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ON THE DIFFERENCE f£’(x)— g*(x)

By

Saburé UcHIYAMA and Masataka YORINAGA

In 1965 H. Davenport proved that if f(x), g(x) are polynomials in x
with arbitrary real or complex coefficients, then we have either

| f3(x)—g%x)=0  identically,
or

® deg (/*(x)—g"x))Z 3 deg f(x)+1.
It is known that for some pairs of polynomials f(x), g(x) the equality holds in
(1). Clearly, we have for such pairs of polynomials
deg f(x)=2Fk, deg g(x)=3k
with some integral 2=1. Indeed, if

fx)=x+2, g(x)=x*+3x,

then
f3x)—g¥x)=3x>+8,
and if
flx)=x*+2x, g(x):x6+3x3+%’
then

f“’(x>—g2(x):—x3—%.

Some other examples of pairs of polynomials f(x), g(x) of higher degrees
satisfying the condition

@ deg (f*(x)—g"(x) =5 deg f(x)+1

are given by B.J. Birch, S. Chowla, Marshall Hall, Jr. and A. Schinzel 13
They have shown in fact that

f(x)=x°4+4x*+10x°+6,

g<x>=x9+6x7+21x5+35x3+9§x :
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and
F(x)=x"4+12x"+60x*+96x ,

g(x)=x""+18x"*+144x°+576x°+1080x°+432

are such pairs. It is interesting to note that, in all of these examples, f(x) and
g(x) are polynomials of Q[x], where @ denotes as usual the field of rational
numbers. It can be shown that there is also a pair of such polynomials f(x)
and g(x) of degrees 8 and 12, respectively, with coefficients in Q. Davenport
has found that there exist polynomials f(x) and g(x) satisfying the condi-
tion (2), being of degrees 16 and 24, respectively, and having coefficients in the
field C of complex numbers. Actually, the polynomials f(x), g(x) in Daven-
port’s example have coefficients in Q(+/—=3). However, the question of whether
there exist pairs of polynomials f(x), g(x) with coefficients in C and with
deg f(x), and so deg g(x) also, arbitrarily large which satisfy (2) remains still
open (cf. and [2].

Our principal aim in this note is to indicate that for #=7 and 11 there
exist pairs of polynomials f(x), g(x) with real algebraic coefficients such that

deg f(x)=2k,  degg(x)=3k,

and the condition (2) is therewith fulfilled. It may be of some interest to note
that, in order to produce pairs of polynomials f(x), g(x) of that kind, we have
taken full advantage of making machine computations whatever possible, with
the aid of programmes in REDUCE-2, a language designed and used for al-
gebraic manipulation of formulas.

1. General considerations.

We begin with describing some general methods, or algorithms, of finding
particular pairs of polynomials f(x), g(x) that satisfy the condition (2). The
first one is a slight modification of the method proposed in [1].

(D Let & be a given integer =1 and take v=1, 2, or 3. Define

h(x)zxsk—y+tlx5k-u—1+ +t6k—v;

where the /s are parameters whose values are to be determined later. We
write
10k-2v
h2(x): 20 aixlok—zv—i:_x8k—2vf(x)+A(x)
i=

with
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flx)= goaix“‘i, deg A(x)<8k—2v—1,

and

hS(x):_. bjxlsk—ma—j__.__xlzk—Sug(x)+B(x)
with
)= Ebx",  deg BS12k—3»—1.
=

We have then

fS(x)__g2(x):x—-24k+GvH(x) ,
where

H(x)=(h*x)— A(x))*— (h*(x)— B(x))*,

so that deg (f3(x)—g%x))=~k-+1 if and only if deg H(x)=25k—6v+1. Therefore,
a sufficient condition for f(x), g(x) to satisfy (2) is that

3 Qops1=0Aops2= =" =0sx-2=0,
(4) bsk+1:b3k+2= '—'—'bsk-z:O,
and

(5> 305k_1_2b5k_1$0 .

There are 5k—4 equations in (3) and (4) with 52—y unknowns ¢y, Z,, -, t5z-y
(v=1, 2, or 3), and we may find in general the values of the ¢; satisfying (3),
(4) and (5). With yv=1, for instance, the conditions (3), (4) and (5) can be replaced
by

A2p+1=CAgp42= *** :ask—lzo
and
b8k+l:b3k+2: :b5k—2:0 ’ b5k—1i0 ’
or by
‘ Aop+1=0gps2= " =0Asz-2=0, asr-170
and
bsr+1=bgprs2= - =bsz-1=0.

Note that we always have

an= 2 (2—0dipti;, b= 2 aij,

i+j=m i+j=n
i !

where a,=b,=t,=1, and d;;=1 if /=5, and =0 if 7#].

The number of parameters t;, which is the same as the degree of the basic
polynomial A(x), can be reduced as low as to 3k—1, at the cost of imposing on
the coefficients of h2(x) and of h3(x) somewhat more complicated conditions to
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satisfy than (3), (4) and (5).
A variant of the above method is the following. First, take k=2[+1, (=0,
and put
h(x)=x““-i—t1x“+ R o PTFRN
We write as before

10l+2
h2(x): iz% aix101+2—i____x81+1f0(x)_|_A(x)

with
2l+1
Solx)= g;) a;x*+1-t . deg A(x)<8!,
and
151+3 .
ha(x)___ j;o bjx15l+3—]=x121+2g0<x)+B(x)
with

go(x)= 2 bx*=3,  deg B(x)<121+1.

Then, with f(x)=f,(x?), g(x)=xgo(x*) we have deg f(x)=2k, deg g(x)=3k, and

[ (x)—g¥(x)=x"**""H(x),
where
H(x)=(h*(x*)— A(x%))*—(h*(x%)— B(x?))*.

We have, therefore, deg (f*(x)—g%(x))=~k+1 if and only if deg H(x)=50/+8,
and sufficient condition for f(x), g(x) to satisfy (2) is that

Ao142=0g1+3= *** =qg14,=0
and
bsl+1#:0 » bst+z:bsl+3: =b51+1=0 .

Next, taking k=3/+2, /=0, we define, with

h(x)zxsz“‘f‘hxsl“‘\t‘ o Hloiee,

hHx)="3) @ttt r () + Al),

0l+4
1

fR=5fo(x),  fln)=5 a1, deg A(x)S8I+2,
and

15l+6
h:a(x): j=20 bjx151+6—j:x12l+4go(x)+B(x) ,

g(x)=go(x%), go(x>=zg;,2bjx*’+2", deg B(x)<12[+3,
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so that deg f(x)=2k, deg g(x)=3k, and

3 (x)—g¥x)=x""*"*H(x),
where
H(x)=(hz(x“’)—‘A(x”))"—(hs(ﬂcs)-—B(JC“))2 .
It follows from this that deg (f3(x)—g*(x)=Fk+1 if and only if deg H(x)=
751427, and a sufficient condition for f(x), g(x) to satisfy (2) is that

As1+170, Qa1+2=—AQz21+8=— *** =asl+z=0
and

baz+s=bsl+4: =b51+2=0 .

(I) Let % be again a given positive integer and consider the polynomials
with coefficients in C

2k 8k )
f(x)=1§aix““‘, g(x)=j§b,x3"‘1,

where it is assumed that a,=b,=1. We wish to show that the pair of poly-
nomials f(x), g(x) satisfies the condition (2), if and only if

6 3" (x)g(x)—2f(x)g’'(x)=¢c,
where ¢ is a non-zero consta’nt.

For any monic polynomial P=P(x) of degree n=1 and with coefficients in
C we have

P(x)= 11 (x—8)
and therewith define
s(P)=n and s,(P)=3§& (=123 ).
Now, in order to have
deg (f*(x)—g*(x)=Fk+1

it is necessary and sufficient that the coefficients of x™ (B+2=m=6k—1) in
f*(x)—g%x) do vanish and that of x*+! does not, which is obviously equivalent
to

=0 (1=v<5k—2),

7) v $)— v( 2
( =8 { #0 (v=5k—1).

Since we have s,(f*)—s,(g%)=3s,(f)—2s,(g) for all values of vy, it follows from
the formal power series expansion
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3f(x) _ 2¢'(x) _ 5 ) —s.(g?)
f(x) glx) = x¥+!

that (7) implies (6), and vice versa.
It is easily seen that if we write

3f'(x)g(x)—2f(x)g’(x)=5§:cmxsk-1-m ’

then
tn=3 @m—5)abn;  (0=mS5k—1),
where
u=max (0, m—3k), v=min(m, 2k).
We have
co=0 automatically,
and

Csk—lzsazk—lbsk—zazkbsk—l .
Thus, the condition (6) is equivant to
C1=Ca= *** =c5k—2=0’ Csr-1=¢ (#0).

Our equation (6), which in some cases is slightly more convenient to deal
with than the original condition (2), may be regarded as an indefinite differential
equation in polynomials f(x) and g(x). The equation (6) admits a polynomial
solution g(x) when the polynomial f(x) is given in such a way that the integral

TUORTE

is a so-called pseudo-hyperelliptic integral ; however, though this way of approach-
ing the problem seems to be effective, the situation is in reality not so simple
as expected.

Now, suppose that k=2/+1, /=0, and put

2l+1 si+1
fo(JC)= ,;‘._V'}, ailen-t s go(x)=ff_‘6bjx““" .
Then, the polynomials f(x), g(x), defined by

F)=fu(x?), glx)=xg/(x?,
so that deg f(x)=2k, deg g(x)=3k, satisfy the equation (6), if and only if

1
C1=Cs= - =C5141=0, Csl+2:_2'c (#0),

where
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@®) tn= 3 @m—5)aibn-i  (O=m=5/+2)

with
u=max (0, m—3[—1), v=min(m, 2{+1).

If £=3[+2, {=0, and if
2l+1 3l+2
fo(x)= izoaileu—i , go(X)Z Zobjxsl+2-j s
- =
then the polynomials f(x), g(x) defined by

f)=xfo(x®), gx)=gdx*),
so that deg f(x)=2k, deg g(x)=3k, satisfy the condition (6), if and only if

C1=C2= *** =Cp142=0, c51+3=—;—c (#0),
where
©) tn= 3 @m—5)aibn-s  (O=m=5/+3)
with

u=max(0, m—3[—2), v=min(m, 2/+1).

2. Some specific examples.

First we shall give examples of pairs of polynomials f(x), g(x), satisfying
the condition (2) with deg f(x)=2k, deg g(x)=3k, for some small values of k.
Our method of determining such pairs of polynomials f(x), g(x) will chiefly be
the method (II) which we have just described above.

(i) k=1. Here, we have k=2[+1, [=0, and put
folx)=a¢x+a,, go{x)=box+b,,
where a,=b,=1. The coefficients ¢,, given by (8) with /=0 are:
co=0 automatically,
¢1=2a¢b,—3a,b,=2b,—3a,,

Co=——4a 1b1 .
Accordingly, if we take

a,=2z, by=3z with ze Z, z+0,

where Z denotes the set of rationnal integers, then we have
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C1=0, C2=‘—622¢0.
Thus we have
folx)=x+2z, gox)=x+3z,

f()=fo(x)=x24+2z, gx)=xgx)=x"+3zx,
and
fi(x)—gi(x)=32*x2+82°,

3 (x)g(x)—2f(x)g'(x)=2ce=—122%.

We note that the method (I) will furnish as a general solution of (6), i.e.
of (2),
f(x)=x*+2t,x+134+2t,,

g(x)=x*+3t,x2+3(t3+1) x +1,(t3+3t5) ,

where t,, t, are free parameters with ¢,+0.

(ii) ~=3. In this case we have k=2/+1, /=1, and take
fo(x)=aox*+a,x*+a.x+as,
go(x)=box*+b,x*+bex*+bsx+b,,

where a,=b,=1. We have, by (8),

i

Cn= 3} (2m—5i)a:bm-s (0=m=7)

with x=max (0, m—4), v=min(m, 3), where c,=0 and the ¢, (1=m=7) should

satisfy
C1:2b1—301=0 ,

ce=4by;—a,b,—6a,=0,
C3=6bs+ab;—4ab;—9%a;=0,
c.=8b,+3a,b;—2ab;—7asb,=0,
cs=5a,b,—5a3b;=0,
ce=2asb,—3asb;=0,
ci=—ash,#0.
We introduce a new set of parameters ¢; (1=;=3) and write
a,=2t,,
a,=t:+2t,,

03:2t1t2+2t3 .



On the Difference f*(x)— g2(x) 223

Then, the equations ¢,=0 (1=m=4) will give
b1=3t1,
b2:3t%+3t2)

b3:t§+6t1t2+3t3 >

3

b4 = 3t§t2+3t1t3+ T?:

15,
and the equation ¢;=0 becomes, when reduced

to(tita+2t5)=0.

Now, if t,=0 then ¢,=0 implies ¢,=0, giving b,=0. So, we must have {,#0,
and
t1t2+2ts———0 .

On the other hand, it follows from c;=c=0 that
313, +3tit,—2t5=0.
Substituting in here t;=(—1/2)t;t;, we get t(3ti—4t;)=0, or
33 —4t,=0;
a general integer solution of this last équétion is

t, =2z, t,=3z% with zeZ, z+0,

and so
t3=‘_323 .
Hence
a,=4z, a,=10z%, a*=6z*:
bi=6z, b,=21z%, b,=352z%, b4=673z‘ .

We thus have
f(x)=fo(x®)=x"+4zx*+102°x*+62°,

gx)=xgo(x?)=x"+62x"+212°x°+352°x*+ %z‘x ,

where
3f'(x)g(x)—2f(x)g'(x)=—3782".

This with z=1 is one of the examples given in [1].

(iii) k=2. For this value of # we have £=3/+2, /=0, and we easily find,
referring to (9), a pair
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f(x)=x*42zx,
g(x)zJ\:"-{-BZJ:"‘—{——'3—22

with ze Z, z+0. Here
3f'(x)g(x)—2f(x)g’(x)=9z%.

(iv) k=5. In this case £=3/+2, /=1, and one may proceed in a manner
similar to that for the case of £=3, with (9) in place of (8), to obtain a pair
flx)=x"+6zx"+1522x4+122%x ,

g(x)=x+9zx12+3622x°4722°x°+ lgéz‘x“ + 22’—725

with zeZ, z+0, where
3f"(x)g(x)—2f(x)g'(x)=4862°.

For z=2 this reduces to another example found in [1].
So far everything is quite simple and no machine computations are needed.

3. Further examples.

We are now going to describe the examples newly found of pairs of poly-

nomials f(x), g(x) satisfying the condition (2), or equivalently the equation (6),
such that

deg f(x)=2k, deg g(x)=3k,

where 2=4, 7,8 and 11. Our computations were done on an electronic computer
HITAC M-200H (VOS 3) in the Information Processing Center, Hiroshima Uni-
versity, Hiroshima.

(v) k=4. We have
f=Faxtt,  g= B,

where a,=b,=1 and, with free parameters s, ¢, ¢+0,
a,=8s+2t,
a,=28s*+14st+712,
a;=>56s*+42s5%+42st*1-61°,
a,=70s*+70s*t4-105s%*+-30st*+ 1124,
a5=565°+70s't+140s°t*+60s%* 445t — 415,
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as=285°4-425% 41055t +-605%3+ 665214 — 12525,
a,;=85"+14s°+4-42s°t*+30s*t*+445%* — 12s25—12¢",
as=s°+2s"t+7st*+6s5°+ 11s** —4s%°—12st"+18 ;
b,=12s43¢,

b,=66s%+33st+12¢2,

bs=220s°+-165s% +120st2+19¢%,
b,=495s*+4955% 540522+ 171st*+39¢4,
bs=T792s°+990st + 1440524684 52t°+ 3125t +-24¢° ,
bs=9245°4-13865° + 25205121596 5°¢°+109252t* + 16851+ 30¢° ,

b:=T925"+13865° 3024552+ 2394 54t°+ 2184 5°*+5045%°+ 1805 — 3617 ,

bs=4955°+990s"t4-25205°2+ 2394 553+ 27305%¢* +-840s%¢°
+450s%t*—180st"—15¢% ,

by=2205°+4955%+1440s"t>+ 1596 5°t* + 2184 s°¢* +84054t°
+600s°t°—360s%t"—60st5—60¢° ,

10=6651"+1655° +-5405°%>+ 6845t +10925% 4+ 504555
+4505*t*—360s*t"—90s2%¢*—180st°+ gzztm ,
b11=125"+33s't+120s°2+ 171543125+ 168 5°¢°
+180s°¢°—180s*" —605°*— 1805%° 427510 — —92—t“ ,
b1s=s'+3s'1t 412524195+ 3954+ 24515+ 305
27 9 29

_ 547 448 359 1“0 2q10_ VY p11) “Y 10
36s°t"—15s* 603t+23t 2st+2t .

The polynomials f(x), g(x) satisfy
3f(x)g(x)—2f(x)g’(x)=—513t*°,

(vi) k=7. For this value of 2 we have £=2[+1, /=3, and put

10
flx)= j_:{) axhH, gln)= 3 bty

with a,=b,=1. The coefficients a; (1=<i/<7) and b; (1<;=<10) are given in the

following way.
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Let » be any one of the roots of the irreducible quintic equation
xs—%xs—l—%xz—%—)x-}—%:m
which admits a unige real root in the interval (—3, —2), and set
24r*—24r \vs
s=(3i75-4
Then, with a free parameter ¢+0,
—1447*—108r°+ 28872 —348r +243 s

a,— 16 4t N
46212r*+36852r*—88576r*+4-108647r —78957 . .
ds= st N
1248
—24072r*—201727°+44764r*—54790r 140731, .
as— st N
312
103068+ 88872r° —187572r*+-230573r—170597 |
a 4 =" St y
1248
—235207*—202447r°+412167r*—548807 +37653
as= t°,
624
42576r*+351007°—784967°+ 98508~ — 77623 , .
Asg=— st ’
9216
60744870 +112,2—1457+100 _ ,
a,= s°t';
96
—432r*—324r°+-864r2—1044r+729
b1 - st N
32
940874 +75367°—17984r%4-22069r —16083 |, ,
bg = s°t ,
104
b = —469512r4—397068»°+862412r2—1051214» + 788907 249
*T 1352 St
221050874 +19623907° — 398725872 1-4789471r — 3641527
b4 = - stt y
2704
b= 2506447+ —2291167°+-4435167*—530080r +401607 s
T 208 ’
15800474 +1627567° —271392r%+ 233244r — 314765
bs - - S4t6 ’
2304
b= 97404r*—9102073+4174280»>— 187081+ 168035 3
7= T ,

768
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_ 294840r*+271572r°*—522144r2+-601874r — 488901 &8

bs 3072 ’

—257748r*—236268r°+437440r—557307r + 420451
b9 = st ,
9216
607*+4-487*—40r*+193r—100 410
64 ’

b=

Here we have
10274+102#2—1707%2+187r—153

3f(x)g(x)—2f(x)g'(x)= 8 s S8,

(vii) k=8. Here, we have k=3[+2, /=2, and
8
f(x)= Esoaixls—”, g(x)=j§0b,-x“””,

where a,=b,=1 and, with t+0,

4= —2H6vV=3
3
o 241—185«/—3 "

o —1404+72v=3

3 3 ’
g= 30-147V=3
6

by =(—13+3v=3),
__383-183v=3 ,

b2 6 »

b — —4600+3384+v—3 s

3 — ’
27

b, — 1835—1725v/=3 ,

4 t »
6

b — —1177+1221v/—3

5= t

3 ’

b = 1043—1008+/—3 46
6 3 ’

227
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b, =(—178+138+/—3)t",
by =(20—12/=3)¢%.
With these polynomials we find
3f/(x)g(x)—2f(x)g'(x)=(—416+1248+/ —3)t** .

For t=1 our polynomials f(x), g(x) will reduce to the ones found by Daven-

port [2].
(viii) k=11. In this case we have k=3/+2, [=3, and

7 11
fR)= B, gx)= 3 ba",

where a,=b,=1 as before and the coefficients a; (1=:/=<7) and b; (1=j=11) are
given as follows.
Let » be any one of the roots of the irreducible cubic equation

x84+3x24-Tx+ %1 =0,

which has a unique real root in the interval (—3, —2), and set

s:( 241'2—1-3;31*—}—156 )1/5 -

Then, with a free parameter ¢+0,

15724-18r—49 s

—_— 4
a,= 64 t,

_ —267r+1878r+6661 , ,
a2= 896 $
L —369r*—2566r—5007

3= 224 ’

_ 4797r*+18798r +31093 _,
a= 896 St
, _ —3063*—9162r —15301 ,

5 448 ’
, _ 693r°+5502r+11501

6= 4096 S

—_— 2 __ —_
e 18r—43 ..

64
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45/ 4-54r—147

b= 128 ST,
b, = —153724+-11887+3993 e
2 224 ?
b. — —121417%2—79248r — 143775 o
8 1568 ’
b, — 146799724-5364907 +720999 s
“ 3136 ’
—7641r2—19494r —21249
b5 == t ’
64
b, = 2016372772027 +90699 s4y0
£ 1024 ’
. —23940r°—36423r—T5TIT .
T 1024 ’
b — 75141724 1910707+ 199485 o
8§ 4096 ’
b. — —38467r*—85074r — 106315 o
T 4096 ’
b — 249372449267 +8277 410
10 — 89‘6 b
_ —=3r*—12r—21 .,
b= 556 st

Here, we could replace, of course, ¢t by st (or by s™*), thus eliminating s in
the above expressions for the a; and the b;; this replacement, however, would
not seem to bring any particular improvement on these expressions.*

We have

3F/(x)g(x)—2f (x)g (x)= 2 +11§§ 2 g,
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