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DIRECT SUM OF $\tau$-INJECTIVE MODULES

By

Kanzo MASAIKE and Takanori HORIGOME

Throughout this paper $R$ is a ring with identity and every R-module is
unital. Let $\tau$ be a hereditary torsion theory with respect to $R$ (see Golan [3]).

A submodule $N$ of a right R-module $M$ is said to be $\tau$-dense in $M$, if $M/N$ is a
$\tau$-torsion module. We shall denote the set of all $\tau$-dense right ideals of $R$ by
$\mathcal{L}_{\tau}$ . A right R-module $M$ is called $\tau$-injective, if for every right R-module $L$

and its $\tau$-dense submodule $N$ every R-homomorphism $N\rightarrow M$ is extended to $L\rightarrow M$.
Let us denote by $E(L)$ the injective hull of the right R-module $L$ . Then, $E_{\tau}(L)=$

{$x\in E(L)|$ there exists $I\in \mathcal{L}_{\tau}$ such that $xI\subset L$ } is said to be $\tau$-injective hull of $L$ .
If $N$ is a submodule of $L,$ $E.(N)$ is contained in $E_{\tau}(L)$ .

By a result of Matlis [5] and Papp, $R$ is right Noetherian, if and only if
every injective right R-module is a direct sum of (injective) indecomposable sub-
modules. It is to be noted that this result was generalized to injective $\tau$-torsion
free right R-modules by Teply [7]. Let $\tau_{G}$ be the Goldie torsion theory with
respect to $R$ . Clearly, injective indecomposable right R-modules coincide with
those modules each of which is a $\tau_{G}$-injective hull of its every non-zero sub-
module. Furthermore, if $R$ is right Noetherian, the ring of quotient of $R$ with
respect to $\tau_{G}$ is semi-simple Artinian (cf. Kutami and Oshiro [4]) and hence $\tau_{G}$

is a perfect torsion theory (see [3], [6]). Now, concerning the above result of
Matlis and Papp we shall study in this paper a right R-module $M$ such that
$M=\bigoplus_{i\in I}M_{i}$ , where each $M_{i}$ is a $\tau$-injective hull of its every non-zero submodule.

In the following such a module $M$ will be said to be $\tau$-completely decomposable.

Now, at first we shall prove the next

THEOREM 1. Let $\tau$ be a hereditary torsion theory with respect to R. Then,
$\mathcal{L}_{\tau}$ satisfies the ascending chain condition, if and only if, every $\tau$-injective $\tau$-torsion
R-module is $\tau$-completely decomposable.

A ring $R$ is called right semi-Artinian, if every non-zero right R-module has
a non-zero socle. Then, we shall prove the following
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THEOREM 2. The following are equivalent, if $\tau$ is a perfect torsion theory.

(i) $\mathcal{L}$-satisfies the $ascend^{}ing$ chain condition and the ring of quotient $R_{\tau}$ of
$R$ with respect to $\tau$ is right semi-Artinian.

(ii) Every $\tau$-injective right R-module is an essential extension of a $\tau$-injective
$\tau$-completely decomposable R-module.

Let $\tau_{G}$ be a Goldie torsion theory. Then every $\tau_{G}$-torsion free direct sum-
mand of a $\tau_{G}$-completely decomposable module is quasi-injective (see [4]). In

Theorem 3, we shall see that this result remains true, even if $\tau$ is an arbitrary

hereditary torsion theory.

LEMMA 1. Let $M$ be a right R-module such that $M$ is a $\tau$-injective hull of
its every non-zero submodule. Then End $(M_{R})$ is a local ring.

PROOF. Let $f\in End(M_{R})$ be a non-zero element. Since $M$ is uniform and
$Kerf\cap Ker(1-f)=0,$ $f$ or $1-f$ is a monomorphism and hence a unit.

LEMMA 2. Let $M$ be a submodule of a right R-module $K$ such that $M=\bigoplus_{a\in A}M_{a}$

and $K=\bigoplus_{b\in B}K_{b}$ , which are $\tau$-complete decompositions. If the cardinal number $|A|$

is at most countable, there exists a subset $C$ of $B$ such that $M\cong\bigoplus_{c\in C}K_{c}$ .

PROOF. Let $a\in A$ . Put $A_{a}=\{d\in A|M_{d}\cong M_{a}\}$ and $B_{a}=\{b\in B|K_{b}\cong M_{a}\}$ . It

sufficies to show $A_{a}|\subseteqq|B_{a}|$ . Let $d_{1},$ $d_{2},$
$\cdots,$

$d_{n}$ be distinct elements of $A_{a}$ . As-

sume $x_{i}$ be a non-zero element of $M_{d_{i}},$ $i=1,2,$ $\cdots,$ $n$ . Then, $\bigoplus_{i\Rightarrow 1}^{n}M_{d_{i}}=E_{\tau}(\bigoplus_{i=1}^{n}x_{t}R)$ ,

which is contained in a direct sum of finite number of $K_{b},$ $b\in B$ . Let $b_{1},$ $b_{2},$ $\cdots$ ,

$b_{l}$ be elements of $B$ such that there exists a monomorphism $f:\bigoplus_{i=1}^{n}M_{d_{i}}\rightarrow\bigoplus_{j=J}^{l}K_{b_{j}}$

and for every $p(p=1,2, \cdots, t)$ there is no monomorphism from $\bigoplus_{i=1}^{n}M_{d_{i}}$ to $ K_{b}\oplus$

$K_{b_{2}}\oplus\cdots\oplus K_{b_{p-1}}\oplus K_{b_{p+1}}\oplus\cdots\oplus K_{b_{l}}$ . Let $\pi_{b_{p}}$ be the projection $K\rightarrow K_{b_{p}}$ . Then, for

every $p(p=1, \cdots, t)$ we can pick up $y_{p}\in\bigoplus_{i=1}^{n}M_{a_{i}}$ so that $\pi_{b_{p}}f(y_{p})\neq 0$ and $\pi_{b_{s}}f(y_{p})$

$=0,$ $s\neq p$ . Put $N=y_{1}R\oplus\cdots\oplus y_{t}R$ . Since $f(N)=f(y_{1})R\oplus\cdots\oplus f(y_{t})R\subset K_{b_{1}}\oplus\cdots\oplus K_{b_{t}}$ ,

we have $E_{\tau}(\bigoplus_{i=1}^{t}f(y_{i})R)=K_{b_{1}}\oplus\cdots\oplus K_{b_{l}}$ . Therefore, $\bigoplus_{i=1}^{n}M_{d_{i}}=\bigoplus_{j=1}^{l}K_{b_{j}}$ . Then, by

Lemma 1 and a theorem of Azumaya [1] every $K_{b_{j}}$ is isomorphic to $M_{a}$ . Since
$t=n$ , the consequence is immediate when $|A|$ is finite. Assume $A_{a}$ is infinite.
Then, the above argument implies $B_{a}$ is an infinite set. Hence $|A_{a}|\leqq|B_{a}|$ .

PROOF OF THEOREM 1.
Assume $\mathcal{L}_{-}$ satisfies the ascending chain condition. Let $M$ be a $\tau$-injective
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$\tau$-torsion R-module. If $0\neq x\in M$, then $xR\cong R/I$ for some $I\in \mathcal{L}_{\tau}$ . Therefore, $R/I$

is a Noetherian right R-module and hence contains a uniform submodule $U$.
Since $E_{\tau}(U)$ is contained in $M,$ $M$ have a $\tau$-injective submodule which is a $\tau-$

injective hull of its every non-zero submodule. Let $\{M_{j}\}_{j\in J}$ be a maximal inde-
pendent set of submodules of $M$ such that each $M_{j}$ is a $\tau$-injective hull of its
every non-zero submodule, where $J$ is an index set. Let $y\in M$ be a non-zero
element. As is shown above $E_{\tau}(yR)$ contains a submodule which is a $\tau$-injective

hull of its every non-zero submodule and hence $\bigoplus_{j\in J}M_{j}\cap yR\neq 0$ . It follows $\bigoplus_{j\in J}M_{j}$

is an essential submodule of $M$. On the other hand, since $\mathcal{L}_{\tau}$ satisfies the as-
cending chain condition, by [3, p. 128, Proposition 14.2] $\bigoplus_{j\in J}M_{j}$ is $\tau$-injective.

Since $M$ is a $\tau$-injective $\tau$-torsion module, $\bigoplus_{j\in J}M_{j}$ is a direct summand of $M$.
Thus we have $M=\bigoplus_{J\in J}M_{j}$ .

Conversely, assume every $\tau$-injective $\tau$-torsion R-module is $\tau$-completely de-
composable. Let $\{P_{i}\}_{i\in I}$ be a class of (non-isomorphic) representatives of all $\tau-$

injective $\tau$-torsion uniform R-modules. Then, each $P_{i}$ is the $\tau$-injective hull of
its every non-zero submodule. Let us denote $P_{i}^{(N)}$ the direct sum of countably

copies of $P_{i}$ . Since $E_{\tau}(\bigoplus_{i\in I}P_{i}^{(N)})$ is a $\tau$-torsion module, it has a $\tau$-complete decom-

position such that $E_{\tau}(\bigoplus_{i\in I}P_{i}^{(N)})=\bigoplus_{j\in J}Q_{j}$ , where $J$ is an index set. From Lemma 2

$\bigoplus_{i\in I}P_{i}^{(N)}$ is isomorphic to a direct summand of $\bigoplus_{j\in J}Q_{j}$ . Hence we have $(\bigoplus_{i\in I}P_{i})^{(N)}$

is $\tau$-injective. Let $ K_{1}\subset K_{2}\subset K_{3}\subset\cdots$ be a strictly ascending chain of right ideals
in $\mathcal{L}_{\tau}$ . Then, $R/K_{j}(j=1,2, \cdots)$ is a submodule of a $\tau$-torsion $\tau$-completely de-
compossable R-module $E_{\tau}(R/K_{j})$ . It follows $K_{j}$ is an annihilator right ideal of a
subset of $\bigoplus_{i\in I}P_{i}$ . Therefore, we can choose $a_{1},$ $a_{2},$ $a_{3},$ $\cdots\in\bigoplus_{i\in I}P_{i}$ such that $a_{j}K_{j}=0$

and $a_{j}K_{j+1}\neq 0(j=1,2,3, \cdots)$ . Put $K=\bigcup_{j=1}K_{j}$ . Clearly, the map $f:K\rightarrow(\bigoplus_{i\in I}P_{i})^{(N)}$

by $f(x)=(a_{1}x, a_{2}x, \cdots),$ $x\in K$, is an R-homomorphism. Since $K\in \mathcal{L}_{\tau},$ $f$ is extended
to $R\rightarrow(\bigoplus_{i\in I}P_{i})^{(N)}$ . However this is a contradiction, since for every integer $n>0$

there exists $x\in K$ such that $a_{n}x\neq 0$ . This complete the proof.

In the following let us denote $T_{\tau}(M)$ the $\tau$-torsion submodule of $M$.

PROOF OF THEOREM 2.
$(i)\Rightarrow(ii)$ . Let $M$ be a $\tau$-injective R-module. Since $E_{\tau}(T_{\tau}(M))$ is contained in

$M$, it is equal to $T_{\tau}(M)$ . Then, $T_{\tau}(M)$ is $\tau$-completely decomposable by Theorem
1. We may assume $T_{\tau}(M)$ is not an essential submodule of $M$. Let $N$ be a
closed submodule of $M$ such that $N\cap T_{\tau}(M)=0$ and $N\oplus T_{\tau}(M)$ is essential in $M$.
Since $N$ has no essential extension in $M,$ $N$ is $\tau$-injective. Then, $N$ becomes a
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right $R_{\tau}$-module, which has an essential socle $S=\bigoplus_{h\in H}S_{h}$ , where $S_{h}$ is a simple

right $R_{\tau}$-module. Let $L$ be a non-zero R-submodule of $S_{h}$ . Then, $S_{h}=LR_{\tau}$ and

hence $L$ is a $\tau$-dense submodule of $S_{h}$ . On the other hand, since $\tau$ is a perfect

torsion theory, $S$ is $\tau$-injective $\tau$-completely decomposable and so is $S\oplus T_{\tau}(M)$ .
$(ii)\Rightarrow(i)$ . Let $N$ be a $\tau$-injective $\tau$-torsion R-module. Since every $\tau$-injective

submodule of $N$ is a direct summand, $N$ is $\tau$-completely decomposable and $\mathcal{L}_{\tau}$

satisfies the ascending chain condition. Let $K$ be a right $R_{\tau}$-module. Since $K$ is
a $\tau$-injective R-module it contains an essential $\tau$-completely decomposable R-sub-
module. In view of [3, p. 186 Corollary] we have that this submodule is a socle

of the right $R_{\tau}$-module $K$. Hence $R_{\tau}$ is right semi-Artinian.

REMARK. Assume $\tau_{G}$ is the Goldie torsion theory. Put $C_{\tau}=G\{right$ ideal $I$

of $R|R/I$ is $\tau_{G}$-torsion free}. If $C_{\tau}G$ and $\mathcal{L}_{\tau}G$ satisfy the ascending chain condi-
tion, then every injective right R-module is a direct sum of indecomposable sub-
modules in view of Theorem 1 and [7, Theorem 1.2] and hence $R$ is right Noe-
therian. When $R$ is right non-singular, this is a case of Yamagata [9, Theorem 9].

LEMMA 3. Let $M$ be a $\tau$-torsion free right R-module. Assume $M=\sum_{i\in I}M_{i}$ ,

where $M_{i}$ is a $\tau$-injective hull of its every non-zero submodule. Then, there exists
a subset $J$ of I such that $M=\bigoplus_{j\in J}M_{j}$ .

PROOF. Let $\{M_{j}\}_{j\equiv J}$ be a maximal independent subset of the class $\{M_{i}\}_{i\in I}$ .
For every $i\in IM_{i}\bigcap_{j}\bigoplus_{\in J}M_{j}$ contains a non-zero element $x$, say. Therefore, there

exists a finite subset $\{j_{1}, \cdots , j_{n}\}$ of $J$ so that $E_{\tau}(xR)$ is contained in $\bigoplus_{k=1}^{n}M_{j_{k}}$ . Let

$0\neq y\in E_{\tau}(xR)+M_{i}$ . Put $y=y_{1}+y_{2},$ $y_{1}\in E_{\tau}(xR),$ $y_{2}\in M_{i}$ . Then, there exist $L_{1},$ $ L_{2}\in$

$\mathcal{L}_{\tau}$ such that $y_{1}L_{1}\subset xR$ and $y_{2}L_{2}\subset xR$ . So $0\neq y(L_{1}\cap L_{2})\subset xR$ . This implies $xR$ is
(an essential) $\tau$-dense submodule of $E_{\tau}(xR)+M_{i}$ . Since $M_{i}$ is a $\tau$-injective hull
of $xR$ , too, we have $E_{\tau}(E_{\tau}(xR)+M_{i})=E_{\tau}(xR)=M_{i}$ . Hence $M_{i}$ is a submodule of
$\bigoplus_{j\in J}M_{j}$ .

THEOREM 3. Let $M=\bigoplus_{i\in I}M_{i}$ be a $\tau$-complete decomposition. If $N$ is a $\tau$-torsion

free direct summand of $M$, then $N$ is quasi-injective.

PROOF. Let $0\neq x\in N$. $E_{\tau}(xR)$ is contained in a sum of finite number of $M_{i}$ ,

$i\in I$. Let $\pi$ : $M\rightarrow N$ be the projection. Then, the restriction $\pi|E_{\tau}(xR)$ is a mono-
morphism. This implies we may assume $E_{\tau}(xR)$ is contained in $N$. Now, $E_{\tau}(xR)$

is isomorphic to a direct sum of finite number of $M_{i},$ $i\in I$, by the same method

as in the proof of Lemma 2. Therefore, $N=\Sigma_{x\in N}E_{\tau}(xR)$ is $\tau$-completely decom-
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posable by Lemma 3. Let $N=\bigoplus_{h\in H}N_{h}$ be the $\tau$-complete decomposition and $E(N)$

the injective hull of $N$. To see that $N$ is quasi-injective, it sufficies to show
$f(N)\subset N$ for every $f\in End(E(N)_{R})$ . Let $f_{n}$ be the restriction $f|N_{h}$ . Suppose
$f_{h}\neq 0$ . Then $f_{h}$ is monic (cf. [3, Proposition 18.2]) and hence ${\rm Im} f_{h}$ is a $\tau$-injec-

tive hull of its every non-zero submodule. Since $\bigoplus_{h\in H}N_{h}$ is an essential submodule

of a $\tau$-torsion free module $E(N)$ , it is easy to check that ${\rm Im} f_{h}\subset\bigoplus_{h\in H}N_{h}$ from the
proof of Lemma 3. This proves the Theorem.

REMARK. In [2] it is proved that if $M$ is an injective right R-module which
is a direct sum of indecomposable modules, then so is its direct summand. Now,

let $M$ be a right R-module such that $M=\bigoplus_{i\in I}M_{i}$ , where every proper factor

module of each $M_{i}$ is $\tau$-torsion. Assume $N$ is a $\tau$-injective direct summand of $M$.
Then by the same method as in [8, Lemma 2], it is not hard to see that there
is a submodule $N^{\prime}$ of $M$ such that $M=N\oplus N^{\prime}$ and $N^{\prime}=\bigoplus_{i\in I}M_{i}^{\prime}$ , where $M_{i}^{\prime}\subset M_{i}$

$(i\in I)$ . Especially, when $\bigoplus_{i\in I}M_{i}$ is a $\tau$-complete decomposition, there exists a sub-

set $J$ of $I$ such that $N^{\prime}=\bigoplus_{j\in J}M_{j}$ . Hence $N$ has a $\tau$-complete decomposition, too.

References

[1] Azumaya, G., Corrections and supplements to my paper concerning Krull-Remak-
Schmidt’s theorem. Nagoya Math. J., 1 (1950) 117-124.

[2] Faith, C. and Walker, E. A., Direct sum representations of injective modules. J.
Algebra 5 (1967) 203-221.

[3] Golan, J.S., Localization of Non-commutative Rings. Marcel Dekker, New York
(1975).

[4] Kutami, M. and Oshiro, K., Direct sums of non-singular indecomposable injective
modules. Math. J. Okayama Univ. 20 (1978) 91-99.

[5] Matlis, E., Injective modules over Noetherian rings. Pac. J. Math. 8 (1958) 514-
528.

[6] Stenstrom, B., Rings of Quotients. Grundlehren Math. Wiss. Vol217, Springer-
Verlag Berlin-Heiderberg-New York.

[7] Teply, M., Torsion free injective modules. Pac. J. Math. 28 (1969) 441-453.
[8] Warfield Jr, R. B., Decompositions of injective modules. Pac. J. Math. 31 (1969)

263-276.
$[9_{l}^{1}]$ Yamagata, K., Non-singular rings and Matlis’ problem. Sci. Rep. Tokyo Kyoiku

Daigaku A 11 (1971) 114-121.

Department of Mathematics
Tokyo Gakugei University


	DIRECT SUM OF $\tau$ -INJECTIVE ...
	References


