Translator Disclaimer
December 2019 On a combination of the cyclic Nimhoff and subtraction games
Tomoaki Abuku, Masanori Fukui, Ko Sakai, Koki Suetsugu
Tsukuba J. Math. 43(2): 241-249 (December 2019). DOI: 10.21099/tkbjm/1585706454

Abstract

In this paper, we study a combination (called the generalized cyclic Nimhoff) of the cyclic Nimhoff and subtraction games. We give the $\mathscr{G}$-value of the game when all the $\mathscr{G}$-value sequences of the component subtraction games have a common $h$-stair structure.

Citation

Download Citation

Tomoaki Abuku. Masanori Fukui. Ko Sakai. Koki Suetsugu. "On a combination of the cyclic Nimhoff and subtraction games." Tsukuba J. Math. 43 (2) 241 - 249, December 2019. https://doi.org/10.21099/tkbjm/1585706454

Information

Published: December 2019
First available in Project Euclid: 1 April 2020

zbMATH: 07199330
MathSciNet: MR4080794
Digital Object Identifier: 10.21099/tkbjm/1585706454

Subjects:
Primary: 05A99 , 05E99

Keywords: Combinatorial game , impartial game , Nim , Nimhoff , subtraction game

Rights: Copyright © 2019 University of Tsukuba, Institute of Mathematics

JOURNAL ARTICLE
9 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.43 • No. 2 • December 2019
Back to Top