Translator Disclaimer
December 2007 Normal Generation of Line Bundles of Degree $2g-2h^{1}(L)-\mathrm{Cliff}(X)-k(k=2,3,4)$ on Curves
Katsumi Akahori
Tsukuba J. Math. 31(2): 283-300 (December 2007). DOI: 10.21099/tkbjm/1496165150

Abstract

Let $\mathrm{Cliff}(X)$ be the Clifford index of a curve. We determine necessary conditions for very ample line bundles of degree $\mathrm{deg}(L) = 2g - 2h^{1}-\mathrm{Cliff}(X) - k (k=2,3,4)$ being not normally generated.

Citation

Download Citation

Katsumi Akahori. "Normal Generation of Line Bundles of Degree $2g-2h^{1}(L)-\mathrm{Cliff}(X)-k(k=2,3,4)$ on Curves." Tsukuba J. Math. 31 (2) 283 - 300, December 2007. https://doi.org/10.21099/tkbjm/1496165150

Information

Published: December 2007
First available in Project Euclid: 30 May 2017

zbMATH: 1137.14023
MathSciNet: MR2371174
Digital Object Identifier: 10.21099/tkbjm/1496165150

Rights: Copyright © 2007 University of Tsukuba, Institute of Mathematics

JOURNAL ARTICLE
18 PAGES


SHARE
Vol.31 • No. 2 • December 2007
Back to Top