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Abstract. In the problem of estimating the covariance matrix of a
multivariate normal population James and Stein (1961) obtained a

minimax estimator by considering the best invariant estimator with
respect to the triangular group. In this paper we propose an orthog-

onally invariant estimator obtained by averaging the minimax esti-

mator with respect to the invariant measure on the orthogonal group.

Explicit forms of the proposed estimator are given for dimensions 2

and 3. Risk is evaluated for various population covariance matrices

and it shows a substantial improvement over the minimax estimator

for a wide range of population covariance matrices.

\S 1. Introduction.

In the problem of estimating the covariance matrix of a multivariate normal

population the usual estimator is the sample covariance matrix $S=A/n$ where $A$

is distributed according to the Wishart distribution $\wp(\Sigma, n)$ . Although $S$ is un-

biased it is known that the (sample) characteristic roots of $S$ tend to be more
spread out than the corresponding (population) roots of $\Sigma$ . This can be seen as
follows. Let $\lambda_{1}$ be the largest characteristic root of $\Sigma$ and $\xi$ be an associated unit

characteristic vector, then $\xi^{\prime}S\xi$ is unbiased for $\lambda_{1}$ . Let $l_{1}$ be the largest sample

root, then
$\mathcal{E}(l_{1})=\mathcal{E}(\max_{x^{\prime}x=1}x^{\prime}Sx)\geqq \mathcal{E}(\xi^{\prime}S\xi)=\lambda_{1}$ .

See Van der Vaart (1961), Anderson (1963). Similarly for the smallest root $\lambda_{p}$ ,

$l_{p}$ of $\Sigma,$ $S$ , respectively, we have $\mathcal{E}(l_{p})\leqq\lambda_{p}$ . It is these implicit maximization

and minimization processes for each observed $S$ that makes the sample roots

more spread out than the population roots. Actually in terms of majorization

the following holds: $(\mathcal{E}(l_{1}), \cdots, \mathcal{E}(l_{p}))$ majorizes $(\lambda_{1}, \cdots. \lambda_{p})$ . See Chapter 12, Sec-

tion $E$ of Marshall and Olkin (1979).
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The above consideration suggests that we shrink the sample roots toward a
middle value. This is analogous to the Stein-type estimation of a multivariate
normal mean vector. Earlier works along this direction can be found in Stein
(1975), Efron and Morris (1976), Haff $(1977, 1979a, b, 1980)$ , Eaton (1970), Sugiura
and Fujimoto (1982) and others.

Another approach was taken in Stein (1956), James and Stein (1961), Selliah
(1964), and Olkin and Selliah (1977). They are concerned with minimax estima-
tion of the covariance matrix. Minimax estimators can be obtained by considering
the best invariant estimator with respect to the triangular group $G_{T}^{+}$ (the group
consisting of lower triangular matrices with positive diagonal elements). An
unappealing property of these estimators is that they depend on the coordinate
system.

In this paper we propose an orthogonally invariant minimax estimator which
is derived from the minimax estimators above by averaging them. The idea of
averaging already appears in Stein (1956) and the specific estimator proposed

below is briefly mentioned in Eaton (1970) (his formula 3.6). But it seems to

have never been studied carefully.
In Section 2 we derive the estimator and study its properties. Details of

computation are given in Section 4. For dimensions 2 and 3 the estimator is
given explicitly. For larger dimensionalities the explicit integration involved
seems formidable. The Monte Carlo method is always available, but some good
approximation is desirable. In Section 3 we study the risk behavior of the esti-
mator. If the number of degrees of freedom is not too large compared to the
dimensionality, it shows a substantial improvement over the minimax estimator
mentioned above for a wide range of population covariance matrices.

\S 2. Derivation of the estimator.

Consider the problem of estimating $\Sigma$ with the following loss functions:

$L_{1}(\Sigma,\hat{\Sigma})=tr(\hat{\Sigma}\Sigma^{-1})-\log\det(\hat{\Sigma}\Sigma^{-1})-p$ ,
(2.1)

$L_{2}(\Sigma,\hat{\Sigma})=tr(\hat{\Sigma}\Sigma-1-I)^{2}$ .
The best scalar multiples of $A$ for these loss functions have constant risk, but
they are not minimax. Minimax estimators were obtained by considering the
best invariant estimator with respect to $G_{T}^{+}$ . They are of the form

(2.2) $\hat{\Sigma}(A)=TDT^{\prime}$ ,

where $D=diag(d_{1}, \cdots , d_{p})$ and $T\in G_{T}^{+}$ with $TT^{\prime}=A$ .
For $L_{1}$
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(2.3) $d_{\dot{t}}=\frac{1}{n+p+1-2i}$ , $i=1,$ $\cdots,$ $p$ .

See Stein (1956), James and Stein (1961). For $L_{2}$ see Selliah (1964), Olkin and

Selliah (1977).

Note that for $L_{1}$ we have $d_{1}<\cdots<d_{p}$ . The same ordering seems to hold
for $L_{2}$ as well. This causes a rather unpleasant asymmetry of the estimator:
the first few rows and columns become smaller compared to others. This asym-
metry leads to the idea of symmetrizing the estimator by averaging over different

coordinates. Let $\Gamma$ be an orthogonal matrix corresponding to a change of ortho-

normal basis. Applying (2.2) in the new coordinate system we obtain $\hat{\Sigma}_{\Gamma}=$

$\Gamma T_{\Gamma}DT_{\Gamma}^{\prime}\Gamma^{\prime}$ where $ T_{\Gamma}T_{\Gamma}^{\prime}=\Gamma^{\prime}A\Gamma$
$\hat{\Sigma}_{\Gamma}$ has the same constant risk as $\hat{\Sigma}$ . Now

let $\mu$ be a probability distribution on $o(p)$ , the group of $p\times p$ orthogonal matrices.
An improved estimator can be obtained by averaging:

(2.4) $\mathcal{Z}_{\mu}(A)=\int_{0(p)}\Gamma T_{\Gamma}DT_{\Gamma}^{\prime}\Gamma^{\prime}d\mu(\Gamma)$ .

Note that $\hat{\Sigma}_{\mu}$ is minimax being an improvement over a minimax estimator. In-
teresting cases are (i) $\mu$ : the uniform distribution of permutation matrices, (ii)

$\mu$ : the uniform distribution (Haar measure) on $0(p)$ . These cases are briefly

mentioned in Stein (1956, formula 4.13), Eaton (1970, formula 3.6), respectively.

See Sharma (1980) too.
For this paper we consider the uniform distribution on $O(p)$ and study the

resulting estimator:

(2.5) $\hat{\Sigma}_{0}(A)=\int_{o(p)}\Gamma T_{\Gamma}DT_{\Gamma}^{\prime}\Gamma^{\prime}d\Gamma$ .

Note that $\hat{\Sigma}_{0}(A)$ is orthogonally invariant. Hence $\hat{\Sigma}_{0}$ modifies only the character-

istic roots of $A$ . Define $\phi_{1},$ $\cdots,$ $\phi_{p}$ by

(2.6) diag $(\phi_{1}(\alpha), \cdots, \phi_{p}(\alpha))=\hat{\Sigma}_{0}(diag(\alpha_{1}, \cdots, \alpha_{p}))$ ,

where $\alpha=(\alpha_{1}, \cdots, \alpha_{p})$ . We are interested in the behavior of $\phi_{1},$ $\cdots,$ $\phi_{p}$ . We
will see the shrinking of the roots mentioned in the introduction. Let us look
at the simplest case $p=2$ .

THEOREM 2.1. For $p=2$

$\phi_{1}(\alpha_{1}, \alpha_{2})=\alpha_{1}c_{1}=\alpha_{1}(-\frac{\sqrt{\alpha_{1}}}{\sqrt{}\alpha_{1}+\sqrt{}\alpha_{2}}d_{1}+\frac{\sqrt{\alpha_{2}}}{\sqrt{\alpha_{1}}+\sqrt{\alpha}^{-}}d_{2})$ ,

(2.7)
$\phi_{2}(\alpha_{1}, \alpha_{2})=\alpha_{2}c_{2}=\alpha_{2}(\frac{\sqrt{\alpha_{2}}}{\sqrt{\alpha_{1}}+\sqrt{\alpha_{2}}}d_{1}+\frac{\sqrt{\alpha_{1}}}{\sqrt{\alpha_{1}}+\sqrt{\alpha}2}d_{2})$ .
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Note that as $\alpha_{1}/\alpha_{2}$ approaches $\infty,$ $\phi_{1}\sim\alpha_{1}d_{1},$ $\phi_{2}\sim\alpha_{2}d_{2}$ . Now for $L_{1}$ we have
$d_{1}=1/(n+1)<1/n<d_{2}=1/(n-1)$ . This shows that if $\alpha_{1}\gg\alpha_{2}$ then the larger root

is shrunk and the smaller root is expanded relative to the unbiased case $S=A/n$ .
When $\alpha_{1}=\alpha_{2}=\alpha$ then $\phi_{1}=\phi_{2}=\alpha(d_{1}+d_{2})/2$ . The shrinking factors $c_{1},$ $c_{2}$ change

smoothly between these two cases.
For $p=3$ the integration over 0(3) is already tedious. We give an infinite

series expression for $\phi_{1},$ $\phi_{2},$ $\phi_{3}$ . Convergence is reasonably fast but the form of
the series is not very revealing. Let $(a)_{k}=a(a+1)\cdots(a+k-1)$ and let

$F_{1}(a;b, b^{\prime} ; c;x, y)=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(a)_{m+n}(b)_{m}(b^{\prime})_{n}}{m!n!(c)_{m+n}}x^{m}y^{n}$

be Appell’s hypergeometric function of two variables. Furthermore for conveni-
ence let $H(b, b^{\prime} ; c;x, y)=F_{1}(1;b/2, b^{\prime}/2;c/2;x, y)$ .

THEOREM 2.2. Let $p=3$ and $0\leqq\alpha\leqq\beta<1$ . Then

(2.8) $\phi_{1}(1,1-\alpha, 1-\beta)$

$=d\frac{1+d_{2}+d_{3}}{3}-\frac{(d_{3}-d_{1})(\alpha+\beta)}{15}-\frac{d_{2}-d_{1}}{3}H(1,1;5;\alpha, \beta)$

$-\frac{d_{3}-d_{2}}{105(1-\alpha)}\{(\alpha-\beta)^{2}H(3;3;9;\beta, \gamma)+3\alpha^{2}(1-\beta)H(5;3;9;\beta, \gamma)$

$+3\beta^{2}(1-\alpha)H(5,1;9;\beta, \gamma)\}$ ,
where $\gamma=(\beta-\alpha)/(1-\alpha)$ ,

(2.9) $\phi_{2}(1,1-\alpha, 1-\beta)$

$=\frac{d_{1}+d_{2}+d_{3}}{3}-\frac{\alpha}{15}(7d_{1}+5d_{2}+3d_{3})-- 1^{\frac{\beta}{5}}(d_{3}-d_{1})$

$-\frac{d_{2}-d_{1}}{105}\{3\alpha^{2}H(3,1;9;\alpha, \beta)+2\alpha(\alpha-\beta)H(3,3;9;\alpha, \beta)$

$+3(\alpha-\beta)^{2}H(3,5;9;\alpha, \beta)\}$

$-\frac{d_{8}-d_{2}}{105(1-\alpha)}\{3(\alpha-\beta)^{2}H(1,5;9;\beta, \gamma)+3a^{2}(1-\beta)H(3,5;9;\beta, \gamma)$

$+\beta^{2}(1-\alpha)H(3,3;9;\beta, \gamma)\}$ ,

(2.10) $\phi_{3}(1,1-\alpha, 1-\beta)=(1-\beta)\{d_{1}+d_{2}+d_{3}-\phi_{1}-\phi_{2}/(1-\alpha)\}$ .

Note that these formulas suffice for all cases because the estimator is in-
variant with respect to scale change and permutation of roots.

Although it is difficult to see from these expressions, the shrinking of the
roots becomes apparent when values of $(\phi_{1}, \phi_{2}, \phi_{3})$ are computed for various
choices of $\alpha$ and $\beta$ .
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For general dimension $p,$ $p(p-1)/2$-fold integration is involved. Although
infinite series expression as in Theorem 2.2 is always possible in principle, it
will be complicated and convergence might be slow. Then a Monte Carlo method
can be used. We will discuss this in Section 3 and Section 4. Here we give a
qualitative description of the estimator. Note that $D$ can be written as $D=$

$d_{1}E_{11}+\cdots+d_{p}E_{pp}$ where $E_{ii}$ has 1 in $(i, i)$-th position and $0$ everywhere else.
Putting this into (2.5) we see that $\phi_{1},$ $\cdot$ . . , $\phi_{p}$ are linear in $d_{1},$

$\cdots,$
$d_{p}$ . Therefore

we can write

(2.11) $\phi_{i}(\alpha)=\alpha_{i}c_{i}=\alpha_{i}(w_{i1}d_{1}+\cdots+w_{ip}d_{p})$ , $i=1,$ $\cdots$ , $p$ .
Let $W(\alpha)=(w_{ij}(\alpha))$ .

THEOREM 2.3. $W(\alpha)$ is doubly stochastic, namely $w_{ij}\geqq 0,$
$\sum_{j}w_{ij}=1,$ $\sum_{i}w_{ij}=1$ .

PROOF. It is easy to show that

(2.12) $\alpha_{i}w_{ij}=\int(\Gamma T_{\Gamma})_{ij}^{2}d\Gamma$ .

Hence $w_{ij}\geqq 0$ . Considering the special case $D=I$ proves $w_{i1}+\cdots+w_{ip}=1,$ $i=$

$1,$
$\cdots,$ $p$ . $\sum_{i}w_{ij}=1$ is a consequence of the following lemma.

LEMMA 2.1.

(2.13) $tr(\hat{\Sigma}_{0}(A)A^{-1})=trD$ .

Proof is straightforward and omitted.

\S 3. Risk.

For $L_{1}$ the risk can be evaluated in the following fairly simple form and
gives a nice qualitative understanding of its behavior.

THEOREM 3.1.

(3.1) $R_{1}(\Sigma,\hat{\Sigma}_{0})=\mathcal{E}\{L_{1}(\Sigma,\hat{\Sigma}_{0}(A))\}$

$=-\sum_{i=1}^{p}\mathcal{E}\log c_{i}(\alpha)-p\log 2-\sum_{i=1}^{p}\psi(\frac{n+1-i}{2})$ .

where $c_{i}(\alpha)s$ are the shrinking factors and $\psi(a)=\Gamma^{\prime}(a)/\Gamma(a)$ .

PROOF. We look at tr $\Sigma- 1\hat{\Sigma}$ term first.

(3.2) $\mathcal{E}_{\Sigma}$ {tr $\Sigma- 1\hat{\Sigma}_{0}$ } $=\mathcal{E}_{\Sigma}(tr\Sigma- 1\int\Gamma T_{\Gamma}DT_{\Gamma}^{\prime}\Gamma^{\prime}d\Gamma)$
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$=\int \mathcal{E}_{\Sigma*}(tr\Sigma*- 1TDT^{\prime})d\Gamma$

$=\int \mathcal{E}_{I}(trT^{\prime}TD)d\Gamma$

$=\sum_{i=1}^{p}d_{i}\mathcal{E}x_{n+p- 2i+1}^{2}$

$=p$ .

where $\Sigma*_{=\Gamma^{\prime}\Sigma\Gamma}$ The rest of the proof is straightforward.

COROLLARY 3.1.

(3.3) $\Sigma\log d_{i}\leqq\Sigma\log c_{i}\leqq p\log(\Sigma d_{i}/p)$ ,

hence

(3.4) $-p\log(\frac{\sum d_{i}}{p})-p\log 2-\sum\psi(\frac{n+1-i}{2})\leqq R_{1}(\Sigma,\hat{\Sigma}_{0})$

$\leqq-\Sigma\log d_{i}-p\log 2-\Sigma\psi(\frac{n+1-i}{2})$ .

PROOF. We use the concavity of $\log$ and Jensen’s inequality.

(3.5) $\frac{1}{p}\Sigma\log c_{i}\leqq\log(\Sigma c_{i}/p)=\log(\Sigma d_{i}/p)$ .

This proves the second inequality of (3.3). Now

(3.6) $\log c_{i}=\log(w_{i1}d_{1}+\cdots+u_{ip}d_{p})\geqq\sum_{j}w_{ij}\log d_{!}$ .

Adding over different $i$ we obtain

2 $\log c_{i}\geqq\sum_{i.j}w_{ij}\log d_{j}=\sum_{j}\log d_{j}$ .

This proves the first inequality.

It can be easily shown that the right hand side of (3.4) is the minimax risk:
$R_{1}(\Sigma, TDT^{\prime})$ . The left hand side of (3.4) gives an absolute bound for the im-
provement by using $\hat{\Sigma}_{0}$ . This bound is attained if (3.5) holds with equality, $i.e$ .
if $c_{1}=\cdots=c_{p}$ . This happens when $\alpha_{1}=\cdots=\alpha_{p}$ . Therefore we expect that the
largest improvement occurs when $\Sigma=I$. Now since $\hat{\Sigma}_{0}$ is minimax, its risk has
to approach the minimax risk for some $\Sigma$ . This corresponds to having the
equality in (3.6) for all $i$. This implies that $W(\alpha)$ in Theorem 2.3 is a permuta-

tion matrix. In the 2-dimensional case this happens when $\alpha_{1}/\alpha_{2}\rightarrow\infty$ . In general

dimensions it is not easy to say when $W(\alpha)$ approaches a permutation matrix but
we expect that it corresponds to the case of extreme singularity of $A$ . Here we
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present some Monte Carlo results to illustrate these points.
First consider the case $\Sigma=I$ . For $p=2$ and $p=5$ and for selected values of

$n$ we list risk of $S$ , minimax risk, risk of $\hat{\Sigma}_{0}$ , and the lower bound given in
(3.4). The number in parentheses after the minimax risk is its percentage to

the risk of $S$ . The other numbers in parentheses are percentages to the mini-

max risk.
$p=2$

$n$ $R_{1}(S)$ minimax $R_{1}(\hat{\Sigma}_{0})$ lower $bd$ .
2 2.54 2.25(88.7) 2.07(91.8) 1.97(87.2)

3 1.35 1.23(91.3) 1.14(92.5) 1.12(90.5)

4 . 927 . $862(93.0)$ . $808(93.7)$ . $798(92.5)$
6 . 571 . $543(95.1)$ . $518(95.3)$ . $515(94.8)$

10 . 324 . $314(96.9)$ . $304(97.0)$ . $304(96.8)$
15 . 210 . $206(97.9)$ . $202(97.9)$ . $201(97.8)$

$p=5$

$n$ $R_{1}(S)$ minimax $R_{1}(\hat{\Sigma}_{0})$ lower $bd$ .
5 5.96 4.76(79.9) 3.9 (82) 3.06(64.2)

6 3.99 3.28(82.3) 2.73(83.2) 2.41(73.5)

8 2.52 2.17(86.0) 1.88(86.4) 1.78(82.0)

10 1.87 1.65(88.5) 1.47(88.7) 1.43(86.2)

15 1.14 1.05(92.0) .970(92.1) .959(91.1)

The following serves as a concise summary: (when $\Sigma=I$) the ratio of the
risk of $\hat{\Sigma}_{0}$ to the minimax risk is roughly equal to the ratio of the minimax risk
to the risk of $S$ . Also note that the absolute lower bound is realistic for $n$ not

too close to $p$ . These observations hold in our other Monte Carlo results as well.
The remaining question is how $\Sigma$ should be close to being singular for the

risk to approach the minimax risk.
For $p=2$, the risk depends only on the ratio of two population roots, say,

$\lambda=\lambda_{1}/\lambda_{2}(\lambda_{1}\leqq\lambda_{2})$ . The following table gives values of the risk for $n=2,7,$ $\lambda^{1/4}$

$=.2,$ $.4,$
$\cdots,$

$1.0$ . % means percentage of the risk to the minimax risk.

$n=2$ $n=7$

$\lambda$ risk % $\lambda$ risk %

1.0000 2.069 91.8 1.0000 0.4400 95.9
0.4096 2.076 92.1 0.4096 0.4409 96.1
0.1296 2.100 93.2 0.1296 0.4439 96.7
0.0256 2.147 95.3 0.0256 0.4496 97.9
0.0016 2.212 98.2 0.0016 0.4559 99.3
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We see that the risk approaches the minimax risk only when $\Sigma$ is very
close to singular. This is a real advantage of using $\hat{\Sigma}_{0}$ . From our other Monte
Carlo results the above seems to hold for general $p$ , namely, $\hat{\Sigma}_{0}$ is a substantial
improvement over the constant risk minimax estimator for wide range of popu-
lation covariance matrices.

\S 4. Proofs and some computational details.

We are going to give some details of the derivation of Theorems 2.1 and 2.2.
First we note the following.

LEMMA 4.1.

(4.1) $\hat{\Sigma}_{0}(A)=2\int_{1}\Gamma_{|=1}\Gamma T_{\Gamma}DT_{\Gamma}^{\prime}\Gamma^{\prime}d\Gamma$ .

PROOF OF THEOREM 2.1. By Lemma 4.1 we can represent the uniform dis-
tribution on $O(2)$ by

(4.2) $\left(\begin{array}{llll}cos & \theta & -sin & \theta\\sin & \theta & cos & \theta\end{array}\right)$ ,

where $\theta$ is uniformly distributed on $[0,2\pi]$ . Since $W$ is doubly stochastic we
only need to calculate $w_{22}(\alpha_{1}, \alpha_{2})=w_{22}(\alpha_{1}/\alpha_{2},1)$ . Let $\alpha=\alpha_{1}/\alpha_{2}$ and $A=diag(\alpha, 1)$ .
Then by (2.12)

(4.3) $ w_{22}=\int(\Gamma T_{\Gamma})_{22}^{2}d\Gamma=\int\Gamma_{22}^{2}T_{\Gamma 22}^{2}d\Gamma$ .

Let $\Gamma^{\prime}$ be given by (4.2). Then it is easy to obtain $T_{\Gamma 22}=\sqrt{\alpha}/$ $a\sqrt{\cos^{2}\theta+\sin^{2}\theta}$ .
Hence

(4.4) $ w_{22}=\frac{1}{2\pi}\int_{0}^{2\pi}\frac{\alpha\cos^{2}\theta}{\alpha\cos^{2}\theta+\sin^{2}\theta}d\theta$

$=-\frac{\sqrt{}\alpha}{\alpha+1}\sqrt{}$

PROOF OF THEOREM 2.2. We show only some essential steps in the deriva-
tion of (2.8) and (2.9). (2.10) is a consequence of Lemma 2.1. Because of the
scale invariance we can set $D=diag(1-e-d, 1-e, 1)$ without loss of generality
Let $\Gamma^{\prime}=(g_{ij})_{1\xi i.j\xi 3}$ . Then

(4.5) $B=(b_{ij})=\Gamma^{\prime}A\Gamma=(-\alpha g_{12}g_{32}-\beta g_{1^{1\$}}g_{\theta 3}1-\alpha g_{22}^{2}-\beta g_{28}^{2}-\alpha g^{12}g^{2^{2}2}-\beta gg^{23}-\alpha g_{22}g_{32}-\beta g_{23}g_{33}1-\alpha g_{12}-\beta g_{13}^{2_{3}}$

$1-\alpha g_{32}^{2}-\beta g_{33}^{2}$

’

and
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(4.6) $T_{\Gamma}DT_{\Gamma}^{\prime}=\left(\begin{array}{lll}(1-e-d)b_{11} & & \\(1-e-d)b_{21} & -db_{21}^{2}/b_{11}+(1-e)b_{22} & \\(1-e-d)b_{31} & -db_{21}b_{81}/b_{11}+(1-e)b_{32} & -db_{31}^{2}/b_{11}-e[)+b_{33}\end{array}\right)$ ,

where

(4.7) $v=(b_{31}b_{32})\left(\begin{array}{ll}b_{11} & b_{21}\\b_{21} & b_{22}\end{array}\right)\left(\begin{array}{l}b_{31}\\b_{32}\end{array}\right)$

$=\frac{b_{31}^{2}b_{22}+b_{32}^{2}b_{11}-2b_{31}b_{32}b_{2I}}{b_{11}b_{22}-b_{21}^{2}}$

$=\frac{g_{32}^{2}g_{S3}^{2}(\alpha-\beta)^{2}+g_{31}^{2}g_{32}^{2}\alpha^{2}(1-\beta)+g_{31}^{2}g_{33}^{2}\beta^{2}(1-\alpha)}{1-\alpha(1-g_{32}^{2})-\beta(1-g_{33}^{2})+\alpha\beta g_{31}^{2}}$ .

We used the fact
$g_{31}^{2}=\Delta_{31}^{2}=(g_{12}g_{23}-g_{22}g_{13})^{2}$ ,

because $(g_{ij})=\Gamma^{\prime}=\Gamma^{-1}=(\Delta_{ij})/|\Gamma|=(\Delta_{ij})$ . Now the denominator of $v$ can be
written as follows and then can be expanded in an infinite series.

(4.8) $1-\alpha(1-g_{32}^{2})-\beta(1-g_{33}^{2})+\alpha\beta g_{31}^{2}$

$=(1-\alpha)(1-\beta g_{31}^{2}-\frac{\beta-\alpha}{1-\alpha}g_{32}^{2})$ .

Similarly $1/b_{11}=1/(1-\alpha g_{12}^{2}-\beta g_{13}^{2})$ can be expanded. To evaluate the integral we
use the fact that $(g_{11}^{2}, g_{12}^{2}, g_{13}^{2})$ is distributed according to the Dirichlet distribution
with parameters (1/2, 1/2, 1/2). One more thing needed is the following expec-

tation $\int g_{11}g_{12}g_{21}g_{22}d\Gamma$ This can be evaluated by noting $(g_{11}g_{21}+g_{12}g_{22})^{2}=g_{13}^{2}g_{23}^{2}$

and hence $ 2\int g_{11}g_{12}g_{21}g_{22}d\Gamma=-\int g_{11}^{2}g_{21}^{2}d\Gamma$

Now we discuss Monte Carlo methods to calculate $\hat{\Sigma}_{0}$ for general dimen-
sionality. One objection to the estimator $\hat{\Sigma}_{0}$ might be that it is expensive to
compute for large $p$ . However as mentioned in Section 3 our Monte Carlo results
show that the size of the replications to obtain the estimator need not be too
large (at least from the viewpoint of improved risk). For $p=5,50$ replications
practically achieves the same risk as $\hat{\Sigma}_{0}$ . Also note that there is a subtle prob-

lem in the application of Monte Carlo method: (i) either we apply (2.5) directly
for $A$ , (ii), or we apply (2.5) to the roots of $A$ . From logical point of view (i)

is legitimate. Finite averaging itself improves the constant risk minimax esti-
mator. Therefore for the purpose of risk comparison this method was used for
the case $p=5$ and $\Sigma=I$ . On the other hand the orthogonal invariance does not
exactly hold with simulated uniform distribution. From practical viewpoint,
however, the latter seems to be a reasonable thing to do.
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