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PRODUCT RIEMANNIAN MANIFOLDS
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0. Introduction

Let $M$ and $M^{*}$ be connected Riemannian manifolds of dimension $n\geqq 3$ , and
denote the product Riemannian structures by $(M, g, F)$ and $(M^{*}, g^{*}, G)$ respec-
tively, where $g$ and $g^{*}$ are the Riemannian metrics and $F$ and $G$ the product

structures of $M$ and $M^{*}$ . Under a diffeomorphism $f$ of $M$ to $M*$ , the image of
a quntity on $M^{*}$ to $M$ by the induced map $f^{*}$ of $f$ will be denoted by the same
character as the original. For example, we write $g^{*}$ for $f^{*}g^{*}$ and $G$ for $f^{*}G$

on $M$. We say that the product structures $F$ and $G$ are commutative with one
another at a point $P$ of $M$ under $f$ if $FG=GF$ at P.

In the present paper, a conformal diffeomorphism means a non-homothetic
one unless otherwise stated. The purpose is to prove the following

THEOREM 1. If both $M$ and $M^{*}$ are complete product Riemannian manifolds,

then there is no global conformal diffeomorphism of $M$ onto $M^{*}$ such that the
product structures $F$ and $G$ are not commutative under it in an open subset of $M$.

This is an improvement of the main theorem in a previous paper [4] with
weaker condition “in a open subset” than “in a dense subset” of the previous.

As the contraposition of Theorem 1, we can state the following

THEOREM 2. If both $M$ and $M*are$ complete product Riemannian manifolds
and there is a global conformal diffeomorphism $f$ of $M$ onto $M^{*}$ , then the product

structures $F$ and $G$ are commutative under $f$ everywhere in $M$.

An affirmative example of Theorem 2 was given in [4].

To prove Theorem 1, we first assume that there is an open subset where
the product structures $F$ and $G$ are not commutative under a conformal dif-
feomorphism $f$ of $M$ into $M^{*}$ . Then we obtain differential equations on the
associated scalar field $\rho$ with $f$ . Three considerable cases occur, and we obtain
the expression of $\rho$ in each case. Comparison of arc-lengths of some geodesic
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in $M$ and its image in $M^{*}$ shows the non-existence of global conformal dif-
feomorphism between complete product manifolds.

1. Preliminaries

We shall recall lemmas and differential equations from [4] as preliminaries.
Throughout the present paper we assume that differentiability of manifolds and
diffeomorphisms is of class $C^{\infty}$ . For indicating components of tensors, Greek
indices $\kappa,$

$\lambda,$

$\mu,$ $\nu,$ $\omega$ run on the range from 1 to $n$ , and other Greek indices run
on indicated temporary ranges.

Let $M$ be the product $M_{1}xM_{2}$ of two Riemannian manifolds $M_{1}$ and $M_{2}$ of
dimension $n_{1}$ and $n_{2}$ respectively, $n_{1}+n_{2}=n$ , and $(x^{h}, y^{p})$ a separate coordinate
system of $M,$ $(x^{h})$ belonging to $M_{1}$ and $(y^{p})$ to $M_{2}$ . Here and hereafter Latin
indices always run on the following ranges:

$h,$ $i,$ $j,$ $k=1,2,$ $\cdots,$ $n_{1}$ ,

$p,$ $q,$ $r,$ $s=n_{1}+1,$ $\cdots,$ $n$ .
With respect to a separate coordinate system $(x^{h}, y^{p})$ in $M$, the metric

tensor $g=(g_{\mu\lambda})$ of $M$ has pure components $g_{ji}(x^{h})$ and $g_{qp}(y^{p})$ only, depending
on the coordinates $(x^{h})$ and $(y^{p})$ respectively, and the product structure $F=(F_{\lambda^{\kappa}})$

has pure components $F_{i^{h}}=\delta_{i}^{h}$ and $F_{q^{p}}=-\delta_{q}^{p}$ . Covaraint differentiation with re-
spect to $g$ in $M$ will be denoted by $\nabla$, and the parts along $M_{1}$ and $M_{2}$ , ex-
pressed by $\nabla_{i}$ and $\nabla_{q}$ respectively, are commutative with one another.

A conformal diffeomorphism $f$ of $M$ to $M^{*}$ is characterized by a change

(1.1) $g_{\mu\lambda}^{*}=\frac{1}{\rho^{2}}g_{\mu\lambda}$

of the metric tensors, where $\rho$ is a positive-valued scalar field on $M$ and said
to be associated with $f$ . We shall put $\rho\lambda=\nabla_{\lambda}\rho$ and denote by $Y$ the gradient
vector field $(\rho^{\kappa})$ of $\rho$ . The parts $(\rho^{h})$ and $(\rho^{p})$ of $Y$ belonging to $M_{1}$ and $M_{2}$

will be denoted by $Y_{1}$ and $Y_{2}$ respectively, and the squared length of $Y$ by $\Phi,$ $i.e.$ ,

$\Phi=|Y|^{2}=\rho_{\kappa}\rho^{\kappa}$ .
Under a conformal diffeomorphism $f$ , the induced tensor $G$ from $M^{*}$ to $M$

constitutes an almost product Riemannian structure $(M, g, G)$ , which is not
necessarily integrable. The covariant tensor $G_{\mu\lambda}$ defined by $G_{\mu\lambda}=G_{\mu^{\kappa}}g_{\kappa\lambda}$ is
symmetric in $\lambda$ and $\mu$ . The product structures $F$ and $G$ are commutative if and
only if $G_{\lambda^{\kappa}}$ and $G_{\mu\lambda}$ have pure components only with respect to a separate co-
ordinate system in $M$.

If the metric $g^{*}$ of $M*is$ conformally related to $g$ of $M$ by (1.1), then the
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integrability of the product structure $G$ with respect to $g^{*}$ in $M^{*}$ is equivalent

to the differential equation

(1.2) $\nabla_{\mu}G_{\lambda\kappa}=-\frac{1}{\rho}(G_{\mu\lambda}\rho_{\kappa}+G_{\mu\iota}\rho\lambda-g_{\mu\lambda}G_{\kappa\omega}\rho^{\omega}-g_{\mu\kappa}G_{\lambda\omega}\rho^{\omega})$

on $M$. Starting from this equation, we proved the following lemmas of local

character:

LEMMA 1. A conformal diffeomorphism $f$ of $M$ into $M^{*}$ is a homothety if
and only if

$\nabla_{\mu}G_{\lambda\kappa}=0$ .
Then the structures $F$ and $G$ are commutative under $f$ .

LEMMA 2. If the structures $F$ and $G$ are commutative under a conformal
diffeomorphism $f$, then the associated scalar field $\rho$ is a function on either of the

parts $M_{1}$ or $M_{2}$ only.

LEMMA 3. If the associated scalar field $\rho$ depends on one part, say $M_{1}$ , but is

not a constant, then the structure $G$ is commutative with $F$ under $f$ , or the scalar

field $\rho$ satisfies the equation

(1.3) $\nabla_{j}\rho_{i}=c^{2}\rho g_{ji}$

on $M_{1}$ , where $c$ is a positive constant, and the squared length $\Phi$ of the gradient

vector field $Y=Y_{1}$ is equal to

(1.4) $\Phi=\rho_{i}\rho^{i}=c^{2}\rho^{2}$ .

We put the subset
$N_{1}=(P|Y_{1}(P)=0\}$ ,

$N_{2}=\{P|Y_{2}(P)=0\}$ ,

$U=\{P|Y_{1}(P)\neq 0, Y_{2}(P)\neq 0\}$ ,

$V=$ { $P|FG\neq FG$ at $P$ }.

and see the inclusion relations
$U\subset V\subset M-N_{1}\cap N_{2}$

by means of Lemmas 1 and 2.
Now we :suppose that the open subset $V$ is not empty, then by means of

Lemma 3 we have to consider the cases where $U$ is empty and $V\subset N_{1}\cup N_{2}$ or
where $U$ is not empty.

By pretty long arguments, in every component of $U$, we obtain the follow-
ing equations
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$/\nabla_{j}\rho_{i}=\frac{1}{2\rho}[(\Phi+k\rho^{2})g_{ji}+CG_{ji}]$ ,

(1.5)

$I_{\nabla_{q}^{q}\rho_{p}^{j}=\frac{2\rho C_{1}}{2\rho}[(\Phi-k\rho^{2})g_{qp}+CG_{qp}]}^{\nabla\rho=\frac G_{qi}}$

,

$k$ and $C$ being constants, or

(1.6) $\left\{\begin{array}{l}\nabla_{j}\nabla_{i}\rho^{2}=(\Phi+k\rho^{2})g_{ji}+CG_{ji}+2\rho_{j}\rho_{i},\\\nabla_{q}\nabla_{i}\rho^{2}=CG_{ql}+2\rho_{q}\rho_{i},\\\nabla_{q}\nabla_{p}\rho^{2}=(\Phi-k\rho^{2})g_{qp}+CG_{qp}+2\rho_{q}\rho_{p}.\end{array}\right.$

The squared length $\Phi$ of $Y$ is decomposable in $U$ , that is, it is the sum

(1.7) $\Phi=\rho_{\kappa}\rho^{\kappa}=\Phi_{1}+\Phi_{2}$

of functions $\Phi_{1}$ of $(x^{h})$ and $\Phi_{2}$ of $(y^{p})$ , and it satisfies the equations

(1.8) $\left\{\begin{array}{l}\nabla_{j}\nabla_{i}(\Phi-k\rho^{2})=\Omega g_{ji},\\\nabla_{q}\nabla_{p}(\Phi+k\rho^{2})=\Omega g_{qp},\end{array}\right.$

where we have put

(1.9) $\Omega=\frac{1}{2\rho^{2}}(\Phi^{2}-k^{2}\rho^{4}+2CG_{\lambda\kappa}\rho^{\lambda}\rho^{\kappa}+C^{2})$ .

Differentiating the equations (1.6, 1) in $y^{p}$ and (1.6, 3) in $x^{i}$ , we have the
equations

(1.10) $\left\{\begin{array}{l}\nabla_{p}\nabla_{j}\nabla_{i}\rho^{2}=\nabla_{p}(\Phi_{2}+k\rho^{2})g_{ji},\\\nabla_{i}\nabla_{q}\nabla_{p}\rho^{2}=\nabla_{i}(\Phi_{1}-k\rho^{2})g_{qp}.\end{array}\right.$

Moreover, comparing these equations (1.10) with the derivatives of (1.8), we see
the function $\Omega$ equal to

(1.11) $\Omega=k(\Phi_{1}-\Phi_{2}-k\rho^{2})+b$ ,

$b$ being a constant. Then the equations (1.8) turn to

(1.12) $\left\{\begin{array}{l}\nabla_{j}\nabla_{i}(\Phi_{1}-k\rho^{2})=[k(\Phi_{1}-\Phi_{2}-k\rho^{2})+b]g_{ji},\\\nabla_{q}\nabla_{p}(\Phi_{2}+k\rho^{2})=[k(\Phi_{1}-\Phi_{2}-k\rho^{2})+b]g_{qp},\end{array}\right.$

Covariantly differentiating the equations (1.6, 1) in $x^{k}$ and (1.6, 3) in $y^{r}$ , we
have the equations

(1.13) $\left\{\begin{array}{l}\nabla_{k}\nabla_{j}\nabla_{i}\rho^{2}=(\nabla_{k}\Phi_{1}+k\nabla_{k}\rho^{2})g_{ji}+g_{kj}\nabla_{i}\Phi_{1}+g_{ki}\nabla_{j}\Phi_{1},\\\nabla_{r}\nabla_{q}\nabla_{p}\rho^{2}=(\nabla_{r}\Phi_{2}-k\nabla_{r}\rho^{2})g_{qp}+g_{rq}\nabla_{p}\Phi_{2}+g_{rp}\nabla_{q}\Phi_{2},\end{array}\right.$

and finally the equations
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(1.14) $\left\{\begin{array}{l}\nabla_{k}\nabla_{j}\nabla_{i}\Phi_{1}=k(2g_{ji}\nabla_{k}\Phi_{1}+g_{kj}\nabla_{i}\Phi_{1}+g_{ki}\nabla_{j}\Phi_{1}),\\\nabla_{r}\nabla_{q}\nabla_{p}\Phi_{2}=-k(2g_{qp}\nabla_{r}\Phi_{2}+g_{rq}\nabla_{p}\Phi_{2}+g_{rp}\nabla_{q}\Phi_{2}),\end{array}\right.$

in which the functions $\Phi_{1}$ and $\Phi_{2}$ can be replaced with $\Phi$ itself. The equations
(1.5) to (1.14) are extended on the closure of every component of $U$ , because of
the differentiability of $\rho$ . The constants $k,$ $C$ and $b$ might be different in every
component, however we shall see that these constants are common all over the
manifold $M$.

On the other hand, a scalar field $\rho$ in a Riemannian manifold $M$ is said to
be special concircular if it satisfies the equation of the form

(1.15) $\nabla_{\mu}\rho\lambda=(k\rho+b)g_{\mu\lambda}$ ,

$k$ and $b$ being constants. The constant $k$ is called the characteristic one of $\rho$ .
See [2] and [3] as to details on concircular scalar fields.

The trajectories of the gradient vector field $Y=(\rho^{\kappa})$ of $\rho$ are geodesics,
called $\rho$ -curves. In a neighborhood of an ordinary point of $\rho$ , there is a local
coordinate system, said to be adapted, such that the first coordinate $u$ is the
arc-length of $\rho$ -curves and $\rho$ is a function of $u$ . The metric form $ds^{2}$ of $M$ is
there given in the form

(1.16) $ds^{2}=du^{2}+\{\rho^{\prime}(u)\}^{2}\overline{ds}^{2}$ ,

where prime indicates the derivative in $u$ and $\overline{ds}^{2}$ is the metric form of an
$(n-1)$-dimensional Riemannian manifold $\overline{M}$ :

(1.17) $\overline{ds}^{2}=f_{\beta\alpha}du^{\beta}du^{\alpha}$ $(\alpha, \beta=2,3, \cdots, n)$ .
The metric tensor $g=(g_{\mu\lambda})$ has components

(1.18) $g_{11}=1$ , $g_{1\alpha}=g_{\alpha 1}=0$ , $g\beta\alpha=\rho^{\prime 2}f_{\beta\alpha}$

with respect to an adapted coordinate system, and the Christoffel symbol has
components

$\left\{\begin{array}{l}1\\11\end{array}\right\}=\left\{\begin{array}{l}\alpha\\ 11\end{array}\right\}=\left\{\begin{array}{l}1\\1\beta\end{array}\right\}=0$ ,

(1.19) $\left\{\begin{array}{l}1\\\gamma\beta\end{array}\right\}=-\rho^{\prime}\rho^{\prime\prime}f_{\gamma\beta}$ , $\left\{\begin{array}{l}\alpha\\ 1\beta\end{array}\right\}=\frac{\rho^{\prime\prime}}{\rho^{\prime}}\delta_{\beta}^{\alpha}$ ,

$\left\{\begin{array}{l}\alpha\\\gamma\beta\end{array}\right\}=\left\{\begin{array}{l}\alpha\\\gamma\beta\end{array}\right\}-$ ,

where $\left\{\begin{array}{l}\alpha\\\gamma\beta\end{array}\right\}-$ is the Christoffel symbol composed from the metric (1.17) of $\overline{M}$.
Along a $\rho$-curve, or more generally along any geodesic with arc-length $u$ , the
equation (1.15) turns to the ordinary differential equation
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$\rho^{\prime\prime}(u)=k\rho+b$ .
If there is a stationary point $0$ of $\rho,$ $Y(O)=0$ , then a geodesic hypersphere $\overline{M}$

with center $0$ is an $(n-1)$-dimensional sphere.

For a special concircular scalar field $\rho$ , we put

(I) $k=0$ , (II) $k=c^{2}$ , (m) $k=-c^{2}(c>0)$

according to the signature of $k$ in (1.15). By a suitable choice of the arc-length

$u$ of $\rho$ -curves, $\rho$ is given by

$|_{(\mathbb{I},A}^{(I,A)_{)}}(I,B)_{0}$ $\frac{1}{2}bu^{2}+au_{cu}ae-b/^{a_{C^{2}}},$

$(b\neq 0)(b=0)$

,

(1.20)

$\rho(u)=|_{(m)}^{(I,A)}(\mathbb{I},B)^{-}$
$a\cosh^{C}cu-b/ca\cos cu^{u}+b/c^{2}a\sinh-b/c_{2}^{2}$

,

where $a$ is an arbitrary constant. The present author $[2, 3]$ proved

THEOREM A. If a Riemannian manifold $M$ of dimension $n\geqq 2$ is complete

and admits a special concircular scalar field $\rho$ , then $M$ is one of the following

manifolds corresponding to the expressions (1.20) of $\rho$ :
(I, A) the product $I\times\overline{M}$ of a straight line I and a complete manifold $\overline{M}$ of

dimension $n-1$ ,

(1, B) $a$ Euclidean space,
(II, A) a pseudo-hyperbolic space of type $(\mathbb{I}, A_{0})$ or (II, $A_{-}$ ), that is, a warped

product $I\times\overline{M}$ with metric form (1.16) where $\rho$ is given by (1I, $A_{0}$) or (II, $A_{-}$ ) of
(1.20).

(II, B) a hyperbolic space of curvature $-c^{2}$ ,

(m) a sphere of curvature $c^{2}$ .

It is noted that $\rho$ has no stationary point in the cases indicated with $A$ , one
in the cases with $B$ and two in the case (m), and that $\rho$ has a zero point in
the cases $(I, A)$ and $(II, A_{-})$ .

2. Case (1) where the subset $ U=\emptyset$

Returning to our problem, we first consider the case $ U=\emptyset$ but $ V\neq\emptyset$ . By

means of Lemma 3, we may suppose $ V\cap(M-N_{1})\neq\emptyset$ , then we have the equa-

tions (1.3) and (1.4) in each connected component of $V\cap(M-N_{1})$ . By these
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equations, the associated scalar field $\rho$ is given by

(2.1) $\rho=ae^{cu}$ $(a\neq 0)$

along $\rho$ -curves lying in the part $M_{1}(P)$ through a point $P\in V\cap(M-N_{1})$ . It fol-
lows from the differentiability of $\rho$ that the equations (1.3) and (1.4) are ex-
tendable first on the part $M_{1}(P)$ , next on the closure of each component of
$V\cap(M-N_{1})$ and finally all over $M$. There is no point such that $Y_{2}\neq 0$ , that is,
we see $M=N_{2}$ . By virtue of Theorem $A$ , we can state

PROPOSITION 1. We assume that a product Riemannian manifold $M=M_{1}\times M_{2}$

is complete and a conformal diffeomorphism $f$ maps $M$ into a product Riemannian
one $M^{*}$ . In Case (1), the associated scalar field $\rho$ is given by (2.1), and the part
$M_{1}$ of dimension $n_{1}\geqq 2$ is a pseudo-hyperbolic space of type (II, $A_{0}$) with metric
form

$ds_{1^{2}}=du^{2}+e^{2cu}\overline{ds}_{1^{2}}$

where $\overline{ds}_{1^{2}}$ is the metric form of an $(n_{1}-1)$-dimensional manifold $\overline{M}_{1}$ , or $M_{1}$ is a
l-dimensional straight line $I$.

Proof of Theorem 1 in Case (1). The manifold $M^{*}$ is supposed to be com-
plete too, and $f$ to be global. The underlying manifold of $M_{1}$ is the product
$I\times\overline{M}_{1}$ and copies of $I$ in $M_{1}$ are $\rho$ -curves.

Let $\Gamma$ be a $\rho$ -curve lying on $M_{1},$ $\Gamma*the$ image $f(\Gamma)$ , and $S^{*}$ the arc-length
of $\Gamma*such$ that $s^{*}=0$ corresponding to $u=0$ . Then $S^{*}$ is related to $s$ by the
differential equation

$\frac{d_{S^{*}}}{du}=\frac{1}{\rho}=\frac{1}{a}e^{-cu}$

or, by integration, we have the inequality

$s^{*}=\frac{1}{ac}(1-e^{-cu})<\frac{1}{ac}$ .
Therefore the length of the image $\Gamma*$ is bounded as $u$ tends to the infinity
along $\Gamma$. This contradicts the globalness of $f$, see [5]. Thus Theorem 1 is
proved in this case.

3. Case (2) where the subset $ U\neq\emptyset$ and $k=0$

We shall first consider the case where the subset $U$ is not empty. The
copy of the part $M_{1}$ passing through a point $P$ will be denoted by $M_{1}(P)$ , the
union of $M_{1}(P)$ for all points $P$ of a subset $S$ by $M_{1}(S)$ , and similar notations
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will be used as to $M_{2}$ . Let $\Gamma_{1}$ and $\Gamma_{2}$ be any geodesic curves lying in $M_{1}(P)$

and $M_{2}(P)$ with arc-length $u$ and $v$ respectively. Let $U_{0}$ be an arbitrary con-
nected component of $U$ and $\overline{U}_{0}$ the closure of $U_{0}$ . Along $\Gamma_{1}$ in $M_{1}(P)\cap\overline{U}_{0}$ and
$\Gamma_{2}$ in $M_{2}(P)\cap\overline{U}_{0}$ , the equations (1.13) turn to the differential equations

(3.1) $\left\{\begin{array}{l}\frac{\partial^{3}\rho^{2}}{\partial u^{3}}=k\frac{\partial\rho^{2}}{\partial u}+3\Phi_{1}^{\prime}(u),\\\frac{\partial^{3}\rho^{2}}{\partial v^{3}}=-k\frac{\partial\rho^{2}}{\partial v}+3\Phi_{2}\prime(v),\end{array}\right.$

and the equations (1.14) to the ordinary linear differential equations

(3.2) $\Phi_{1^{\prime\prime}}(u)=4k\Phi_{1}^{\prime}(u)$ , $\Phi_{2^{M}}(v)=-4k\Phi_{2}^{\prime}(v)$ ,

where primes indicate derivatives in the indicated variables.
Let us prove the following

LEMMA 4. The subsets $N_{1}$ and $N_{2}$ are border sets in $M$ the constants $k,$ $C$

and $b$ are common to all connected components of $U$ and the equations (1.5) to

(1.14) all valid in the whole manifold $M$.

PROOF. Let $N_{1}^{0}$ and $N_{2}^{0}$ be the open kernels of $N_{1}$ and $N_{2}$ respectively.

Suppose that $N_{2}^{0}$ is not empty and $Q$ its point. Then the equation (1.10. 1) means
that, for each $p,$ $\nabla_{p}\rho^{2}$ is a special concircular scalar field in $M_{1}(Q)\cap\overline{U}_{0}$ and
identically vanishes in $M_{1}(Q)\cap\overline{N}_{2}^{0}$ . The equation (1.10, 1) holds with vanishing

right hand side in $M_{1}(Q)\cap\overline{N}_{1}^{0}$ . Since a special concircular scalar field has at

most two stationary points unless it is constant, $\nabla_{p}\rho^{2}$ should be constant and
consequently $\nabla_{p}\rho^{2}=0$ on $M_{1}(Q)$ . Hence we have $Y_{2}=(\rho^{p})=0$ in $M_{1}(\overline{N}_{2}^{0})$ , that is,
$M_{1}(\overline{N}_{2}^{0})$ is contained in $N_{2}$ and there vanish all successive derivatives of $\rho$ and
$\Phi$ in $y^{p}$ . Simlarly, $M_{2}(\overline{N}_{1}^{0})\subset N_{1}$ if $N_{1}^{0}$ is not empty.

Take an arbitrary point RE $M-M_{2}(\overline{N}_{1}^{0})$ . The intersection $M_{2}(R)\cap M_{1}(\overline{N}_{2}^{0})$ is
not emply. In order for $\rho$ to be differentiably continuable beyond the border of
$M_{2}(R)\cap M_{1}(\overline{N}_{2}^{0})$ , it follows from (3.2, 2) that $\Phi_{2}$ should be constant along any

geodesic curve lying in $M_{2}(R)$ , then from (3.1) that so be $\rho$ and $Y_{2}=0$ in $M_{2}(R)$ .
Hence $M-M_{2}(\overline{N}_{1}^{0})$ is contained in $N_{2}$ and we have $M=N_{1}\cap N_{2}$ . This contradicts
the assumption $ U\neq\emptyset$ . Thus $N_{2}$ is a border set in $M$, and similarly so is $N_{1}$ .

By the similar arguments to the above, neither the border sets $N_{1}$ nor $N_{2}$

contain points where all the successive derivatives of $\rho$ vanish. By comparison

of the equations (1.14) on the border of adjoining connected components of $U$,

the constant $k$ is common to all connected components, and so are the constants
$C$ and $b$ by means of (1.5) and (1.12). As a consequence the equations (1.5) to

(1.14) are valid over the manifold $M$. Q. E. D.
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In the remaining of this paragraph, we consider the case of $k=0$ . The
equations (1.10) and (1.13) together make a tensor equation

(3.3) $\nabla_{\nu}\nabla_{\mu}\nabla_{\lambda}\rho^{2}=g_{\nu\mu}\nabla_{\lambda}\Phi+g_{\nu\lambda}\nabla_{\mu}\Phi+g_{\mu\lambda}\nabla_{\nu}\Phi$ .

It follows from (1.11) that $\Omega=b$ , and by account of the decomposability of $\Phi$ ,

the equations (1.12) turn to the tensor equation

(3.4) $\nabla_{\mu}\nabla_{\lambda}\Phi=bg_{\mu\lambda}$ .
Furthermore this case splits to the three following cases.

(a) If $\Phi$ is constant in $M$, then the equation (3.3) is reduced to the equation

(3.5) $\nabla_{\nu}\nabla_{\mu}\nabla_{\lambda}\rho^{2}=0$ .
Now we shall prove the following

LEMMA 5. In Case (2, a) where $k=0$ and $\Phi$ is constant, we have the tensor

equation

(3.6) $\nabla_{\mu}\nabla_{\lambda}\rho^{2}=2\Phi g_{\mu\lambda}$ .

PROOF. We suppose that $M$ is a product of irreducible parts, regarding a
l-dimensional part to be irreducible. One of the parts may be $M_{1}$ . Then, by

the irreducibility, the equation (3.5) implies

$\nabla_{q}\nabla_{i}\rho^{2}=0$ , $\nabla_{j}\nabla_{i}\rho^{2}=2a_{1}g_{ji}$

in $M_{1},$ $\alpha_{1}$ being a non-zero constant. Hence $\rho^{2}$ is decomposable, and there is an
adapted coordinate system $(u^{h})$ in $M_{1}$ such that $\rho^{2}$ is expressed as

(3.7) $\rho^{2}=a_{1}(u^{1})^{2}+2\beta$ ,

where $\beta$ is a function independent of $u^{h}$ . Substituting the derivatives of the

expression (3.7) into $\rho^{2}\Phi=\rho^{2}\rho\lambda\rho^{\lambda}$ , we obtain the relation

$\Phi\{a_{1}(u^{1})^{2}+2\beta\}=a_{1}^{2}(u^{1})^{2}+\beta_{q}\beta^{q}$ ,

putting $\beta_{q}=\nabla_{q}\beta$ . Comparing the coefficients of $(u^{1})^{2}$ in the two sides, we see
$ a_{1}=\Phi$ . Applying the same argument to the irreducible parts, we obtain the

equation (3.6). Q. E. D.

The scalar field $\rho^{2}$ is of type (1, B) in (1.20). There is an adapted coord-

inate system $(u, u^{\alpha}),$ $\alpha=2,$
$\cdots,$ $n$ , in $M$ such that $\rho^{2}$ is given by

(3.8) $\rho^{2}=\Phi u^{2}$

and the metric form of $M$ by

(3.9) $ds^{2}=du^{2}+u^{2}\overline{ds}^{2}$ .
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By virtue of Theorem $A$ , we have

PROPOSITION 2, (a). In Case (2, a), under the same $assumpt\iota on$ as that of
Proposition 1, the manifold $M$ is $a$ Euclidean space and the associated scalar field
$\rho$ is given by (3.8).

Proof of Theorem 1 in Case (2, a). The associated scalar field $\rho$ vanishes
at the origin $0$ corresponding to $u=0$, and there is no conformal diffeomorphism
of $M$ onto $M*$ . The theorem is proved in this case.

(b) If $\Phi$ is not constant and $\Omega=b=0$ , then we have the equation

$\nabla_{\mu}\nabla_{\lambda}\Phi=0$

by means of (3.4). The manifold $M$ is the Riemannian product of a l-dimen-
sional manifold $M_{1}$ and an $(n-1)$-dimensional one $M_{2}$ , and there is a separate
coordinate system $(u, y^{p})$ such that $\Phi$ is expressed as
(3.10) $\Phi=2au$ ,

a being a constant.
The equation (3.3) splits into the following equations:

(3.11) $\left\{\begin{array}{l}\nabla_{1}\nabla_{1}\nabla_{1}\rho^{2}=6a, \nabla_{q}\nabla_{1}\nabla_{1}\rho^{2}=0,\\\nabla_{q}\nabla_{p}\nabla_{1}\rho^{2}=2ag_{qp},\nabla_{r}\nabla_{q}\nabla_{p}\rho^{2}=0\end{array}\right.$

with respect to the system. Since the equation (3.11, 2) implies that $\nabla_{1}\rho^{2}$ is
decomposable, we put

$\nabla_{1}\rho^{2}=\alpha(u)+\beta(y^{P})$ ,

where $\alpha$ and $\beta$ are functions of the indicated variables respectively. Substitut-
ing this expression into (3.11, 1), and integrating, we may put

$\alpha=3au^{2}+2bu$

$b$ being a constant. Then it follows from (3.11) that $\rho$ has the expression

(3.12) $\rho^{2}=au^{3}+bu^{2}+u\beta+\gamma$ ,

where $\gamma$ is a function of $y^{p}$ .
Since the squared length $\Phi$ of $Y=(\rho^{\kappa})$ is equal to

$\Phi=\rho_{1^{2}}+g^{qp}\rho_{q}\rho_{p}$

in the system $(u, y^{p})$ , we substitute (3.10) and derivatives of (3.12) into this
equation, and obtain the identity

$8au(au^{3}+bu^{2}+u\beta+\gamma)=(3au^{2}+2bu+\beta)^{2}+g^{qp}(u\beta_{q}+\gamma_{q})(u\beta_{p}+\gamma_{p})$
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putting $\gamma_{q}=\partial_{q}\gamma$ . Comparing the coefficients of $u^{4}$ , we see $a=0$ . This is a con-
tradiction and the case (b) does not occur.

(c) If $b\neq 0$ , then $\Phi$ is of type (1, B) in (1.20) and there is the same adapted

coordinate system $(u, u^{\alpha})$ as that in the case (a), and $\Phi$ is expressed as

(3.13) $\Phi=\frac{1}{2}bu^{2}+c$ ,

$c$ being a constant, and the metric form of $M$ is given by (3.9). If we denote
the metric tensor of $\overline{M}$ by $(f_{\gamma\beta})$ , then non-vanishing components of the Christoffel
symbol of $M$ with respect to the adapted coordinate system $(u, u^{\alpha})$ are

$\left\{\begin{array}{l}1\\\gamma\beta\end{array}\right\}=-uf_{\gamma\beta}$ , $\left\{\begin{array}{l}\alpha\\ 1\beta\end{array}\right\}=\frac{1}{u}\delta_{\beta}^{\alpha}$ , $\left\{\begin{array}{l}\alpha\\\gamma\beta\end{array}\right\}=\left\{\begin{array}{l}\alpha\\\gamma\beta\end{array}\right\}-$ ,

where $\{_{\gamma\beta}\overline{\alpha}\}$ is the Christoffel symbol composed from the metric tensor $f_{\gamma\beta}$ of $\overline{M}_{\sim}$

The covariant differentiation with respect to $\left\{\begin{array}{l}\alpha\\\gamma\beta\end{array}\right\}-$ will be denoted by 5.
The components of the second covariant derivative $\nabla_{\mu}\nabla_{\lambda}\rho^{2}$ are expressedj as

(3.14) $\left\{\begin{array}{l}\nabla_{1}\nabla_{1}\rho^{2}=\partial_{1}\partial_{1}\rho^{2},\\\nabla_{\beta}\nabla_{1}\rho^{2}=\partial_{\beta}\partial_{1}\rho^{2}-\frac{1}{u}\partial_{\beta}\rho^{2}.\\\nabla_{\beta}\nabla_{\alpha}\rho^{2}=\nabla_{\beta}\nabla_{\alpha}\rho^{2}+uf_{\beta\alpha}\partial_{1}\rho^{2}\end{array}\right.$

with respect to $(u, u^{\alpha})$ , and essentials of the equation (3.3) are

(3.15) $\left\{\begin{array}{l}\nabla_{1}\nabla_{1}\nabla_{1}\rho^{2}=\partial_{1}\partial_{1}\partial_{1}\rho^{2}=3bu,\\\nabla_{\beta}\nabla_{1}\nabla_{1}\rho^{2}=\partial_{\beta}\partial_{1}\partial_{1}\rho^{2}-\frac{2}{u}\nabla_{\beta}\nabla_{1}\rho^{2}=0,\\\nabla_{1}\nabla_{\beta}\nabla_{\alpha}\rho^{2}=\partial_{1}\nabla_{\beta}\nabla_{\alpha}\rho^{2}-\frac{2}{u}\nabla_{\beta}\nabla_{\alpha}\rho^{2}=bu^{3}f_{\beta\alpha},\\\nabla_{\gamma}\nabla_{\beta}\nabla_{\alpha}\rho^{2}=5_{\gamma}\nabla_{\beta}\nabla_{\alpha}\rho^{2}+uf_{\gamma\beta}\nabla_{\alpha}\nabla_{1}\rho^{2}+uf_{\gamma\alpha}\nabla_{\beta}\nabla_{1}\rho^{2}=0.\end{array}\right.$

Substituting (3.14, 2) into (3.15, 2), we see that $\partial_{1}\rho^{2}-(2/u)\rho^{2}$ is decomposable

and put in the form

(3.16) $\partial_{1}\rho^{2}-\frac{2}{u}\rho^{2}=\alpha(u)+\beta(u^{a})$ ,

$\alpha$ being a function of $u$ and $\beta$ a function of $(u^{\alpha})$ belonging to $\overline{M}$. Substituting

the third derivative of $\rho^{2}$ in $u$ into (3.15, 1), we have the equation

(3.17) $u\alpha^{\prime\prime}+2\alpha^{\prime}=3bu^{2}$ .

The solution of this equation is given by

(3.18) $\alpha=\frac{1}{4}bu^{3}+\frac{B}{u}$ ,
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where $B$ is a constant and a constant term has been transferred into $\beta$ of (3.16)

Subsituting (3.18) into (3.16) and dividing by $u^{2}$ , we have

$\partial_{1}(\frac{1}{u^{2}}\rho^{2})=\frac{1}{4}bu+\frac{B}{u^{3}}+\frac{\beta}{u^{2}}$

and consequently $\rho^{2}$ is expressed as

(3.19) $\rho^{2}=\frac{1}{8}bu^{4}-\frac{B}{2}-uB+u^{2}\gamma$ ,

$\gamma$ being a function of $u^{\alpha}$ belonging to $\overline{M}$. Taking account of the $exr$)$ressions$

$(3.14,3),$ $(3.19)$ and (3.17), we have

$\nabla_{1}\nabla_{\beta}\nabla_{a}\rho^{2}=\nabla_{\beta}\nabla_{\alpha}\beta+(bu^{3}+\beta)f_{\beta\alpha}$

and, comparing this equation with (3.15, 3),

(3.20) $\nabla_{\beta}\nabla_{\alpha}\beta=-\beta f_{\beta\alpha}$ .
Subsituting (3.14, 2), (3.14, 3) and (3.19) into (3.15, 3) and taking account of
(3.20), we see that the function $\gamma$ satisfies the equation

(3.21) $\nabla_{\gamma}\nabla_{\beta}\nabla_{a}\gamma=-(2f_{\beta a}\nabla_{\gamma}\gamma+f_{\gamma\beta}\nabla_{\alpha}\gamma+f_{\gamma\alpha}\nabla_{\beta}\gamma)$

on $\overline{M}$.
Since the squared length $\Phi$ of $Y=(\rho^{\kappa})$ is given by

$\Phi=\rho_{1^{2}}+\frac{1}{u^{2}}f^{\beta\alpha}\rho\beta\rho_{\alpha}$

with respect to the adapted coordinate system $(u, u^{\alpha})$ , we substitute (3.13) and
derivatives of (3.19) into this equation, and obtain the identity

$4(\frac{1}{8}bu^{4}-\frac{B}{2}-u\beta+u^{2}\gamma)(\frac{1}{2}bu^{2}+c)$

$=(\frac{1}{2}bu^{3}-\beta+2u\gamma)^{2}+f^{\beta a}(u\gamma_{\beta}-\beta_{\beta})(u\gamma_{\alpha}-\beta_{\alpha})$ ,

where $\beta_{a}=\partial_{\alpha}\beta$ and $\gamma_{a}=\partial_{\alpha}\gamma$ . Comparing the coefficients of $u^{4},$ $u^{3}$ and $u^{2}$ in the
both sides, we have $c=0,$ $\beta=0$ and

$-bB=4\gamma^{2}+f^{\beta\alpha}\gamma_{\beta}\gamma_{\alpha}$ .
Thus the assoiated scalar field $\rho$ is expressed as

(3.22) $\rho^{2}=\frac{1}{8b}(b^{2}u^{4}+8bu^{2}\gamma+16\gamma^{2}+4f^{\beta\alpha}\gamma_{\beta}\gamma_{\alpha})$

$=\frac{1}{8b}[(bu^{2}+4\gamma)^{2}+4f^{\beta\alpha}\gamma_{\beta}\gamma_{a}]$

by use of a solution $\gamma$ of (3.21) on $\overline{M}$.
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Since $\Phi$ satisfies the equation (3.4) with $b\neq 0$ , by virtue of Theorem $A$ , we
have the following

PROPOSITION 2, (c). In Case (2, c) under the same assumption as that of
Proposition 1, the manifold $M$ is $a$ Euclidean space and $\rho$ is given by (3.22).

Proof of Theorem 1 in Case (2, c). The squared length $\Phi$ given by (3.13)

has a staionary point $0$ corresponding to $u=0$ in $(u, u^{a})$ and the hypersurface
$\overline{M}$ is the unit hypersphere with point $0$ as center. The rays issuing from $0$

are $\rho$-curves of $\Phi$ , and the function $\gamma$ is constant on each of the rays.
Let $\Gamma$ be one of the rays and $\Gamma*the$ image $f(\Gamma)$ in $M^{*}$ . Since the con-

stant $b$ in (3.22) should be positive, we put $b=16a^{2},$ $a>0$ . We can take a value
$u_{0}$ so large that

(3.23) $\rho(u)>au^{2}$ $(u>u_{0})$

holds. The arc-length $s^{*}$ of $\Gamma*is$ related to $u$ of $\Gamma$ by the equation

$\frac{ds^{*}}{du}=\frac{1}{\rho}$ .
Denoting by $s_{0}^{*}$ the value of $S^{*}$ corresponding to $u_{0}$ and taking account of the
inequality (3.23), we obtain the inequality

$s^{*}-s_{0}^{*}<\frac{1}{a}(\frac{1}{u_{0}}-\frac{1}{u})<\frac{1}{au_{0}}$ $(u>u_{0})$ .

Hence the length of the image $\Gamma*is$ bounded as $u$ tends to the infinity. This
contradicts the globalness of $f$ . Theorem 1 is thus proved in this case.

4. Case (3) where $ U\neq\emptyset$ and $k\neq 0$ .
In this paragraph we shall consider the case where the subset $U$ is not

empty and the constant $k$ is not equal to $0$ . We may suppose $k$ is positive
without loss of generality and put $k=1$ for simplicity. Moreover this case splits
into the two following cases.

(a) If the function $\Omega$ is constant, then $\Omega$ is equal to zero as easily seen
from (1.8) and (1.11), and we have

(4.1) $\rho^{2}=\Phi_{1}-\Phi_{2}+b$ .
The square $\rho^{2}$ itself is decomposable and satisfies the equations

$\nabla_{k}\nabla_{j}\nabla_{i}\rho^{2}=2g_{ji}\nabla_{k}\rho^{2}+g_{kj}\nabla_{i}\rho^{2}+g_{ki}\nabla_{j}\rho^{2}$ ,

$\nabla_{r}\nabla_{q}\nabla_{p}\rho^{2}=-(2g_{qp}\nabla_{r}\rho^{2}+g_{rq}\nabla_{p}\rho^{2}+g_{rp}\nabla_{q}\rho^{2})$
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of the same type as the equations (1.14). The field $\rho$ is given by the expression
(4.1) in which $\Phi_{1}$ and $\Phi_{2}$ are solutions of the respective equations of (1.14).

Proof of Theorem 1 in Case (3, a). Let $\Gamma$ be a geodesic curve with arc-
length $u$ lying in the part $M_{1}(P),$ $P\in U$, and $\Gamma*the$ image $f(\Gamma)$ in $M*$ . Then;
along $\Gamma,$ $\rho^{2}$ is given by

$\rho^{2}=Ae^{2u}+Be^{-2u}+C$ ,

$A,$ $B$ and $C$ being constants. Since the arc-length $u$ of $\Gamma$ is extendable to tlle
infinities of two sides, $A$ and $B$ should be non-negative and at least one of them
be positive. Putting $A=2a^{2},$ $a>0$, we can take a value $u_{0}$ so large that

$\rho(u)>ae^{u}$ $(u>u_{0})$

holds. Using the same notations and arguments at the end of \S 3, the arc-
length $S^{*}$ of $\Gamma*is$ bounded as

$s^{*}-s_{0}^{*}<e^{-u_{0}}/a$ $(u>u_{0})$ .

This contradicts the globalness of $f$, and Theorem 1 is proved in this case.
(b) If the function $\Omega$ is not constant, then the equations (1.12) show that

$\Phi_{1}-\rho^{2}$ and $\Phi_{2}+\rho^{2}$ are special concircular scalar fields with characteristic con-
stant 1 and $-1$ in $M_{1}(P)$ and $M_{2}(P)$ passing through every point $P$ of $U$, re-
spectively. By virtue of Theorem $A$ , we have the following

PROPOSITION 3. In Case (3, b) under the same assumption as that of Pro-
position 1, the manifold $M$ is the product Riemannian manifold $M_{1}\times M_{2}$ , in which
$\Lambda f_{1}$ is a pseudo-hyperbolic space or a hyperbolic sapce and $M_{2}$ a sphere. Eilher
the part $M_{1}$ or $M_{2}$ may be a straight line.

The part $\Lambda f_{1}$ admits a special concircular scalar field $\sigma$ and an adapted co-
ordinate system $(u, u^{\alpha}),$ $\alpha,$ $\beta,$ $\gamma=2,$ $\cdots,$ $n_{1}$ , such that $u$ is the arc-length of $\rho-$

curves of $\sigma,$ $\sigma$ satisfies the equation

(4.2) $\sigma^{\prime\prime}(u)=\sigma$ ,

prime indicating derivatives in $u$ , and the metric form $ds_{1^{2}}$ of $M_{1}$ is given by

$ds_{1}^{2}=du^{2}+\sigma^{\prime 2}\overline{ds_{1}}^{2}$ ,

where $\overline{ds_{1}}^{2}=f_{\beta\alpha}du^{\beta}du^{a}$ is the metric form of an $(n_{1}-1)$-dimensional Riemannian
manifold $\overline{M}_{1}$ . By suitable choice of the arc-length $u$ of $\rho$ -curves of $\sigma$ , we take
the function

(4.3) $\sigma=e^{u}-Be^{-u}$
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as representative of $\sigma$ in $M_{1}$ . For the later use, we notice that $\sigma$ satisfies the
equations

(4.4) $\sigma^{\prime 2}-\sigma^{2}=4B$

and

(4.5) $(\sigma^{\prime\prime}/\sigma^{\prime})^{\prime}+(\sigma^{\prime\prime}/\sigma^{\prime})^{2}=1$ .
Components of the Christoffel symbol of $M_{1}$ are given by (1.19) with $\sigma$ for

$\rho$ . Then the equation (1.12, 1) splits into

(4.6) $\left\{\begin{array}{l}\partial_{1}\partial_{1}(\Phi_{1}-\rho^{2})=\Phi_{1}-\Phi_{2}-\rho^{2}+b,\\\partial^{\iota}\partial_{\beta}(\Phi_{1}-\rho^{2})-\frac{\sigma^{\prime}}{\sigma^{\prime}}\partial_{\beta}(\Phi_{1}-\rho^{2})=0,\\\nabla_{\gamma}\nabla_{\beta}(\Phi_{1}-\rho^{2})+\sigma^{\prime}\sigma f_{\gamma\beta}\partial_{1}(\Phi_{1}-\rho^{2})=(\Phi_{1}-\Phi_{2}-\rho^{2}+b)\sigma^{\prime 2}f_{\gamma\beta}.\end{array}\right.$

From (4.6, 2) we see $(\Phi_{1}-\rho^{2})/\sigma^{\prime}$ decomposable in $M_{1}$ and put

(4.7) $\Phi_{1}-\rho^{2}=\sigma^{\prime}[\alpha_{1}(u, y^{p})+\gamma(u^{\alpha}, y^{p})]$ ,

where $\alpha_{1}$ and $\gamma$ are functions dependent on the indicated variables respectively.
Substituting (4.7) into (4.6, 1) and taking account of (4.2), we have the equation

$\sigma^{\prime}\partial_{1}\partial_{1}\alpha_{1}+2\sigma^{\prime\prime}\partial_{1}\alpha_{1}=-\Phi_{2}+b$ ,

by means of which we may put

(4.8) $\sigma^{\prime 2}\partial_{1}\alpha_{1}=(-\Phi_{2}+b)\sigma+4\lambda_{2}(y^{P})$ ,

$\lambda_{2}$ being a function of $y^{p}$ . Substituting (4.7) into (4.6, 3) and using (4.4) and
(4.8), we have the equation

(4.9) $\sigma^{\prime}(\nabla_{\gamma}\nabla_{\beta}\gamma-4B\gamma f_{\gamma\beta})=4[B(\sigma^{\prime}\alpha_{1}-\Phi_{2}+b)-\sigma\lambda_{2}]f_{\gamma\beta}$ .
The expression in the parentheses in the left hand side is independent of $u$ and
the expression in the brackets in the right hand side independent of $u^{\alpha}$ . Hence,

if $B\neq 0$, then we may put

$B(\sigma^{\prime}\alpha_{1}-\Phi_{2}+b)-\sigma\lambda_{2}=B\sigma^{\prime}\mu_{2}(y^{P})$ ,

$\nabla_{\gamma}\nabla_{\beta}\gamma=4B(\gamma+\mu_{2})f_{\gamma\beta}$ ,

where $\mu_{2}$ is a function of $y^{p}$ . Substituting the expression of $\sigma^{\prime}\alpha_{1}$ obtained from
(4.7) into the first equation and putting

$\beta_{2}=\lambda_{2}/B$ , $\gamma_{1}=\gamma+\mu_{2}$ ,

we have the relation

(4.10) $\Phi_{1}-\rho^{2}=\Phi_{2}-b+\beta_{2}\sigma+\gamma_{1}\sigma^{\prime}$ ,
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where $\beta_{2}$ is a function of $y^{p},$ $\gamma_{1}$ is of $u^{\alpha}$ and $y^{p}$ , and satisfies the equation

\langle 4.11) $\nabla_{\gamma}\nabla_{\beta}\gamma_{1}=4B\gamma_{1}f_{\gamma\beta}$ .
By similar arguments, the part $M_{2}$ admits a special concircular scalar field

$\tau$ satisfying the equation

(4.12) $\tau^{\chi}(v)=-\tau$

in the arc-length $v$ of $\rho$ -curves of $\tau$ , and an adapted coordinate system $(v, v^{\xi})$ ,
$\xi,$

$\eta,$ $\zeta=n_{1}+2,$ $\cdots,$ $n$ , where the metric form $ds_{2}^{2}$ of $M_{2}$ is of the form

$ds_{2}^{2}=dv^{2}+\tau^{\prime 2}\overline{ds_{2}}^{2}$

and $\overline{ds_{2}}^{2}=f_{\eta\xi}dv^{\eta}dv^{\xi}$ is the metric form of an $(n_{2}-1)$-dimensional Riemannian
manifold $\overline{M}_{2}$ . We take the function

(4.13) $\tau=-\cos v$

as representative of $\tau$ in $M_{2}$ . We can obtain the relation

(4.14) $\Phi_{2}+\rho^{2}=\Phi_{1}+b+\beta_{1}\tau+\gamma_{2}\tau^{\prime}$ ,

where $\beta_{1}$ is a function of $x^{h},$
$\gamma_{2}$ is of $x^{h}$ and $v^{\xi}$ , and satisfies the eqaution

(4.15) $\nabla_{\eta}\nabla_{\xi}\gamma_{2}=-\gamma_{2}f_{\eta\xi}$ .
Comparing the relations (4.10) and (4.14) and taking account of linear in-

dependence among $\sigma,$
$\sigma^{\prime},$ $\tau$ and $\tau^{\prime}$ , we can see that $\rho^{2}$ is expressed in the form

(4.16) $\rho^{2}=\Phi_{1}-\Phi_{2}+b+(A\tau+\beta\tau^{\prime})\sigma+(\alpha\tau+\gamma\tau^{\prime})\sigma^{\prime}$ ,

where $A$ is a constant, $\alpha$ a function of $u^{a},$ $\beta$ one of $v^{\xi}$ and $\gamma$ one of $u^{\alpha}$ and $v^{\xi}$,

and they satisfy the equations

$\nabla_{\gamma}\nabla_{\beta}\alpha=4B\alpha f_{\gamma\beta}$ , $\nabla_{\gamma}\nabla_{\beta}\gamma=4B\gamma f_{\gamma\beta}$ ,

$\nabla_{\eta}\nabla_{\xi}\beta=-\beta f_{\eta\xi}$ , $\nabla_{\eta}\nabla_{\xi}\gamma=-\gamma f_{\eta\xi}$

respectively.
If $B=0$ in (4.3), or $\sigma=e^{u}$ , then the equation (4.8) turns to

$\partial_{1}\alpha_{1}=-(\Phi_{2}-b)e^{-u}+4\lambda_{2}e^{-2u}$

and the solution is given by

$\alpha_{1}=(\Phi_{2}-b)e^{-u}-2\lambda_{2}e^{-2u}+\mu_{2}(y^{p})$ ,

$\mu_{2}$ being a function of $y^{p}$ . Substituting this expression into (4.7), we have the
relation

(4.17) $\Phi_{1}-\rho^{2}=\Phi_{2}-b-2\lambda_{2}e^{-u}+\gamma_{1}e^{u}$ ,
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where $\gamma_{1}$ is defined by $\gamma_{1}=\gamma+\mu_{2}$ and satisfies the equation

(4.18) $5_{\gamma}\overline{\nabla}_{\beta}\gamma_{1}=-4\lambda_{2}f_{\gamma\beta}$

as seen from (4.9). On the other hand, we have again the relations (4.14), and,

by comparing this relation with (4.17), see that $\rho^{2}$ is expressed in the form

(4.19) $\rho^{2}=\Phi_{1}-\Phi_{2}+b+(A\tau+\beta\tau^{\prime})e^{-u}+(\alpha\tau+\gamma\tau^{\prime})e^{u}$ .

The functions $A,$ $\alpha,$ $\beta$ and $\gamma$ are of the same properties as those in (4.16) but $\alpha$

and $\gamma$ satisfy the equations of type (4.18) in $\overline{M}_{1}$ .
Next we shall seek for the expressions of $\Phi_{1}$ and $\Phi_{2}$ . The equation (1.14, 1)

splits into the four essential equations

$|^{\nabla\nabla\nabla\Phi=\partial\partial\partial\Phi=4\partial_{1}\Phi_{1}}\nabla_{\beta}^{1}\nabla^{1_{1}}\nabla^{1_{1}}\Phi^{1_{1}}=\partial_{\beta}^{1}\partial_{1}^{1}\partial_{1}^{1}\Phi_{1}^{1}-2\frac{\sigma^{\prime}}{\sigma^{\prime}}\nabla_{\beta}\nabla_{1}\Phi_{1}=2\partial_{\beta}\Phi_{1}$ ,

(4.20)

$\downarrow\nabla_{\gamma}\nabla_{\beta}^{\beta}\nabla^{\alpha}\Phi_{1}=\nabla_{\gamma}^{1}\nabla^{\beta_{\beta}}\nabla^{\alpha_{\alpha}}\Phi+\sigma’\sigma^{\prime}f^{\beta_{\gamma\beta}}\nabla_{\alpha}^{\alpha}\nabla_{1}^{1}\Phi+^{J2}\sigma’\sigma f_{\gamma\alpha}^{1}\nabla_{\alpha}\nabla_{1}\Phi_{1}$

$=\sigma^{\prime 2}(2f_{\beta\alpha}\nabla_{\gamma}\Phi_{1}+f_{\gamma\beta}\nabla_{\alpha}\Phi_{1}+f_{\gamma\alpha}\nabla_{\beta}\Phi_{1})$

with respect to the adapted system $(u, u^{\alpha})$ in $M_{1}$ . Substituting the expression

$\nabla_{\beta}\nabla_{1}\Phi_{1}=\partial_{\beta}\partial_{1}\Phi_{1}-\frac{\sigma^{\prime\prime}}{\sigma^{\prime}}\partial_{\beta}\Phi_{1}$

into (4.20, 2) and using the relation (4.5), we may put

(4.21) $\partial_{1}\Phi_{1}-2\frac{\sigma^{\prime\prime}}{\sigma\prime}\Phi_{1}=\varphi_{1}+2\psi_{1}$ ,

where $\varphi_{1}$ is a function of $u$ and $\psi_{1}$ of the other $u^{\alpha}$ in $M_{1}$ . By means of (4.4),

the third derivative of $\Phi_{1}$ in $u$ is equal to

$\partial_{1}\partial_{1}\partial_{1}\Phi_{1}=4\partial_{1}\Phi_{1}+2\frac{\sigma^{\prime\prime}}{\sigma^{\prime}}\varphi_{1}^{\prime}+\varphi_{1}^{\prime\prime}$ .

Therefore it follows from (4.20, 1) that $\varphi_{1}^{\prime}$ is expressed as

$\varphi_{1}^{\prime}=\frac{8C_{1}}{\sigma^{2}}$

$C_{1}$ being a constant. Substituting the expression (4.3), the function $\varphi_{1}$ is given by

(4.22) $\varphi_{1}=\frac{-4C_{1}}{e^{2u}+B}$

where the integral constant has been transferred into $\psi_{1}$ . By integration of (4.21)

substituted with (4.22), the function $\Phi_{1}$ is given by
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(4.23) $\Phi_{1}=\omega_{1}(e^{u}+Be^{-u})^{2}-\psi_{1}+(C_{1}-B\psi_{1})e^{-2u}$ ,

where $\omega_{1}$ is a function of $u^{\alpha}$ belonging to $\overline{M}_{1}$ . Substituting this expression into
(4.20, 3) and (4.20, 4), we see the functions $\psi_{1}$ and $\omega_{1}$ satisfying the equations

$\nabla_{\beta}\nabla_{\alpha}\psi_{1}=4(B\psi_{1}-C_{1})f_{\beta\alpha}$

and
$\nabla_{\gamma}\nabla_{\beta\alpha}\nabla\omega_{1}=4B(2f_{\beta a}\partial_{\gamma}\omega_{1}+f_{\gamma\beta}\partial_{\alpha}\omega_{1}+f_{\gamma\alpha}\partial_{\beta}\omega_{1})$

$-2(f_{\beta\alpha}\partial_{\gamma}\psi_{1}+f_{\gamma\beta}\partial_{\alpha}\psi_{1}+f_{\gamma\alpha}\partial_{\beta}\psi_{1})$

on $\overline{M}_{1}$ respectively.
By similar arguments to those on $\Phi_{1}$ , the part $\Phi_{2}$ of $\Phi$ is expressed as

(4.24) $\Phi_{2}=C_{2}-2\psi_{2}\sin v\cos v+\omega_{2}\sin^{2}\iota$)

with respect to the adapted coordinate system $(v, v^{\xi})$ in $M_{2}$ , where $C_{2}$ is a con-
stant, $\psi_{2}$ and $\omega_{2}$ are functions of $v^{\xi}$ of $\overline{M}_{2}$ and satisfy the equations

$\nabla_{\eta}\nabla_{\xi}\psi_{2}=-\psi_{2}f_{\eta\xi}$

and
$\nabla_{\zeta}\nabla_{\eta}\nabla_{\xi}\omega_{2}=-(2f_{\eta\xi}\partial_{\zeta}\omega_{2}+f_{\zeta\eta}\partial_{\xi}\omega_{2}+f_{\zeta\xi}\partial_{\eta}\omega_{2})$

on $\overline{M}_{2}$ respectively.
Thus the associated scalar field $\rho$ has the expression (4.16) or (4.19) with $\sigma$ ,

$\tau,$
$\Phi_{1}$ and $\Phi_{2}$ given by (4.3), (4.13), (4.23) and (4.24) respectively.

Proof of Theorem 1 in Case (3, b). Let $P$ be a point of $U,$ $\Gamma$ an arbitrary

$\rho$-curve of $\sigma$ which lies in $M_{1}(P)$ , and $\Gamma*$ the image $f(\Gamma)$ of $\Gamma$ in $M*$ . The

coefficients $A,$ $\alpha,$ $\beta,$
$\gamma$ in (4.16) or (4.19), $\psi_{1},$ $\omega_{1}$ in (4.23) and $\psi_{2},$ $\omega_{2}$ in (4.24) are

all constant on $\Gamma$. The function $\Phi_{1}$ is of the second order in $e^{u}$ and $e^{-u}$ , and

the other terms in (4.16) or (4.19) are of less order. The value of $\omega_{1}$ on $\Gamma$

should not be negative for $\rho^{2}>0$ for any value of $u$ .
If $\omega_{1}\neq 0$ on $\Gamma$ and we put $\omega_{1}=2a^{2}$ , then we can take a value $u_{0}$ so large that

$\rho>ae^{u}$

for $u>u_{0}$ . By the same argument as that in Case (3, a), we can see that the
length of the image $\Gamma*is$ bounded as $u$ tends to the infinity. This contradicts

the globalness of $f$.
If $\omega_{1}$ identically vanishes, then the coefficient $C_{1}-B\psi_{1}$ of $e^{-2u}$ should not be

negative. If $C_{1}-B\psi_{1}>0$ , we can apply the similar argument to this case and

yield a contradiction.
If $C_{1}-B\psi_{1}=0$ everywhere, then $\psi_{1}$ is constant and so is $\Phi_{1}$ in $M$. Then, in

order for $\rho^{2}>0$ everywhere, the coefficients

$-A\cos v+\beta\sin v$ and $-\alpha\cos v+\gamma\sin v$
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in (4.16) or (4.19) should be always positive, but it cannot occur.
As consequence of discussions in three Cases (1), (2) and (3), we have com-

pleted a proof of Theorem 1.
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