ON CONFORMAL DIFFEOMORPHISMS BETWEEN PRODUCT RIEMANNIAN MANIFOLDS

By

Yoshihiro TASHIRO

0. Introduction

Let M and M^* be connected Riemannian manifolds of dimension $n \ge 3$, and denote the product Riemannian structures by (M, g, F) and (M^*, g^*, G) respectively, where g and g^* are the Riemannian metrics and F and G the product structures of M and M^* . Under a diffeomorphism f of M to M^* , the image of a quntity on M^* to M by the induced map f^* of f will be denoted by the same character as the original. For example, we write g^* for f^*g^* and G for f^*G on M. We say that the product structures F and G are *commutative* with one another at a point P of M under f if FG=GF at P.

In the present paper, a conformal diffeomorphism means a non-homothetic one unless otherwise stated. The purpose is to prove the following

THEOREM 1. If both M and M^* are complete product Riemannian manifolds, then there is no global conformal diffeomorphism of M onto M^* such that the product structures F and G are not commutative under it in an open subset of M.

This is an improvement of the main theorem in a previous paper [4] with weaker condition "in a open subset" than "in a dense subset" of the previous. As the contraposition of Theorem 1, we can state the following

THEOREM 2. If both M and M^* are complete product Riemannian manifolds and there is a global conformal diffeomorphism f of M onto M^* , then the product structures F and G are commutative under f everywhere in M.

An affirmative example of Theorem 2 was given in [4].

To prove Theorem 1, we first assume that there is an open subset where the product structures F and G are not commutative under a conformal diffeomorphism f of M into M^* . Then we obtain differential equations on the associated scalar field ρ with f. Three considerable cases occur, and we obtain the expression of ρ in each case. Comparison of arc-lengths of some geodesic

Received November 26, 1984.

in M and its image in M^* shows the non-existence of global conformal diffeomorphism between complete product manifolds.

1. Preliminaries

We shall recall lemmas and differential equations from [4] as preliminaries. Throughout the present paper we assume that differentiability of manifolds and diffeomorphisms is of class C^{∞} . For indicating components of tensors, Greek indices κ , λ , μ , ν , ω run on the range from 1 to n, and other Greek indices run on indicated temporary ranges.

Let M be the product $M_1 \times M_2$ of two Riemannian manifolds M_1 and M_2 of dimension n_1 and n_2 respectively, $n_1+n_2=n$, and (x^h, y^p) a separate coordinate system of M, (x^h) belonging to M_1 and (y^p) to M_2 . Here and hereafter Latin indices always run on the following ranges:

h, i, j,
$$k=1, 2, \dots, n_1$$
,
p, q, r, $s=n_1+1, \dots, n$.

With respect to a separate coordinate system (x^h, y^p) in M, the metric tensor $g=(g_{\mu\lambda})$ of M has pure components $g_{ji}(x^h)$ and $g_{qp}(y^p)$ only, depending on the coordinates (x^h) and (y^p) respectively, and the product structure $F=(F_{\lambda}^{r})$ has pure components $F_i^h = \delta_i^h$ and $F_q^p = -\delta_q^p$. Covaraint differentiation with respect to g in M will be denoted by ∇ , and the parts along M_1 and M_2 , expressed by ∇_i and ∇_q respectively, are commutative with one another.

A conformal diffeomorphism f of M to M^* is characterized by a change

(1.1)
$$g_{\mu\lambda}^* = \frac{1}{\rho^2} g_{\mu\lambda}$$

of the metric tensors, where ρ is a positive-valued scalar field on M and said to be associated with f. We shall put $\rho_{\lambda} = \nabla_{\lambda} \rho$ and denote by Y the gradient vector field (ρ^{κ}) of ρ . The parts (ρ^{h}) and (ρ^{p}) of Y belonging to M_{1} and M_{2} will be denoted by Y_{1} and Y_{2} respectively, and the squared length of Y by Φ , i.e.,

$$\Phi = |Y|^2 = \rho_{\kappa} \rho^{\kappa}$$
.

Under a conformal diffeomorphism f, the induced tensor G from M^* to M constitutes an almost product Riemannian structure (M, g, G), which is not necessarily integrable. The covariant tensor $G_{\mu\lambda}$ defined by $G_{\mu\lambda}=G_{\mu}{}^{\kappa}g_{\kappa\lambda}$ is symmetric in λ and μ . The product structures F and G are commutative if and only if $G_{\lambda}{}^{\kappa}$ and $G_{\mu\lambda}$ have pure components only with respect to a separate coordinate system in M.

If the metric g^* of M^* is conformally related to g of M by (1.1), then the

integrability of the product structure G with respect to g^* in M^* is equivalent to the differential equation

(1.2)
$$\nabla_{\mu}G_{\lambda\kappa} = -\frac{1}{\rho}(G_{\mu\lambda}\rho_{\kappa} + G_{\mu\kappa}\rho_{\lambda} - g_{\mu\lambda}G_{\kappa\omega}\rho^{\omega} - g_{\mu\kappa}G_{\lambda\omega}\rho^{\omega})$$

on M. Starting from this equation, we proved the following lemmas of local character:

LEMMA 1. A conformal diffeomorphism f of M into M^* is a homothety if and only if

$$\nabla_{\mu}G_{\lambda\kappa}=0.$$

Then the structures F and G are commutative under f.

LEMMA 2. If the structures F and G are commutative under a conformal diffeomorphism f, then the associated scalar field ρ is a function on either of the parts M_1 or M_2 only.

LEMMA 3. If the associated scalar field ρ depends on one part, say M_1 , but is not a constant, then the structure G is commutative with F under f, or the scalar field ρ satisfies the equation

(1.3)
$$\nabla_{j}\rho_{i} = c^{2}\rho g_{ji}$$

on M_1 , where c is a positive constant, and the squared length Φ of the gradient vector field $Y=Y_1$ is equal to

(1.4)
$$\Phi = \rho_i \rho^i = c^2 \rho^2.$$

We put the subset

$$N_{1} = (P | Y_{1}(P) = 0),$$

$$N_{2} = \{P | Y_{2}(P) = 0\},$$

$$U = \{P | Y_{1}(P) \neq 0, Y_{2}(P) \neq 0\},$$

$$V = \{P | FG \neq FG \text{ at } P\}.$$

and see the inclusion relations

$$U \subset V \subset M - N_1 \cap N_2$$

by means of Lemmas 1 and 2.

Now we suppose that the open subset V is not empty, then by means of Lemma 3 we have to consider the cases where U is empty and $V \subset N_1 \cup N_2$ or where U is not empty.

By pretty long arguments, in every component of U, we obtain the following equations

(1.5)
$$\begin{cases} \nabla_{j}\rho_{i} = \frac{1}{2\rho} [(\Phi + k\rho^{2})g_{ji} + CG_{ji}], \\ \nabla_{q}\rho_{j} = \frac{C}{2\rho} G_{qi}, \\ \nabla_{q}\rho_{p} = \frac{1}{2\rho} [(\Phi - k\rho^{2})g_{qp} + CG_{qp}], \end{cases}$$

k and C being constants, or

(1.6)
$$\begin{cases} \nabla_{j}\nabla_{i}\rho^{2} = (\varPhi + k\rho^{2})g_{ji} + CG_{ji} + 2\rho_{j}\rho_{i}, \\ \nabla_{q}\nabla_{i}\rho^{2} = CG_{qi} + 2\rho_{q}\rho_{i}, \\ \nabla_{q}\nabla_{p}\rho^{2} = (\varPhi - k\rho^{2})g_{qp} + CG_{qp} + 2\rho_{q}\rho_{p}. \end{cases}$$

The squared length Φ of Y is decomposable in U, that is, it is the sum

(1.7)
$$\Phi = \rho_{\kappa} \rho^{\kappa} = \Phi_1 + \Phi_2$$

of functions Φ_1 of (x^h) and Φ_2 of (y^p) , and it satisfies the equations

(1.8)
$$\begin{cases} \nabla_{j} \nabla_{i} (\varPhi - k \rho^{2}) = \Omega g_{ji}, \\ \nabla_{q} \nabla_{p} (\varPhi + k \rho^{2}) = \Omega g_{qp}, \end{cases}$$

where we have put

(1.9)
$$\mathcal{Q} = \frac{1}{2\rho^2} (\Phi^2 - k^2 \rho^4 + 2CG_{\lambda\kappa} \rho^{\lambda} \rho^{\kappa} + C^2).$$

Differentiating the equations (1.6, 1) in y^p and (1.6, 3) in x^i , we have the equations

(1.10)
$$\begin{cases} \nabla_{p}\nabla_{j}\nabla_{i}\rho^{2} = \nabla_{p}(\Phi_{2}+k\rho^{2})g_{ji}, \\ \nabla_{i}\nabla_{q}\nabla_{p}\rho^{2} = \nabla_{i}(\Phi_{1}-k\rho^{2})g_{qp}. \end{cases}$$

Moreover, comparing these equations (1.10) with the derivatives of (1.8), we see the function Ω equal to

(1.11)
$$Q = k(\Phi_1 - \Phi_2 - k\rho^2) + b,$$

b being a constant. Then the equations (1.8) turn to

(1.12)
$$\begin{cases} \nabla_{j}\nabla_{i}(\Phi_{1}-k\rho^{2}) = [k(\Phi_{1}-\Phi_{2}-k\rho^{2})+b]g_{ji}, \\ \nabla_{q}\nabla_{p}(\Phi_{2}+k\rho^{2}) = [k(\Phi_{1}-\Phi_{2}-k\rho^{2})+b]g_{qp} \end{cases}$$

Covariantly differentiating the equations (1.6, 1) in x^{k} and (1.6, 3) in y^{r} , we have the equations

(1.13)
$$\begin{cases} \nabla_{k}\nabla_{j}\nabla_{i}\rho^{2} = (\nabla_{k}\Phi_{1} + k\nabla_{k}\rho^{2})g_{ji} + g_{kj}\nabla_{i}\Phi_{1} + g_{ki}\nabla_{j}\Phi_{1}, \\ \nabla_{r}\nabla_{q}\nabla_{p}\rho^{2} = (\nabla_{r}\Phi_{2} - k\nabla_{r}\rho^{2})g_{qp} + g_{rq}\nabla_{p}\Phi_{2} + g_{rp}\nabla_{q}\Phi_{2}, \end{cases}$$

and finally the equations

On Conformal Diffeomorphisms

(1.14)
$$\begin{cases} \nabla_k \nabla_j \nabla_i \Phi_1 = k(2g_{ji} \nabla_k \Phi_1 + g_{kj} \nabla_i \Phi_1 + g_{ki} \nabla_j \Phi_1), \\ \nabla_r \nabla_q \nabla_p \Phi_2 = -k(2g_{qp} \nabla_r \Phi_2 + g_{rq} \nabla_p \Phi_2 + g_{rp} \nabla_q \Phi_2), \end{cases}$$

in which the functions Φ_1 and Φ_2 can be replaced with Φ itself. The equations (1.5) to (1.14) are extended on the closure of every component of U, because of the differentiability of ρ . The constants k, C and b might be different in every component, however we shall see that these constants are common all over the manifold M.

On the other hand, a scalar field ρ in a Riemannian manifold M is said to be *special concircular* if it satisfies the equation of the form

(1.15)
$$\nabla_{\mu}\rho_{\lambda} = (k\rho + b)g_{\mu\lambda},$$

k and b being constants. The constant k is called the *characteristic* one of ρ . See [2] and [3] as to details on concircular scalar fields.

The trajectories of the gradient vector field $Y = (\rho^{\kappa})$ of ρ are geodesics, called ρ -curves. In a neighborhood of an ordinary point of ρ , there is a local coordinate system, said to be *adapted*, such that the first coordinate u is the arc-length of ρ -curves and ρ is a function of u. The metric form ds^2 of M is there given in the form

(1.16)
$$ds^2 = du^2 + \{\rho'(u)\}^2 \overline{ds^2},$$

where prime indicates the derivative in u and $\overline{ds^2}$ is the metric form of an (n-1)-dimensional Riemannian manifold \overline{M} :

(1.17)
$$\overline{ds^2} = f_{\beta\alpha} du^{\beta} du^{\alpha} \qquad (\alpha, \beta = 2, 3, \cdots, n).$$

The metric tensor $g=(g_{\mu\lambda})$ has components

(1.18)
$$g_{11}=1, g_{1\alpha}=g_{\alpha 1}=0, g_{\beta \alpha}=\rho'^2 f_{\beta \alpha}$$

with respect to an adapted coordinate system, and the Christoffel symbol has components

(1.19)
$$\begin{cases} \left\{ \begin{array}{c} 1\\11 \right\} = \left\{ \begin{array}{c} \alpha\\11 \right\} = \left\{ \begin{array}{c} 1\\1\beta \right\} = 0, \\ \left\{ \begin{array}{c} 1\\\gamma\beta \right\} = -\rho'\rho''f_{\gamma\beta}, \quad \left\{ \begin{array}{c} \alpha\\1\beta \right\} = \frac{\rho''}{\rho'}\delta_{\beta}^{\alpha}, \\ \left\{ \begin{array}{c} \alpha\\\gamma\beta \right\} = \left\{ \overline{\alpha}\\\gamma\beta \right\}, \end{cases} \end{cases}$$

where $\{\overline{\gamma\beta}\}$ is the Christoffel symbol composed from the metric (1.17) of \overline{M} . Along a ρ -curve, or more generally along any geodesic with arc-length u, the equation (1.15) turns to the ordinary differential equation

 $\rho''(u) = k\rho + b.$

If there is a stationary point O of ρ , Y(O)=0, then a geodesic hypersphere \overline{M} with center O is an (n-1)-dimensional sphere.

For a special concircular scalar field ρ , we put

(I) k=0, (II) $k=c^2$, (III) $k=-c^2$ (c>0)

according to the signature of k in (1.15). By a suitable choice of the arc-length u of ρ -curves, ρ is given by

(1.20)
$$\rho(u) = \begin{cases} (I, A) & au & (b=0), \\ (I, B) & \frac{1}{2}bu^{2} + a & (b\neq 0), \\ (II, A_{0}) & ae^{cu} - b/c^{2}, \\ (II, A_{-}) & a\sinh cu - b/c^{2}, \\ (II, B) & a\cosh cu - b/c^{2}, \\ (II, B) & a\cosh cu - b/c^{2}, \\ (II) & a\cos cu + b/c^{2}, \end{cases}$$

where a is an arbitrary constant. The present author [2, 3] proved

THEOREM A. If a Riemannian manifold M of dimension $n \ge 2$ is complete and admits a special concircular scalar field ρ , then M is one of the following manifolds corresponding to the expressions (1.20) of ρ :

(I, A) the product $I \times \overline{M}$ of a straight line I and a complete manifold \overline{M} of dimension n-1,

(I, B) a Euclidean space,

(II, A) a pseudo-hyperbolic space of type (II, A_0) or (II, A_-), that is, a warped product $I \times \overline{M}$ with metric form (1.16) where ρ is given by (II, A_0) or (II, A_-) of (1.20).

(II, B) a hyperbolic space of curvature $-c^2$, (III) a sphere of curvature c^2 .

It is noted that ρ has no stationary point in the cases indicated with A, one in the cases with B and two in the case (II), and that ρ has a zero point in the cases (I, A) and (II, A_).

2. Case (1) where the subset $U = \emptyset$

Returning to our problem, we first consider the case $U=\emptyset$ but $V\neq\emptyset$. By means of Lemma 3, we may suppose $V\cap(M-N_1)\neq\emptyset$, then we have the equations (1.3) and (1.4) in each connected component of $V\cap(M-N_1)$. By these

equations, the associated scalar field ρ is given by

$$(2.1) \qquad \qquad \rho = ae^{cu} \qquad (a \neq 0)$$

along ρ -curves lying in the part $M_1(P)$ through a point $P \in V \cap (M-N_1)$. It follows from the differentiability of ρ that the equations (1.3) and (1.4) are extendable first on the part $M_1(P)$, next on the closure of each component of $V \cap (M-N_1)$ and finally all over M. There is no point such that $Y_2 \neq 0$, that is, we see $M=N_2$. By virtue of Theorem A, we can state

PROPOSITION 1. We assume that a product Riemannian manifold $M=M_1 \times M_2$ is complete and a conformal diffeomorphism f maps M into a product Riemannian one M^* . In Case (1), the associated scalar field ρ is given by (2.1), and the part M_1 of dimension $n_1 \ge 2$ is a pseudo-hyperbolic space of type (Π , A_0) with metric form

$$ds_1^2 = du^2 + e^{2cu} \overline{ds_1^2}$$

where $\overline{ds_1}^2$ is the metric form of an (n_1-1) -dimensional manifold \overline{M}_1 , or M_1 is a 1-dimensional straight line I.

Proof of Theorem 1 in Case (1). The manifold M^* is supposed to be complete too, and f to be global. The underlying manifold of M_1 is the product $I \times \overline{M}_1$ and copies of I in M_1 are ρ -curves.

Let Γ be a ρ -curve lying on M_1 , Γ^* the image $f(\Gamma)$, and s^* the arc-length of Γ^* such that $s^*=0$ corresponding to u=0. Then s^* is related to s by the differential equation

$$\frac{ds^*}{du} = \frac{1}{\rho} = \frac{1}{a}e^{-cu}$$

or, by integration, we have the inequality

$$s^* = \frac{1}{ac} (1 - e^{-cu}) < \frac{1}{ac}.$$

Therefore the length of the image Γ^* is bounded as u tends to the infinity along Γ . This contradicts the globalness of f, see [5]. Thus Theorem 1 is proved in this case.

3. Case (2) where the subset $U \neq \emptyset$ and k=0

We shall first consider the case where the subset U is not empty. The copy of the part M_1 passing through a point P will be denoted by $M_1(P)$, the union of $M_1(P)$ for all points P of a subset S by $M_1(S)$, and similar notations

will be used as to M_2 . Let Γ_1 and Γ_2 be any geodesic curves lying in $M_1(P)$ and $M_2(P)$ with arc-length u and v respectively. Let U_0 be an arbitrary connected component of U and \overline{U}_0 the closure of U_0 . Along Γ_1 in $M_1(P) \cap \overline{U}_0$ and Γ_2 in $M_2(P) \cap \overline{U}_0$, the equations (1.13) turn to the differential equations

(3.1)
$$\begin{cases} \frac{\partial^3 \rho^2}{\partial u^3} = k \frac{\partial \rho^2}{\partial u} + 3 \Phi_1'(u), \\ \frac{\partial^3 \rho^2}{\partial v^3} = -k \frac{\partial \rho^2}{\partial v} + 3 \Phi_2'(v), \end{cases}$$

and the equations (1.14) to the ordinary linear differential equations

(3.2)
$$\Phi_1'''(u) = 4k\Phi_1'(u), \quad \Phi_2'''(v) = -4k\Phi_2'(v),$$

where primes indicate derivatives in the indicated variables.

Let us prove the following

LEMMA 4. The subsets N_1 and N_2 are border sets in M the constants k, C and b are common to all connected components of U and the equations (1.5) to (1.14) all valid in the whole manifold M.

PROOF. Let N_1° and N_2° be the open kernels of N_1 and N_2 respectively. Suppose that N_2° is not empty and Q its point. Then the equation (1.10. 1) means that, for each p, $\nabla_p \rho^2$ is a special concircular scalar field in $M_1(Q) \cap \overline{U}_0$ and identically vanishes in $M_1(Q) \cap \overline{N}_2^{\circ}$. The equation (1.10, 1) holds with vanishing right hand side in $M_1(Q) \cap \overline{N}_1^{\circ}$. Since a special concircular scalar field has at most two stationary points unless it is constant, $\nabla_p \rho^2$ should be constant and consequently $\nabla_p \rho^2 = 0$ on $M_1(Q)$. Hence we have $Y_2 = (\rho^p) = 0$ in $M_1(\overline{N}_2^{\circ})$, that is, $M_1(\overline{N}_2^{\circ})$ is contained in N_2 and there vanish all successive derivatives of ρ and Φ in y^p . Simlarly, $M_2(\overline{N}_1^{\circ}) \subset N_1$ if N_1° is not empty.

Take an arbitrary point $R \in M - M_2(\overline{N_1^o})$. The intersection $M_2(R) \cap M_1(\overline{N_2^o})$ is not emply. In order for ρ to be differentiably continuable beyond the border of $M_2(R) \cap M_1(\overline{N_2^o})$, it follows from (3.2, 2) that Φ_2 should be constant along any geodesic curve lying in $M_2(R)$, then from (3.1) that so be ρ and $Y_2=0$ in $M_2(R)$. Hence $M - M_2(\overline{N_1^o})$ is contained in N_2 and we have $M = N_1 \cap N_2$. This contradicts the assumption $U \neq \emptyset$. Thus N_2 is a border set in M, and similarly so is N_1 .

By the similar arguments to the above, neither the border sets N_1 nor N_2 contain points where all the successive derivatives of ρ vanish. By comparison of the equations (1.14) on the border of adjoining connected components of U, the constant k is common to all connected components, and so are the constants C and b by means of (1.5) and (1.12). As a consequence the equations (1.5) to (1.14) are valid over the manifold M. Q. E. D.

In the remaining of this paragraph, we consider the case of k=0. The equations (1.10) and (1.13) together make a tensor equation

(3.3)
$$\nabla_{\nu}\nabla_{\mu}\nabla_{\lambda}\rho^{2} = g_{\nu\mu}\nabla_{\lambda}\Phi + g_{\nu\lambda}\nabla_{\mu}\Phi + g_{\mu\lambda}\nabla_{\nu}\Phi.$$

It follows from (1.11) that $\Omega = b$, and by account of the decomposability of Φ , the equations (1.12) turn to the tensor equation

$$\nabla_{\mu} \nabla_{\lambda} \Phi = b g_{\mu \lambda}.$$

Furthermore this case splits to the three following cases.

(a) If Φ is constant in M, then the equation (3.3) is reduced to the equation

$$\nabla_{\nu}\nabla_{\mu}\nabla_{\lambda}\rho^{2}=0.$$

Now we shall prove the following

LEMMA 5. In Case (2, a) where k=0 and Φ is constant, we have the tensor equation

$$\nabla_{\mu} \nabla_{\lambda} \rho^2 = 2 \Phi g_{\mu \lambda}.$$

PROOF. We suppose that M is a product of irreducible parts, regarding a 1-dimensional part to be irreducible. One of the parts may be M_1 . Then, by the irreducibility, the equation (3.5) implies

$$abla_{a}
abla_{i}
ho^{2} = 0, \quad
abla_{j}
abla_{i}
ho^{2} = 2a_{1}g_{ji}$$

in M_1 , α_1 being a non-zero constant. Hence ρ^2 is decomposable, and there is an adapted coordinate system (u^h) in M_1 such that ρ^2 is expressed as

(3.7)
$$\rho^2 = a_1(u^1)^2 + 2\beta$$
,

where β is a function independent of u^{h} . Substituting the derivatives of the expression (3.7) into $\rho^{2} \Phi = \rho^{2} \rho_{\lambda} \rho^{\lambda}$, we obtain the relation

$$\Phi \{a_1(u^1)^2 + 2\beta\} = a_1^2(u^1)^2 + \beta_q \beta^q$$
,

putting $\beta_q = \nabla_q \beta$. Comparing the coefficients of $(u^1)^2$ in the two sides, we see $a_1 = \Phi$. Applying the same argument to the irreducible parts, we obtain the equation (3.6). Q. E. D.

The scalar field ρ^2 is of type (I, B) in (1.20). There is an adapted coordinate system (u, u^{α}) , $\alpha = 2, \dots, n$, in M such that ρ^2 is given by

$$\rho^2 = \Phi u^2$$

and the metric form of M by

$$(3.9) ds^2 = du^2 + u^2 \overline{ds^2}.$$

By virtue of Theorem A, we have

PROPOSITION 2, (a). In Case (2, a), under the same assumption as that of Proposition 1, the manifold M is a Euclidean space and the associated scalar field ρ is given by (3.8).

Proof of Theorem 1 in Case (2, a). The associated scalar field ρ vanishes at the origin O corresponding to u=0, and there is no conformal diffeomorphism of M onto M^* . The theorem is proved in this case.

(b) If Φ is not constant and $\Omega = b = 0$, then we have the equation

$$\nabla_{\mu}\nabla_{\lambda}\Phi = 0$$

by means of (3.4). The manifold M is the Riemannian product of a 1-dimensional manifold M_1 and an (n-1)-dimensional one M_2 , and there is a separate coordinate system (u, y^p) such that Φ is expressed as

$$(3.10) \qquad \qquad \Phi = 2au,$$

a being a constant.

The equation (3.3) splits into the following equations:

(3.11)
$$\begin{cases} \nabla_1 \nabla_1 \nabla_1 \rho^2 = 6a, \quad \nabla_q \nabla_1 \nabla_1 \rho^2 = 0, \\ \nabla_q \nabla_p \nabla_1 \rho^2 = 2ag_{qp}, \quad \nabla_r \nabla_q \nabla_p \rho^2 = 0. \end{cases}$$

with respect to the system. Since the equation (3.11, 2) implies that $\nabla_1 \rho^2$ is decomposable, we put

$$\nabla_1 \rho^2 = \alpha(u) + \beta(y^p)$$
,

where α and β are functions of the indicated variables respectively. Substituting this expression into (3.11, 1), and integrating, we may put

$$\alpha = 3au^2 + 2bu$$

b being a constant. Then it follows from (3.11) that ρ has the expression

(3.12)
$$\rho^2 = a u^3 + b u^2 + u \beta + \gamma$$
,

where γ is a function of y^p .

Since the squared length Φ of $Y=(\rho^{\kappa})$ is equal to

$$\Phi = \rho_1^2 + g^{qp} \rho_q \rho_p$$

in the system (u, y^p) , we substitute (3.10) and derivatives of (3.12) into this equation, and obtain the identity

$$8au(au^3+bu^2+u\beta+\gamma)=(3au^2+2bu+\beta)^2+g^{qp}(u\beta_q+\gamma_q)(u\beta_p+\gamma_p)$$

putting $\gamma_q = \partial_q \gamma$. Comparing the coefficients of u^4 , we see a=0. This is a contradiction and the case (b) does not occur.

(c) If $b \neq 0$, then Φ is of type (I, B) in (1.20) and there is the same adapted coordinate system (u, u^{α}) as that in the case (a), and Φ is expressed as

(3.13)
$$\Phi = \frac{1}{2}bu^2 + c$$
,

c being a constant, and the metric form of M is given by (3.9). If we denote the metric tensor of \overline{M} by $(f_{\gamma\beta})$, then non-vanishing components of the Christoffel symbol of M with respect to the adapted coordinate system (u, u^{α}) are

$$\left\{\frac{1}{\gamma\beta}\right\} = -uf_{\gamma\beta}, \quad \left\{\frac{\alpha}{1\beta}\right\} = \frac{1}{u}\delta^{\alpha}_{\beta}, \quad \left\{\frac{\alpha}{\gamma\beta}\right\} = \left\{\frac{\overline{\alpha}}{\gamma\beta}\right\},$$

where $\left\{ \begin{array}{c} \overline{\alpha} \\ \gamma \beta \end{array} \right\}$ is the Christoffel symbol composed from the metric tensor $f_{\gamma\beta}$ of \overline{M} . The covariant differentiation with respect to $\left\{ \begin{array}{c} \overline{\alpha} \\ \gamma \beta \end{array} \right\}$ will be denoted by $\overline{\nabla}$.

The components of the second covariant derivative $\nabla_{\mu} \nabla_{\lambda} \rho^2$ are expressed as

(3.14)
$$\begin{cases} \nabla_{1}\nabla_{1}\rho^{2} = \partial_{1}\partial_{1}\rho^{2}, \\ \nabla_{\beta}\nabla_{1}\rho^{2} = \partial_{\beta}\partial_{1}\rho^{2} - \frac{1}{u}\partial_{\beta}\rho^{2}. \\ \nabla_{\beta}\nabla_{\alpha}\rho^{2} = \overline{\nabla}_{\beta}\overline{\nabla}_{\alpha}\rho^{2} + uf_{\beta\alpha}\partial_{1}\rho^{2}. \end{cases}$$

with respect to (u, u^{α}) , and essentials of the equation (3.3) are

$$\begin{cases} \nabla_{1}\nabla_{1}\nabla_{1}\rho^{2} = \partial_{1}\partial_{1}\partial_{1}\rho^{2} = 3bu, \\ \nabla_{\beta}\nabla_{1}\nabla_{1}\rho^{2} = \partial_{\beta}\partial_{1}\partial_{1}\rho^{2} - \frac{2}{u}\nabla_{\beta}\nabla_{1}\rho^{2} = 0, \\ \nabla_{1}\nabla_{\beta}\nabla_{\alpha}\rho^{2} = \partial_{1}\nabla_{\beta}\nabla_{\alpha}\rho^{2} - \frac{2}{u}\nabla_{\beta}\nabla_{\alpha}\rho^{2} = bu^{3}f_{\beta\alpha}, \\ \nabla_{\gamma}\nabla_{\beta}\nabla_{\alpha}\rho^{2} = \overline{\nabla}_{\gamma}\nabla_{\beta}\nabla_{\alpha}\rho^{2} + uf_{\gamma\beta}\nabla_{\alpha}\nabla_{1}\rho^{2} + uf_{\gamma\alpha}\nabla_{\beta}\nabla_{1}\rho^{2} = 0. \end{cases}$$

(3.15)

Substituting (3.14, 2) into (3.15, 2), we see that
$$\partial_1 \rho^2 - (2/u)\rho^2$$
 is decomposable and put in the form

(3.16)
$$\partial_1 \rho^2 - \frac{2}{u} \rho^2 = \alpha(u) + \beta(u^{\alpha}),$$

 α being a function of u and β a function of (u^{α}) belonging to \overline{M} . Substituting the third derivative of ρ^2 in u into (3.15, 1), we have the equation

$$(3.17) u\alpha'' + 2\alpha' = 3bu^2.$$

The solution of this equation is given by

$$(3.18) \qquad \qquad \alpha = \frac{1}{4}bu^3 + \frac{B}{u},$$

where B is a constant and a constant term has been transferred into β of (3.16) Subsituting (3.18) into (3.16) and dividing by u^2 , we have

$$\partial_1\left(\frac{1}{u^2}\rho^2\right) = \frac{1}{4}bu + \frac{B}{u^3} + \frac{\beta}{u^2}$$

and consequently ρ^2 is expressed as

(3.19)
$$\rho^2 = \frac{1}{8} b u^4 - \frac{B}{2} - u B + u^2 \gamma,$$

 γ being a function of u^{α} belonging to \overline{M} . Taking account of the expressions (3.14, 3), (3.19) and (3.17), we have

$$\nabla_1 \nabla_{eta} \nabla_{lpha} \rho^2 = \overline{\nabla}_{eta} \overline{\nabla}_{lpha} \beta + (b u^3 + \beta) f_{\beta a}$$

and, comparing this equation with (3.15, 3),

$$(3.20) \qquad \qquad \overline{\nabla}_{\beta}\overline{\nabla}_{\alpha}\beta = -\beta f_{\beta\alpha}$$

Subsituting (3.14, 2), (3.14, 3) and (3.19) into (3.15, 3) and taking account of (3.20), we see that the function γ satisfies the equation

$$(3.21) \qquad \qquad \nabla_{\gamma} \nabla_{\beta} \nabla_{\alpha} \gamma = -(2f_{\beta\alpha} \nabla_{\gamma} \gamma + f_{\gamma\beta} \nabla_{\alpha} \gamma + f_{\gamma\alpha} \nabla_{\beta} \gamma)$$

on \overline{M} .

Since the squared length Φ of $Y=(\rho^{\kappa})$ is given by

$$\Phi = \rho_1^2 + \frac{1}{u^2} f^{\beta \alpha} \rho_{\beta} \rho_{\alpha}$$

with respect to the adapted coordinate system (u, u^{α}) , we substitute (3.13) and derivatives of (3.19) into this equation, and obtain the identity

$$4\left(\frac{1}{8}bu^{4}-\frac{B}{2}-u\beta+u^{2}\gamma\right)\left(\frac{1}{2}bu^{2}+c\right)$$
$$=\left(\frac{1}{2}bu^{3}-\beta+2u\gamma\right)^{2}+f^{\beta\alpha}(u\gamma_{\beta}-\beta_{\beta})(u\gamma_{\alpha}-\beta_{\alpha}),$$

where $\beta_{\alpha} = \partial_{\alpha}\beta$ and $\gamma_{\alpha} = \partial_{\alpha}\gamma$. Comparing the coefficients of u^4 , u^3 and u^2 in the both sides, we have c=0, $\beta=0$ and

$$-bB=4\gamma^2+f^{\beta\alpha}\gamma_{\beta}\gamma_{\alpha}.$$

Thus the assolated scalar field ρ is expressed as

(3.22)
$$\rho^{2} = \frac{1}{8b} (b^{2}u^{4} + 8bu^{2}\gamma + 16\gamma^{2} + 4f^{\beta\alpha}\gamma_{\beta}\gamma_{\alpha})$$
$$= \frac{1}{8b} [(bu^{2} + 4\gamma)^{2} + 4f^{\beta\alpha}\gamma_{\beta}\gamma_{\alpha}]$$

by use of a solution γ of (3.21) on \overline{M} .

Since Φ satisfies the equation (3.4) with $b \neq 0$, by virtue of Theorem A, we have the following

PROPOSITION 2, (c). In Case (2, c) under the same assumption as that of Proposition 1, the manifold M is a Euclidean space and ρ is given by (3.22).

Proof of Theorem 1 in Case (2, c). The squared length Φ given by (3.13) has a staionary point O corresponding to u=0 in (u, u^{α}) and the hypersurface \overline{M} is the unit hypersphere with point O as center. The rays issuing from O are ρ -curves of Φ , and the function γ is constant on each of the rays.

Let Γ be one of the rays and Γ^* the image $f(\Gamma)$ in M^* . Since the constant b in (3.22) should be positive, we put $b=16a^2$, a>0. We can take a value u_0 so large that

(3.23)
$$\rho(u) > a u^2$$
 $(u > u_0)$

holds. The arc-length s* of Γ * is related to u of Γ by the equation

$$\frac{ds^*}{du} = \frac{1}{\rho}$$

Denoting by s_0^* the value of s^* corresponding to u_0 and taking account of the inequality (3.23), we obtain the inequality

$$s^* - s^*_0 < \frac{1}{a} \left(\frac{1}{u_0} - \frac{1}{u} \right) < \frac{1}{a u_0} \qquad (u > u_0).$$

Hence the length of the image Γ^* is bounded as u tends to the infinity. This contradicts the globalness of f. Theorem 1 is thus proved in this case.

4. Case (3) where $U \neq \emptyset$ and $k \neq 0$.

In this paragraph we shall consider the case where the subset U is not empty and the constant k is not equal to 0. We may suppose k is positive without loss of generality and put k=1 for simplicity. Moreover this case splits into the two following cases.

(a) If the function Ω is constant, then Ω is equal to zero as easily seen from (1.8) and (1.11), and we have

(4.1)
$$\rho^2 = \Phi_1 - \Phi_2 + b.$$

The square ρ^2 itself is decomposable and satisfies the equations

$$\nabla_{k}\nabla_{j}\nabla_{i}\rho^{2} = 2g_{ji}\nabla_{k}\rho^{2} + g_{kj}\nabla_{i}\rho^{2} + g_{ki}\nabla_{j}\rho^{2},$$

$$\nabla_{r}\nabla_{q}\nabla_{p}\rho^{2} = -(2g_{qp}\nabla_{r}\rho^{2} + g_{rq}\nabla_{p}\rho^{2} + g_{rp}\nabla_{q}\rho^{2})$$

of the same type as the equations (1.14). The field ρ is given by the expression (4.1) in which Φ_1 and Φ_2 are solutions of the respective equations of (1.14).

Proof of Theorem 1 in Case (3, a). Let Γ be a geodesic curve with arclength u lying in the part $M_1(\mathbf{P})$, $\mathbf{P} \in U$, and Γ^* the image $f(\Gamma)$ in M^* . Then, along Γ , ρ^2 is given by

$$\rho^2 = Ae^{2u} + Be^{-2u} + C$$
,

A, B and C being constants. Since the arc-length u of Γ is extendable to the infinities of two sides, A and B should be non-negative and at least one of them be positive. Putting $A=2a^2$, a>0, we can take a value u_0 so large that

í

$$\rho(u) > a e^u \qquad (u > u_0)$$

holds. Using the same notations and arguments at the end of §3, the arclength s^* of Γ^* is bounded as

$$s^* - s_0^* < e^{-u_0}/a$$
 $(u > u_0).$

This contradicts the globalness of f, and Theorem 1 is proved in this case.

(b) If the function Ω is not constant, then the equations (1.12) show that $\Phi_1 - \rho^2$ and $\Phi_2 + \rho^2$ are special concircular scalar fields with characteristic constant 1 and -1 in $M_1(P)$ and $M_2(P)$ passing through every point P of U, respectively. By virtue of Theorem A, we have the following

PROPOSITION 3. In Case (3, b) under the same assumption as that of Proposition 1, the manifold M is the product Riemannian manifold $M_1 \times M_2$, in which M_1 is a pseudo-hyperbolic space or a hyperbolic sapce and M_2 a sphere. Either the part M_1 or M_2 may be a straight line.

The part M_1 admits a special concircular scalar field σ and an adapted coordinate system $(u, u^{\alpha}), \alpha, \beta, \gamma=2, \cdots, n_1$, such that u is the arc-length of ρ curves of σ, σ satisfies the equation

$$\sigma''(u) = \sigma,$$

prime indicating derivatives in u, and the metric form ds_1^2 of M_1 is given by

$$ds_1^2 = du^2 + \sigma'^2 \overline{ds_1}^2$$
,

where $\overline{ds_1}^2 = f_{\beta\alpha} du^{\beta} du^{\alpha}$ is the metric form of an (n_1-1) -dimensional Riemannian manifold \overline{M}_1 . By suitable choice of the arc-length u of ρ -curves of σ , we take the function

$$\sigma = e^u - Be^{-u}$$

as representative of σ in M_1 . For the later use, we notice that σ satisfies the equations

$$\sigma'^2 - \sigma^2 = 4B$$

and

(4.5)
$$(\sigma''/\sigma')' + (\sigma''/\sigma')^2 = 1.$$

Components of the Christoffel symbol of M_1 are given by (1.19) with σ for ρ . Then the equation (1.12, 1) splits into

(4.6)
$$\begin{cases} \partial_1 \partial_1 (\Phi_1 - \rho^2) = \Phi_1 - \Phi_2 - \rho^2 + b, \\ \partial^1 \partial_\beta (\Phi_1 - \rho^2) - \frac{\sigma''}{\sigma'} \partial_\beta (\Phi_1 - \rho^2) = 0, \\ \nabla_\gamma \nabla_\beta (\Phi_1 - \rho^2) + \sigma' \sigma'' f_{\gamma\beta} \partial_1 (\Phi_1 - \rho^2) = (\Phi_1 - \Phi_2 - \rho^2 + b) \sigma'^2 f_{\gamma\beta}. \end{cases}$$

From (4.6, 2) we see $(\Phi_1 - \rho^2)/\sigma'$ decomposable in M_1 and put

(4.7)
$$\Phi_1 - \rho^2 = \sigma' [\alpha_1(u, y^p) + \gamma(u^\alpha, y^p)],$$

where α_1 and γ are functions dependent on the indicated variables respectively. Substituting (4.7) into (4.6, 1) and taking account of (4.2), we have the equation

$$\sigma'\partial_1\partial_1lpha_1+2\sigma''\partial_1lpha_1=-\varPhi_2+b$$
 ,

by means of which we may put

(4.8)
$$\sigma^{\prime 2} \partial_1 \alpha_1 = (-\Phi_2 + b)\sigma + 4\lambda_2(y^p),$$

 λ_2 being a function of y^p . Substituting (4.7) into (4.6, 3) and using (4.4) and (4.8), we have the equation

(4.9)
$$\sigma'(\overline{\nabla}_{\gamma}\overline{\nabla}_{\beta}\gamma - 4B\gamma f_{\gamma\beta}) = 4[B(\sigma'\alpha_1 - \Phi_2 + b) - \sigma\lambda_2]f_{\gamma\beta}.$$

The expression in the parentheses in the left hand side is independent of u and the expression in the brackets in the right hand side independent of u^{α} . Hence, if $B \neq 0$, then we may put

$$B(\sigma'\alpha_1 - \Phi_2 + b) - \sigma\lambda_2 = B\sigma'\mu_2(y^p),$$

$$\nabla_{\gamma}\nabla_{\beta}\gamma = 4B(\gamma + \mu_2)f_{\gamma\beta},$$

where μ_2 is a function of y^p . Substituting the expression of $\sigma' \alpha_1$ obtained from (4.7) into the first equation and putting

$$eta_2=\lambda_2/B$$
 , $\gamma_1=\gamma+\mu_2$,

we have the relation

$$(4.10) \qquad \qquad \Phi_1 - \rho^2 = \Phi_2 - b + \beta_2 \sigma + \gamma_1 \sigma',$$

where β_2 is a function of y^p , γ_1 is of u^{α} and y^p , and satisfies the equation

(4.11)
$$\overline{\nabla}_{\gamma}\overline{\nabla}_{\beta}\gamma_{1}=4B\gamma_{1}f_{\gamma\beta}.$$

By similar arguments, the part M_2 admits a special concircular scalar field τ satisfying the equation

in the arc-length v of ρ -curves of τ , and an adapted coordinate system (v, v^{ξ}) , ξ , η , $\zeta = n_1 + 2$, ..., n, where the metric form ds_2^2 of M_2 is of the form

$$ds_2^2 = dv^2 + \tau'^2 \overline{ds_2}^2$$

and $\overline{ds_2}^2 = f_{\eta\xi} dv^{\eta} dv^{\xi}$ is the metric form of an (n_2-1) -dimensional Riemannian manifold \overline{M}_2 . We take the function

$$\tau = -\cos v$$

as representative of τ in M_2 . We can obtain the relation

$$(4.14) \qquad \qquad \Phi_2 + \rho^2 = \Phi_1 + b + \beta_1 \tau + \gamma_2 \tau',$$

where β_1 is a function of x^h , γ_2 is of x^h and v^{ξ} , and satisfies the equation

(4.15)
$$\overline{\nabla}_{\eta}\overline{\nabla}_{\xi}\gamma_{2}=-\gamma_{2}f_{\eta\xi}.$$

Comparing the relations (4.10) and (4.14) and taking account of linear independence among σ , σ' , τ and τ' , we can see that ρ^2 is expressed in the form

(4.16)
$$\rho^2 = \Phi_1 - \Phi_2 + b + (A\tau + \beta\tau')\sigma + (\alpha\tau + \gamma\tau')\sigma',$$

where A is a constant, α a function of u^{α} , β one of v^{ξ} and γ one of u^{α} and v^{ξ} , and they satisfy the equations

$$\begin{aligned} \nabla_{\gamma} \nabla_{\beta} \alpha &= 4B\alpha f_{\gamma\beta}, \quad \nabla_{\gamma} \nabla_{\beta} \gamma &= 4B\gamma f_{\gamma\beta}, \\ \nabla_{\eta} \nabla_{\xi} \beta &= -\beta f_{\eta\xi}, \quad \nabla_{\eta} \nabla_{\xi} \gamma &= -\gamma f_{\eta\xi} \end{aligned}$$

respectively.

If B=0 in (4.3), or $\sigma=e^{u}$, then the equation (4.8) turns to

$$\partial_1 \alpha_1 = -(\Phi_2 - b)e^{-u} + 4\lambda_2 e^{-2u}$$

and the solution is given by

$$\alpha_1 = (\Phi_2 - b)e^{-u} - 2\lambda_2 e^{-2u} + \mu_2(y^p),$$

 μ_2 being a function of y^p . Substituting this expression into (4.7), we have the relation

(4.17)
$$\Phi_1 - \rho^2 = \Phi_2 - b - 2\lambda_2 e^{-u} + \gamma_1 e^{u},$$

where γ_1 is defined by $\gamma_1 = \gamma + \mu_2$ and satisfies the equation

$$(4.18) \qquad \qquad \overline{\nabla}_{\gamma} \overline{\nabla}_{\beta} \gamma_1 = -4\lambda_2 f_{\gamma\beta}$$

as seen from (4.9). On the other hand, we have again the relations (4.14), and, by comparing this relation with (4.17), see that ρ^2 is expressed in the form

(4.19)
$$\rho^2 = \Phi_1 - \Phi_2 + b + (A\tau + \beta\tau')e^{-u} + (\alpha\tau + \gamma\tau')e^{u}.$$

The functions A, α , β and γ are of the same properties as those in (4.16) but α and γ satisfy the equations of type (4.18) in \overline{M}_1 .

Next we shall seek for the expressions of Φ_1 and Φ_2 . The equation (1.14, 1) splits into the four essential equations

(4.20)
$$\begin{pmatrix} \nabla_{1}\nabla_{1}\overline{\nabla}_{1}\overline{\Phi}_{1}=\partial_{1}\partial_{1}\partial_{1}\overline{\Phi}_{1}=4\partial_{1}\overline{\Phi}_{1},\\ \nabla_{\beta}\nabla_{1}\overline{\nabla}_{1}\overline{\Phi}_{1}=\partial_{\beta}\partial_{1}\partial_{1}\overline{\Phi}_{1}-2\frac{\sigma''}{\sigma'}\nabla_{\beta}\nabla_{1}\overline{\Phi}_{1}=2\partial_{\beta}\overline{\Phi}_{1},\\ \nabla_{1}\nabla_{\beta}\nabla_{\alpha}\overline{\Phi}_{1}=\partial_{1}\nabla_{\beta}\nabla_{\alpha}\overline{\Phi}_{1}-2\frac{\sigma''}{\sigma'}\nabla_{\beta}\nabla_{\alpha}\Phi_{1}=2\sigma'^{2}f_{\beta\alpha}\partial_{1}\Phi_{1},\\ \nabla_{\gamma}\nabla_{\beta}\nabla_{\alpha}\overline{\Phi}_{1}=\overline{\nabla}_{\gamma}\nabla_{\beta}\nabla_{\alpha}\Phi_{1}+\sigma'\sigma''f_{\gamma\beta}\nabla_{\alpha}\nabla_{1}\Phi_{1}+\sigma'\sigma''f_{\gamma\alpha}\nabla_{\alpha}\nabla_{1}\Phi_{1}\\ =\sigma'^{2}(2f_{\beta\alpha}\nabla_{\gamma}\overline{\Phi}_{1}+f_{\gamma\beta}\nabla_{\alpha}\Phi_{1}+f_{\gamma\alpha}\nabla_{\beta}\Phi_{1}) \end{pmatrix}$$

with respect to the adapted system (u, u^{α}) in M_1 . Substituting the expression

$$abla_eta
abla_1 \Phi_1 = \partial_eta \partial_1 \Phi_1 - rac{\sigma''}{\sigma'} \partial_eta \Phi_1$$

into (4.20, 2) and using the relation (4.5), we may put

(4.21)
$$\partial_1 \Phi_1 - 2 \frac{\sigma''}{\sigma'} \Phi_1 = \varphi_1 + 2 \psi_1,$$

where φ_1 is a function of u and ψ_1 of the other u^{α} in M_1 . By means of (4.4), the third derivative of Φ_1 in u is equal to

$$\partial_1\partial_1\partial_1\Phi_1=4\partial_1\Phi_1+2rac{\sigma''}{\sigma'}\varphi_1'+\varphi_1''.$$

Therefore it follows from (4.20, 1) that φ'_1 is expressed as

$$\varphi_1' = \frac{8C_1}{\sigma'^2}$$

 C_1 being a constant. Substituting the expression (4.3), the function φ_1 is given by

$$(4.22) \qquad \qquad \varphi_1 = \frac{-4C_1}{e^{2u} + B}$$

where the integral constant has been transferred into ϕ_1 . By integration of (4.21) substituted with (4.22), the function Φ_1 is given by

(4.23)
$$\Phi_1 = \omega_1 (e^u + Be^{-u})^2 - \psi_1 + (C_1 - B\psi_1)e^{-2u},$$

where ω_1 is a function of u^{α} belonging to \overline{M}_1 . Substituting this expression into (4.20, 3) and (4.20, 4), we see the functions ψ_1 and ω_1 satisfying the equations

 $\nabla_{\beta}\nabla_{\alpha}\psi_1 = 4(B\psi_1 - C_1)f_{\beta\alpha}$

and

$$\nabla_{\gamma}\nabla_{\beta\alpha}\nabla_{\omega_{1}} = 4B(2f_{\beta\alpha}\partial_{\gamma}\omega_{1} + f_{\gamma\beta}\partial_{\alpha}\omega_{1} + f_{\gamma\alpha}\partial_{\beta}\omega_{1}) \\ -2(f_{\beta\alpha}\partial_{\gamma}\psi_{1} + f_{\gamma\beta}\partial_{\alpha}\psi_{1} + f_{\gamma\alpha}\partial_{\beta}\psi_{1})$$

on \overline{M}_1 respectively.

By similar arguments to those on Φ_1 , the part Φ_2 of Φ is expressed as

$$(4.24) \qquad \qquad \Phi_2 = C_2 - 2\psi_2 \sin v \cos v + \omega_2 \sin^2 v$$

with respect to the adapted coordinate system (v, v^{ξ}) in M_2 , where C_2 is a constant, ϕ_2 and ω_2 are functions of v^{ξ} of \overline{M}_2 and satisfy the equations

$$\nabla_{\eta}\nabla_{\xi}\psi_2 = -\psi_2 f_{\eta\xi}$$

and

$$\nabla_{\zeta}\nabla_{\eta}\nabla_{\xi}\omega_{2} = -(2f_{\eta\xi}\partial_{\zeta}\omega_{2} + f_{\zeta\eta}\partial_{\xi}\omega_{2} + f_{\zeta\xi}\partial_{\eta}\omega_{2})$$

on \overline{M}_2 respectively.

Thus the associated scalar field ρ has the expression (4.16) or (4.19) with σ , τ , Φ_1 and Φ_2 given by (4.3), (4.13), (4.23) and (4.24) respectively.

Proof of Theorem 1 in Case (3, b). Let P be a point of U, Γ an arbitrary ρ -curve of σ which lies in $M_1(P)$, and Γ^* the image $f(\Gamma)$ of Γ in M^* . The coefficients A, α , β , γ in (4.16) or (4.19), ψ_1 , ω_1 in (4.23) and ψ_2 , ω_2 in (4.24) are all constant on Γ . The function Φ_1 is of the second order in e^u and e^{-u} , and the other terms in (4.16) or (4.19) are of less order. The value of ω_1 on Γ should not be negative for $\rho^2 > 0$ for any value of u.

If $\omega_1 \neq 0$ on Γ and we put $\omega_1 = 2a^2$, then we can take a value u_0 so large that

 $\rho > a e^u$

for $u > u_0$. By the same argument as that in Case (3, a), we can see that the length of the image Γ^* is bounded as u tends to the infinity. This contradicts the globalness of f.

If ω_1 identically vanishes, then the coefficient $C_1 - B\psi_1$ of e^{-2u} should not be negative. If $C_1 - B\psi_1 > 0$, we can apply the similar argument to this case and yield a contradiction.

If $C_1 - B\phi_1 = 0$ everywhere, then ϕ_1 is constant and so is Φ_1 in *M*. Then, in order for $\rho^2 > 0$ everywhere, the coefficients

$$-A\cos v + \beta \sin v$$
 and $-\alpha \cos v + \gamma \sin v$

in (4.16) or (4.19) should be always positive, but it cannot occur.

As consequence of discussions in three Cases (1), (2) and (3), we have completed a proof of Theorem 1.

References

- [1] Tashiro, Y., Remarks on a theorem concerning conformal transformations, Proc. Japan Acad. 35 (1959), 421-422.
- [2] —, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275.
- [3] ——, Conformal Transformations in Complete Riemannian Manifolds. Publ. of Study Group of Geometry 3, Kyoto Univ., 1967.
- [4] —, On conformal diffeomorphisms between complete product Riemannian manifolds, J. Math. Soc. Japan 32 (1980), 639-663.
- [5] and Miyashita, K., On conformal diffeomorphisms of complete Riemannian manifolds with parallel Ricci tensor, J. Math. Soc. Japan 23 (1971), 1-10.

Department of Mathematics, Faculty of Integrated Sciences, Hiroshima University, Hiroshima, 730 Japan