ and $g(x^{\prime})$ belong to $A_{i}$ . We have known that $(f, x)\in C,$ $(g, x^{\prime})\in D$ , so
$ P(C)\cap A_{i}\neq\emptyset$ and $ P(D)\cap A_{i}\neq\emptyset$ , which implies that $P(C)JP(D)$ .

THEOREM 3.3. Let (X, $\mathcal{P}$) be a proximity space, $(Y, \mathcal{V})$ be a uniform space,
$Y^{X}$ possess $u$ . $c$ .-proximity $R$ induced by $\mathcal{V}$ and $J_{\mathcal{V}}$ be a proximity on $Y$ generated

by $\mathcal{V}$ . If a net of $(\mathcal{P}, J_{C}v)$-proximally continuous maps $\{f_{\alpha} : \alpha\in D\}$ R-converges

to $f$ in $Y^{x}$ , then $f$ is a $(\mathcal{F}, s_{\subset\nu})$-proximally continuous map.

PROOF. If $f$ is not a $(\mathcal{P}, J_{\mathcal{V}})$-proximally continuous map, there is $A\subset X$,

$B\subset X,$ $A\mathcal{P}B$ , but $f(A)\overline{J}_{CV}f(B)$ . Thus there is a symmetric element $V\in \mathcal{V}$ such

that
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$(f(x), f(y))\not\in V$ for each $x\in A,$ $y\in B$ (3.4)

Choose a symmetric element $U\in \mathcal{V}$ such that $U\circ U\circ U\subset V$, since the net
$\{f_{\alpha} : \alpha\in D\}$ R-converges to $f$ there is an $\alpha_{0}\in D$ such that

$(f(x), f_{\alpha}(x))\in U$ for each $\alpha\geqq\alpha_{0},$ $x\in X$ . (3.5)

From the $(\mathcal{P}, J_{\mathcal{V}})$-proximal continuity of $f_{\alpha}$ , we know $f_{\alpha}(A)J_{\mathcal{V}}f_{\alpha}(B)$ , imply-
ing there are $a\in A$ and $b\in B$ such that

$(f_{\alpha}(a), f_{\alpha}(b))\in U$ . (3.6)

By (3.5), we obtain
$(f(a), f_{\alpha}(a))\in U$ . (3.7)

$(f(b), f_{\alpha}(b))\in U$ . (3.8)

By (3.6), (3.7) and (3.8), we have

$(f(a), f(b))\in U\circ U\circ U\subset V$ . (3.9)

where $a\in A,$ $b\in B$ , which contradicts (3.4).

COROLLARY. Under the hypothesis of the theorem, the family $C(X, Y)$ of
all $(\mathcal{P}, J_{\mathcal{V}})$-proximally continuous functions is a $q_{R}$ -closed set in $Y^{X}$ .

4. Uniformly convergent proximity on a family of subsets

Let $X$ be a set, $(Y, \mathcal{V})$ be a uniform space, $F\subset Y^{X}$ and X be a family of
subsets of $X$ closed for finite union, in other words, if $ K_{1}\in j\zeta$ $ K_{2}\in j\zeta$ then
$K_{1}\cup K_{2}\in Jt$ .

THEOREM 4.1. Suppose that $S$ is a binary relation on the family of all
subsets of F. If for each $A\subset F,$ $B\subset F,$ $ASB$ iff for each $V\in \mathcal{V},$ $ K\in j\zeta$ there
are $f\in A$ and $g\in B$ such that $(f(x), g(x))\in V$ for each $x\in K$, then $S$ is a proxi-
mity on $F$.

PROOF. It is obvious that $S$ satisfies $(P_{1})-(P_{4})(cf. [2])$ . If $A\overline{S}C$, and $B\overline{S}C$,
then there are $V_{1}\in \mathcal{V}$ and $ K_{1}\in j\zeta$ such that for each $f\in A,$ $g\in C$, there is an
$x_{1}\in K_{1}$ such that $(f(x_{1}), g(x_{1}))\not\in V$, and there are $V_{2}\in \mathcal{V}$ and $ K_{2}\in j\zeta$ such that
for each $\varphi\in B,$ $g\in C$, there is an $x_{2}\in K_{2}$ such that $(\varphi(x_{2}), g(x_{s}))\not\in V_{2}$.

Thus there are $V=V_{1}\cap V_{2}\in \mathcal{V}$ and $ K=K_{1}\cup K_{2}\in j\zeta$ such that there is an
$x\in K_{1}\cup K_{2}$ satisfying $(\psi(x), g(x))\not\in V$ for each $\psi\in A\cup B,$ $g\in C$. So it satisfies $(P_{5})$ .

If $ASB$ , then there are $V\in \mathcal{V}$ and $ K\in j\zeta$ for each $f\in A,$ $g\in B$ , there is an
$x\in K$ such that



296 FU Pei-Ren

$(f(x), g(x))\not\in V$ . (4.1)

Take a symmetric element $U\in \mathcal{V}$ , such that $U\circ U\subset V$. Let

$P=$ { $f\in F$ : there is a $g\in A,$ $(f(x),$ $g(x))\in U$ for each $x\in K$ },

$Q=$ { $f\in F$ : there is a $g\in B,$ $(f(x),$ $g(x))\in U$ for each $x\in K$ },

If $ P\cap Q\neq\emptyset$ , then there is $f\in P\cap Q,$ $g\in A,$ $g^{\prime}\in B$ such that $(f(x), g(x))\in U$

and $(f(x), g^{\prime}(x))\in U$ for each $x\in K$, thus $(g(x), g^{\prime}(x))\in V$ for each $x\in K$. It is

contrary to (4.1). So $ P\cap Q=\emptyset$ .
In addition, there are $U\in \mathcal{V}$ and $ K\in$ JC such that there must be an $x\in X$

such that $(g(x), f(x))\not\in U$ for each $g\in A,$ $f\in F\backslash P$. Hence $A\overline{S}F\backslash P$. Similarly,

$B\overline{S}F\backslash Q$ . Which means that $(P_{6})$ is satisfied and $S$ is a proximity on $F$.

DEFINITION 4.1. The proximity on $F$ defined by Theorem 4.1 is called the

uniformly convergent proximity on $ j\zeta$ induced by $\mathcal{V}$ , denoted by (it) u.c.-proximity.

In view of Definition 4.1, we obtain the following proposition immediately:

PROPOSITION 4.1. If the $(j\zeta_{1})u$ . $c$ .-proximity on $F$ induced $b\gamma \mathcal{V}$ is $S_{1}$ and

$(Jt_{2})u$ . $c$ .-proximity is $S_{2}$ , then:

(a) If $j\zeta_{1}\subset j\zeta_{2}$ then $S_{1}<S_{2}$ ,

(b) If there is a $K_{0}\in J\zeta_{2}$ such that $K_{0}\supset\bigcup_{K\in J\zeta_{1}}K$, then $S_{1}<S_{2}$ ,

(c) $u$ . $c$ .-proximity is more refined than any other (JC) $u$ . $c$.-proximity,
(d) If $j\zeta_{0}$ consists of all finite subsets of $X$ , then $(Jt_{0})u$ . $c.- proxi\uparrow nity$ is the

coarsest one of all $(JC)u$ . $c$.-proximity satisfying $\bigcup_{K\in J\zeta}K=X$ . ( $(JC_{0})u$ . $c$.-proximity

is called a point-wise convergent $u$ . $c$ .-proximity).

THEOREM 4.2. Suppose that the $(J)u$ . $c$.-proximity on $F$ induced by $\mathcal{V}$ is
$S$ , then a net $\{f_{a} : \alpha\in D\}$ in F S-converges to $f\in F$ iff the net $\mathcal{V}$-uniformly

converges to $f$ on $K$ for each $ K\in$ Jk.

The concept of joint proximally continuous proximity may be generalized to

the family JC of subsets of $X$.

DEFINITION 4.2. Let (X, $\mathcal{P}$ ) and (}’, .9) be proximity spaces, $F\subset\}^{r}X$ and $\chi$

be a family of subsets of $X$ which is closed for finite join operation. If there

is a proximity $R$ such that $P:F\times K\rightarrow Y(P(f, x)=f(x))$ is a $(R\times \mathcal{P}|K, \mathcal{J})$-proxi-

mally continuous map for each $K\in Jt$ , then $R$ is called a joint proximally con-

tinuous proximity on $ j\zeta$ on $F$, denoted by $(Jt)$ J. P. C.-proximity for short.
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Theorem 3.2 can be generalized as follows:

THEOREM 4.3. Let (X, $\mathcal{P}$ ) and $(Y, c\mathcal{J})$ be proximity spaces, $F$ be a family of
$(\mathcal{P}, J)$-equiproximally continous functions and $Jt$ be a family of subsets which is

closed for finite join operation. Then the $(Jt)u$ . $c.- proX^{l}?7\iota ityR$ on $F$ induced by
$\mathcal{V}_{J}$ is a $(_{c}\chi)$ J. P. C.-proximity.

The proofs of above two theorems are omitted.
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