M_0 -SPACES ARE μ -SPACES By #### Munehiko Ітō 1. Introduction. The μ -spaces were introduced by K. Nagami [N]. A space X is said to be a μ -space if X is embedded in the countable product of F_{σ} -metrizable paracompact spaces. The class of M_8 - μ -spaces is a harmonious class in dimension theory and is a subclass of hereditary M_1 -spaces (see [M] and [T]). Especially every 0-dimensional M_8 - μ -space has a σ -closure preserving clopen base. Heath and Junnila [HJ] called such a space an M_0 -space. Then, what spaces are M_3 -spaces to be μ -spaces? There was no result on this question yet. In this paper we shed some light on this question. Throughout this paper all spaces are assumed to be regular T_1 and all maps are assumed to be continuous. The letter N denotes the positive integers. ### 2. Results. Theorem 2.1. Let X be an M_s -space with a peripherally compact σ -closure preserving quasi-base. Then X is embedded in the countable product of F_{σ} -metrizable M_s -spaces and is therefore a μ -space. PROOF. Let $\mathcal{B} = \bigcup \{\mathcal{B}_n : n \in N\}$ be a peripherally compact σ -closure preserving closed quasi-base of X. Let $n \in N$. To construct a space M_n , let us fix n. Let $V(x) = X - \bigcup \{B \in \mathcal{B}_n : x \notin B\}$ and $\hat{x} = \{y \in X : V(x) = V(y)\}$. Then by [J, Theorem 4.8], there exists a σ -discrete closed refinement $H = \bigcup \{H_m : m \in N\}$ of $\{\hat{x} : x \in X\}$. By [O, Lemma 3.2], there exist a metrizable space Z and a one-to-one onto map $f : X \to Z$ such that every $f(H_m)$ is a discrete closed family and $f(\mathcal{B}_n)$ is a closure preserving closed family. For $B \in \mathcal{B}_n$, there exists a map $\Psi'_B : f(B) \to I$ such that $\Psi'_{B}^{-1}(0) = f(\partial B)$, because ∂B is compact, where ∂B denotes the boundary of B. Let $\Psi_B : X \to I$ such that $$\Psi_B(x) = \Psi'_{B} \circ f(x)$$ if $x \in B$; and $\Psi_B(x) = 0$ if $x \notin B$. Received June 11, 1983. This result was announced in "General Topology Synposium, Japan", December 1983. Then Ψ_B is continuous. We define ``` g_B: X \to Z \times I by g_B(x) = (f(x), \Psi_B(x)); h_B: g_B(X) \to Z by h_B(f(x), \Psi_B(x)) = f(x); g_n: X \to \prod_{B \in \mathcal{B}_n} g_B(x) by g_n(x) = (g_B(x)); M_n = g_n(x); and \pi_B: M_n \to g_B(X) by \pi_B((x_B)) = x_B. ``` Note that $h_B|_{q_R(B)}$ and $h_B|_{q_R(X-B)}$ are homeomorphisms. Now, we show that M_n is an F_σ -metrizable M_3 -space. It is obvious that M_n is regular T_1 . To prove that M_n is F_σ -metrizable, let $H \in \mathcal{H}$. Since \mathcal{H} is a σ -discrete closed cover of X, it is enough to show that $f \circ g_n^{-1}|_{g_n(H)} : g_n(H) \to f(H)$ is homeomorphic. Obviously $f \circ g_n^{-1}|_{g_n(H)}$ is a continuous one-to-one onto map. Let $B \in \mathcal{B}_n$, U an open set of $g_B(H)$ and $W = \pi_B^{-1}(U)$. Note that $f \circ g_n^{-1}|_{g_n(H)}(W) = h_B|_{g_B(H)}(U)$. If $H \cap B = \phi$, then $f \circ g_n^{-1}|_{g_n(H)}(W)$ is open in f(H). Because $h_B|_{g_B(X-B)}$ is a homeomorphism and $H \subset X - B$. Let $H \cap B \neq \phi$. There exists $x \in X$ such that $H \subset \hat{x}$. Then $\hat{x} \cap B \neq \phi$. From the definition of \hat{x} , $\hat{x} \subset B$. Hence $H \subset B$. Since $h_B|_{g_B(B)}$ is a homeomorphism, $f \circ g_n^{-1}|_{g_n(H)}(W)$ is open in f(H). Therefore $f \circ g_n^{-1}|_{g_n(H)}$ is an open map and is a homeomorphism. To show that M_n is an M_3 -space, let W be a σ -discrete closed quasi-base of Z. Then $g_n(\mathcal{B}_n) \cup g_n \circ f^{-1}(W)$ is a quasi-subbase of M_n , because $\{g_B(B)\} \cup g_B \circ f^{-1}(W)$ is a quasi-subbase of $g_B(X)$. Obviously $g_n(\mathcal{B}_n) \cup g_n \circ f^{-1}(W)$ is a σ -closure preserving closed family. Therefore M_n is an M_3 -space. Let $g: X \to \prod_{n \in \mathbb{N}} M_n$ such that $g(x) = (g_n(x))$. Then g is clearly an embedding and the proof is completed. COROLLARY 2.2. Let X be an M_0 -space. Then X is embedded in the countable product of F_{σ} -metrizable M_0 -spaces and is therefore a μ -space. PROOF. In the above proof, replace I with $\{0, 1\} \subset I$, and Z with a 0-dimensional one (see [P, Theorem 2]). COROLLARY 2.3. Let X be a closed image of an F_{σ} -metrizable $M_{\mathfrak{d}}$ -space with dim X=0. Then X is a μ -space. PROOF. Let $X = \bigcup \{X_n : n \in N\}$, where each X_n is a closed Lašnev subspace. Then each X_n has an M-structure, so by [M, Theorem 3.15], X has an M-structure. By [M, Theorem 2.1], X is an M_0 -space. Therefore by the above corollary, X is a μ -space. We do not know whether every perfect image of a μ -space is a μ -space. This problem has already been posed by K. Nagami [N]. Perhaps the following two problems are some approach to this problem in the class of M_3 -spaces. - PROBLEM 2.4. Is every closed image of an F_{σ} -metrizable M_3 -space a μ -space? - Problem 2.5. Is every M_{8} - μ -space embedded in the countable product of F_{σ} -metrizable M_{8} -spaces? - Corollary 2.6. Every M_3 - μ -space is a perfect image of a 0-dimensional M_3 - μ -space. - PROOF. T. Mizokami [M] proved that every M_3 - μ -space is a perfect image of an M_0 -space. But by Corollary 2.2, every M_0 -space is a μ -space. An inner characterization of M_8 - μ -spaces is not obtained yet. So many proofs on M_8 - μ -spaces have returned to the definition and have been therefore complicated. But for 0-dimensional spaces, we have the following characterizations. Theorem 2.7. For a 0-dimensional space X, the following statements are mutually equivalent. - (1) X is an M_8 - μ -space. - (2) X is an M_0 -space. - (3) X is an M_3 -space with an M-structure (for the definition, see [M]). - (4) X is a regularly stratifiable space (for the definition, see [T]). - (5) X is a strongly regularly stratifiable space (for the definition, see [T]). PROOF. (1) \Longrightarrow (3) follows from [M, Theorem 4.5]. (3) \Longrightarrow (2) follows from [M, Theorem 2.1]. (2) \Longrightarrow (1) follows from Corollary 2.2. (1) \Longrightarrow (5) follows from [T, Theorem 5.4]. (5) \Longrightarrow (4) is trivial. (4) \Longrightarrow (2) follows from [T, Corollary 6.3]. PROBLEM 2.8. Find an inner characterization of M_8 - μ -spaces. Are M_8 -spaces with an M-structure or regularly stratifiable spaces μ -spaces? ### References - [C] Ceder, J.G., Some generalizations of metric spaces, Pacific J. Math. 11 (1961) 105-125. - [HJ] Heath, R. W. and Junnila, H. J. K., Stratifiable spaces as subspaces and continuous images of M_1 -spaces, Proc. Amer. Math. Soc. 83 (1981) 146-148. - [J] Junnila, H. J. K., Neighbornets, Pacific J. Math. 76 (1978) 83-108. - [M] Mizokami, T., On M-structures, Topology Appl. 17 (1984) 63-89. # Munehiro Itō - [N] Nagami, K., Normality of products, Actes Congrès intern. Math. 2 (1970) 33-37. - [O] Oka, S., Dimension of stratifiable spaces, Trans. Amer. Math. Soc. 275 (1983) 231-243. - [P] Pasynkov, B. A., Factorization theorems in dimension theory, Russian Math. Surveys 36 (1981) 175-209. - [T] Tamano, K., Stratifiable spaces defined by pair collections, Topology Appl. 16 (1983) 287-301. Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan