REPRESENTATION TYPE OF ONE POINT EXTENSIONS OF TILTED EUCLIDEAN ALGEBRAS

By

Gladys CHALOM and Hector MERKLEN

Abstract. We know, after [P1], that, given a tame algebra Λ , the Tits form q_{Λ} is weakly non negative. Moreover, the converse has been shown for some families of algebras, but it is not true in general. In the same article [P1], De la Peña proved that if Λ is a tame concealed algebra, not of type \tilde{A}_n and M is an indecomposable Λ -module then $\Lambda[M]$ is tame if and only if $q_{\Lambda[M]}$ is weakly non negative. The purpose of this work is to show the same result for Λ a strongly simply connected tilted algebra of euclidean type.

1. Preliminaries

Throughout this paper, k denotes an algebraically closed field. By an algebra Λ we mean a finite-dimensional, basic and connected k-algebra of the form $\Lambda \cong kQ/I$ where Q is a finite quiver and I an admissible ideal. We assume that Q has no oriented cycles. Let Λ -mod denote the category of finite-dimensional left Λ -modules, and Λ -ind a full subcategory of Λ -mod consisting of a complete set of non-isomorphic indecomposable objects of Λ -mod.

We shall use freely the known properties of the Auslander-Reiten translations, τ and τ^{-1} , and the Auslander-Reiten quiver of Λ -mod, Γ_{Λ} . For basic notions we refer to [R2] and [ARS]. See also [A] and [CB].

Tame algebras have the Tits form weakly non negative and for some classes of algebras, as for instance tilted or quasi-tilted algebras, this fact is determinant, that is, if Λ is tilted or quasi-tilted, then Λ is tame if and only if the Tits quadratic form is weakly non negative. Also, we have

THEOREM 1.1 (De la Peña) [P1]. Let $\Lambda = B[M]$ be a one point extension, where B is a tame concealed algebra, not of type \tilde{A}_n , and M an indecomposable B-module. Then Λ is tame if and only if q_{Λ} is weakly non negative.

Received December 22, 1999. Revised May 1, 2001. It is natural to ask when a similar result extends to tilted algebras. In this work we will give a partial answer, that is, we prove the following:

Let B be a strongly simply connected tilted algebra of euclidean type and M an indecomposable B-module, then the one point extension B[M] is tame if and only if $q_{B[M]}$ is weakly non negative.

Modules over a one point extension B[M] can be identified with triples (X, U, φ) where $X \in B$ -mod, U is a k-vectorspace and $\varphi : U \to Hom(M, X)$ is k-linear.

See [R1] for other notions and notations related to vectorspace categories.

We assume that B is such that gldim $B \le 2$. Then for any B-module M we have gldim $B[M] \le 3$. Hence we would be able to relate the Euler and the Tits form for A = B[M].

DEFINITION 1.2 [R2]. Let C_B be the Cartan matrix of B and let x and y vectors in $K_0(B)$. Then we have a bilinear form $\langle , \rangle = x C_B^{-T} y^T$, where the corresponding quadratic form $\chi_B(x) = \langle x, x \rangle$ is called the Euler form of B.

DEFINITION 1.3 [Bo]. The Tits quadratic form is given by:

$$q_B(x_1, x_2, \dots, x_l) = \sum_{i \in Q_0} x_i^2 - \sum_{i, j \in Q_0} x_i \cdot x_j \cdot dim_k \ Ext_B^1(S_i, S_j)$$
$$+ \sum_{i, j \in Q_0} x_i \cdot x_j \cdot dim_k \ Ext_B^2(S_i, S_j).$$

By [R2] the Euler form of A = B[M] can be calculated in terms of χ_B : Let X be a A-module and let:

$$\underline{dim}_{A}(X) = \underline{dim}_{B}(Y) + n.\underline{dim}_{A}(S_{e}),$$

where e is the new vertex. Then

$$\chi_A(\underline{\dim} X) = \chi_B(\underline{\dim} Y) + n^2 - n(\underline{\dim}_k \operatorname{Hom}_B(M, Y))$$
$$- \underline{\dim}_k \operatorname{Ext}^1_B(M, Y) + \underline{\dim}_k \operatorname{Ext}^2_B(M, Y))$$

On the other hand, as gldim $B \le 2$ then $\chi_B = q_B$, its Tits form is computed in following:

$$q_{A}(x_{1}, x_{2}, \dots, x_{l}, n) = q_{B}(x_{1}, x_{2}, \dots, x_{l}) + n^{2}$$

- $\sum_{j \in Q_{0}} n.x_{j}(dim_{k} Ext_{A}^{1}(S_{e}, S_{j}) + dim_{k} Ext_{A}^{1}(S_{j}, S_{e}))$
+ $\sum_{j \in Q_{0}} n.x_{j}(dim_{k} Ext_{A}^{2}(S_{e}, S_{j}) + dim_{k} Ext_{A}^{2}(S_{j}, S_{e}))$

Comparing, we have:

PROPOSITION 1.4. With the above notation:

 $\chi_A(\underline{dim}\ X) = q_A(\underline{dim}\ X) - n.dim_k\ Ext_B^2(M,\ Y)$

THEOREM 1.5 (De la Peña) [P1].

If B is a tame algebra, then q_B is weakly non negative.

An algebra Λ is tilted of type Δ if there exists a *tilting* module T over a path algebra $k\Delta$ such that $\Lambda = End_{k\Delta}(T)$. Tilted algebras are characterized by the existence of *complete slices* in a component of their Auslander-Reiten quiver, called the *connecting component*. The structure of the Auslander-Reiten quiver of a tilted algebra is given in [R2] and in [K]. Other facts about this subject can be seen in the survey of Assem, [A].

THEOREM 1.6 [K]. Let B be a tilted algebra of infinite representation type. The following conditions are equivalent:

(1) B is tame

(2) χ_B is weakly non negative

2. Modules of the Separating Tubular Family

Let us assume that B is a tilted algebra of euclidean type, and that M is an indecomposable B-module. We begin studying the case that M is not directed. We observe that 2.1 is very similar to [T], but we do not assume that B is a good algebra, but that the preinjective component of B be of tree type.

Let B be a tilted tame algebra of euclidean type with

1) the complete slice in the preinjective component.

2) the preinjective component of tree type.

Let M be an indecomposable module, in the separating tubular family.

PROPOSITION 2.1. In the above conditions, if B[M] is wild then $q_{B[M]}$ is strongly indefinite.

To prove this proposition, we need some preliminar results, concerning derived categories. We refer to Happel ([H]) and Keller ([Ke]) for definitions and basic results. LEMMA 2.2 [T]. Let $B = End_A(T)$ with T an A-tilting module and M = Hom(T, R) with $R \in \mathcal{G}(T)$. Then there exists a A[R]-tilting module T' such that $B[M] = End_{A[R]}(T')$.

PROOF OF THE PROPOSITION. Let B[M] be of wild type. Suppose that H[R] is tame, in this case we have the possibilities: H[R] is domestic tubular, tubular algebra or H[R] is a 2-tubular algebra. But, in any case, H[R] is derived tame (by [P5]) and H[R] and B[M] are derived equivalent (by [H], pag. 110), and so, B[M] is also derived tame, and therefore tame, a contradiction. So, we have H[R] wild.

Since B is tilted of euclidean type and the preinjective component of B is of tree type, H is tame, euclidean and \tilde{A}_n -free so, by [P1], there exist $V_1, V_2, \ldots V_n$, preinjective H-modules with $q_{H[R]}(\dim(\oplus V_i \oplus nS'e)) < 0$ and each $V_i \in \mathscr{G}(T)$, in this case let $W_i = Hom(T, V_i)$, W_i is a preinjective B-module that belongs to $\mathscr{Y}(T)$. So, we have: $\chi_{B[M]}(\underline{\dim} \oplus W_i \oplus nSe) = \chi_B(\underline{\dim} \oplus W_i) + n^2 - n\langle \underline{\dim} M, \underline{\dim} \oplus W_i \rangle_B$.

By [R2], pag. 175, there is an isometry $\sigma_T = \mathbf{K}_0(H) \to \mathbf{K}_0(B)$ such that: $\sigma_T(\underline{\dim} \ V_i) = \underline{\dim} \ W_i$ and $\sigma_T(\underline{\dim} \ R) = \underline{\dim} \ M$ so: $\chi_H(\underline{\dim} \oplus V_i) = \chi_B(\underline{\dim} \oplus W_i)$ and $\langle \underline{\dim} \ M, \underline{\dim} \oplus W_i \rangle_B = \langle \underline{\dim} \ R, \underline{\dim} \oplus V_i \rangle_H$ then: $\chi_{H[R]}(\underline{\dim}(\oplus V_i \oplus nS'e)) = \chi_{B[M]}(\underline{\dim}(\oplus W_i \oplus nSe)) < 0$ by [P1]. But $q_{B[M]}(\underline{\dim}(\oplus W_i + nSe)) = \chi_{B[M]}(\underline{\dim}(\oplus W_i \oplus nSe)) = \chi_{$

We will see now that the same result see in 2.1 is true for algebras of euclidean type, with a complete slice in the postprojective component.

THEOREM 2.3. Let B be a tilted algebra of euclidean type whose preinjective component is of tree type and let M be a indecomposable B-module in the separating tubular family such that the one-point extension B[M] is wild.

Then $q_{B[M]}$ is strongly indefinite.

PROOF. Since B is of euclidean type, either B has a complete slice in the preinjective component, and the result follows from 2.1, or B has a complete slice in the postprojective component. Let us see the case when

1) there is a complete slice of B in the postprojective component, and

2) the preinjective component of B is of tree type.

By [R2], *B* is a branch coextension of a tame concealed algebra B_0 and the preinjective component of *B* is the same preinjective component of B_0 , and so B_0 is \tilde{A}_n -free. Assume that $B = {}_{i=1}^t [E_i, R_i] B_0$ where E_i is a B_0 -ray module and R_i is a branch, for all *i*. Let us consider separately the following situations: A) $M_0 = M|_{B_0}$ is such that $M_0 = 0$;

B) $M_0 = M|_{B_0}$ is such that $M_0 \neq 0$.

In case A, supp M is contained in a branch R and the vectorspace category Hom(M, B-mod) is the same as Hom(M, R-mod). By [MP], if Hom(M, R-mod) is wild then $q_{R[M]}$ is strongly indefinite. As R[M] is a convex subcategory of B[M], if $q_{R[M]}$ is strongly indefinite then $q_{B[M]}$ is strongly indefinite.

In case B, we can distinguish two situations:

B1: $B_0[M_0]$ is wild;

B2: $B_0[M_0]$ is tame.

We begin by B1. If $B_0[M_0]$ is wild, since the preinjective component of B is the same preinjective component of B_0 , B_0 is tame concealed and \tilde{A}_n -free. So, by [P1], $q_{B_0[M_0]}$ is strongly indefinite. But $B_0[M_0]$ is a convex subcategory of B[M] and so $q_{B[M]}$ is strongly indefinite.

Let us see B2, that is $B_0[M_0]$ is tame, but B[M] wild.

Again, since $B_0[M_0]$ is tame, we have two possibilities:

B2.1 M_0 is a ray module.

B2.2 M_0 is a module of regular length two in the tube of rank n-2 and B_0 is tame concealed of type \tilde{D}_n . In the case B.2.1, we have that if M is a ray module over B, by [R2] 4.5 and 4.6, the component $\mathcal{T}[M]$ is a standard insertedco-inserted tube. Moreover, all indecomposable projectives of B[M] lie in \mathcal{P} , the postprojective component, or on $\mathcal{T}[M]$ (where is the unique projective that is outside of \mathcal{P}) therefore, B[M] is an algebra with acceptable projectives (see [PT]) and in this case, B[M], it is wild if and only if $q_{B[M]}$ is strongly indefinite. On the other hand, if $M = M_0$ and therefore, M is a ray module over B_0 , then $B[M] = B[M_0]$ is an iterated tubular algebra and in this case, B[M] is tame, a contradiction. So, we can assume that M is not a ray module over B and moreover that $M \neq M_0$ and, therefore, that there exists an indecomposable injective I in \mathcal{T} , the tube where M lies, such that $Hom(M, I) \neq 0$ and that there are two arrows starting in M. Also, we can assume that i, the coextension vertex belongs to supp M, so that there exists a morphism $M \to I_i$.

Let E be the ray module which is the root of the branch.

Let $B_i = [E]B_0$ and $M_i = M|_{B_i}$. Then we have: $Hom_{B_i}(M_i, M_0) \neq 0$, but $Hom_{B_i}(M_0, M_i) = 0$, and again we have two cases:

B.2.1.1 The branch is co-inserted in $E, E \neq M_0$;

B.2.1.2 The branch is co-inserted in $E = M_0$.

In the first case, since M is not a ray module over B, we can assume that there exists an arrow that start in M and points to the mouth of the tube, say $M \to Y$. Moreover, by [[R2], 4.5] there exists a sectional path $M \to M_t \to$ $M_{t-1} \to \cdots \to M_0$ that does not contain injectives. So, we can consider that all of these modules $\tau^{-1}M_i$, and in particular $\tau^{-1}M_1$, are non zero. Since M_0 is a B_0 -ray module, then $\tau^{-1}M_1$ cannot be a B_0 -module. But in this case, it is a co-ray module and therefore M_0 is a co-ray module, contradiction. So, the situation B.2.1.1 does not occur.

If the branch is co-inserted in $E = M_0$, $M_0 = M|_{B_0}$, M is not a ray module. Again, we can assume that there exists an arrow starting in M and pointing to the mouth of the tube. Moreover, since the branch is co-inserted in M_0 , there is a sectional path $M \to I$ the injective of the co-insertion. Let us look at the category Hom(M, B - mod). This category has three pieces. Since B is tilted, $Hom(M, X) \neq 0$ only for modules X that are preinjective or in the same tube \mathcal{T} where M lies. Let X be a B_0 -module. Since M is a co-inserted module, $Hom_B(M, X) \neq 0$ and, hence, $Hom_{B_0}(M_0, X) \neq 0$. Since B_0 is a tame concealed algebra and M_0 is a ray module over B_0 , Hom(M, B - mod) contains the following subcategories: the ray of \mathcal{T} that starts in M_0 , $Hom(M_0, \mathcal{I}(B_0)$ where $\mathcal{I}(B_0)$ is the preinjective component of B_0 and the subcategory given by the successors of M in the tube, that are not B_0 -modules. Since $B_0[M_0]$ is tame, $Hom(M_0, \mathcal{I}(B_0))$ is given by some of the patterns given in [[R1], pag. 254]. Let us assume that one of the following two situations occur:

Either M is injective and so the vectorspace category restricted to the tube is given by two sectional paths: one, finite, pointing to the mouth of the tube and one, infinite, (the ray) or M is not injective but the vectorspace category restricted to the tube is given by two parallel paths. We will see that in this situation, since $B_0[M_0]$ is tame, B[M] is tame, in contradiction to the hypothesis, because A = B[M]is a coil enlargement of B_0 , by [AS] because $A^+ = B_0[M_0]$, $A^- = B$, are both tame. As that A = B[M] is tame.

Let us assume then that M is not injective and that there exists a sectional path $M \to Y_t$ with $t \ge 1$. In first place, we observe that $Hom_B(Y_i, X) = 0$ for all preinjective X. But Y_i being on the coray, and to the right of M_0 , there does not exist an infinite path coming out of it, and similarly $Hom(\tau^{-1}M, X) = 0$ for all preinjective X.

In particular, $Hom(Y_i, X) = Hom(\tau^{-1}M, X) = 0$ for all X such that $Hom(M_0, X) \neq 0$ with X in the preinjective component. Moreover $Hom(Y_i, \tau^{-1}M) = 0 = Hom(\tau^{-1}M, Y_j)$ for $\forall j \geq 1$. Hence, by [[R1] (3.1)] we can find one of the following path-incomparable (see [Ch]) subcategories in $\mathscr{I}(B_0)$, with the only exception of the case $(\tilde{D}_n, n-2) : \mathbf{K}_1 = \{A, B, C\}$, (in cases: $(\tilde{D}_4, 1)$, $(\tilde{D}_6, 2)$, $(\tilde{D}_7, 2)$, $(\tilde{D}_8, 2)$, $(\tilde{E}_6, 2)$, $(\tilde{E}_7, 3)$, $(\tilde{E}_7, 4)$, $(\tilde{E}_8, 5)$ and $\mathbf{K}_2 = \{A, B \rightarrow C\}$ in cases $(\tilde{D}_5, 2)$ and $(\tilde{E}_6, 3)$. So, in each case, adding the objects $Y_1, \tau^{-1}M$ to the categories \mathbf{K}_1 or \mathbf{K}_2 we have that Hom(M, B - mod) is wild and that $q_{B[M]}$ is strongly indefinite.

Let us calculate the quadratic form for the case $(\tilde{D}_5, 2)$, the other cases are similar. Let \tilde{L} be the *B*-module $\tilde{L} = 2Y_1 \oplus 2\tau^{-1}M \oplus 2A \oplus B \oplus C$ and $L = \tilde{L} \oplus 4S_e$, then $q_{B[M]}(\underline{dim} \ L) = \chi_{B[M]}(\underline{dim} \ L) + 4 \ dim_k \ Ext^2(M, \tilde{L}) = \chi_{B[M]}(\underline{dim} \ L) = \chi_{B[M]}(\underline{dim} \ \tilde{L}) + 4^2 - 4(8) = 15 + 16 - 32 = -1$. Let us see the case $(\tilde{D}_n, n-2)$. In this case, the pattern is given by:

If t > 1, considering that $\mathbf{K} = \{A, B, \tau^{-1}M, Y_1 \rightarrow Y_2\}$ is wild, again the quadratic form is strongly indefinite. On the other hand, if t = 1 we have two possibilities: Case 1

In case 1, we can again consider the wild subcategory $\{Y_1, \tau^{-1}M \to \tau^{-1}Z_1, A, B\}$ and the quadratic form is strongly indefinite. On the other hand, in case 2, we have a vectorspace category which is in fact tame, by Nazarova Theorem, so that B[M] is tame.

and case 2

Let us examine now B.2.2, M_0 is a module of regular length 2 in a tube of rank n-2 and B_0 is tame concealed of type \tilde{D}_n . If $M = M_0$ lies in a stable tube, then $Hom(M, B - mod) = Hom(M_0, B_0 - mod)$ and therefore both are tame or wild simultaneosly. So, we can assume that M belongs to a co-inserted tube. Since M_0 has regular length 2, there exist E_1 and E_0 ray-modules over B_0 such that $\tau E_0 = E_1 \rightarrow M_0 \rightarrow E_0$ is the ARS for E_0 . Let $E_0, E_1, \ldots E_{n-3}$ be the ray-modules over B_0 of the tube where M lies. Again, we divide in possibilities.

B.2.2.1 The branch is co-inserted in E_0 .

B.2.2.2 The branch is co-inserted in E_1 .

B.2.2.3 The branch is co-inserted in E_j for $j \neq 0$ or 1.

Let us observe that if $M = M_0$, then Hom(M, B - mod) has the same pattern as $Hom(M_0, B_0 - mod)$. If M is a B_0 -module, then $Hom_B(M, N) \neq 0$ for modules N in the same tube as M or for modules N in the preinjective component. Hence, being $Hom(M, N) = Hom(M_0, N_0)$ it has the following pattern

which is tame, by [R1]. (In this picture we indicate the non zero modules in the category with \blacksquare indicating the objects of dimension 2.) We can assume that M belongs to the co-ray and that there exists an injective I in the tube \mathcal{T} such that $Hom(M, I) \neq 0$.

Let us consider B.2.2.1. We have a co-inserted branch in E_0 , and

If there exists a sectional path $M \to Y_0 \to Y_1$, then, $Hom(M, Y_1) \neq 0$. Let us observe that $Y_1|_{B_0} = 0$ and $Hom(Y_1, X) = 0$ for all preinjective module X and in particular, $Hom(Y_1, X_i) = 0$ for each of the preinjective X'_is such that $Hom(M_0, X_i)$ has dimension 2. Hence $q_{B[M]}$ is strongly indefinite. Let us assume that the longest sectional path starting at M in the direction of the mouth of the tube has length 1. In this case, again, Hom(M, B - mod) has the same pattern than $Hom(M_0, B_0 - mod)$ and so it is tame.

Let us consider B.2.2.2. Since $Hom(E_1, E_0) = 0$, the morphisms from M to X, for X preinjective, are just the ones that factor through the successor of M_0 , M_1 , and those that factor through E_0 are equal to zero and the vectorspace category Hom(M, B - mod) is of the form:

and we can repeat the arguments of the case B.2.1.2.

Finally, let us look at B.2.2.3. The branch is inserted in E_j with $j \neq 0$ or 1. But, in this case, $M = M_0$, $Hom(M_0, I) = 0$ for any I injective in \mathcal{T} and we fall again in a already examined case.

EXAMPLE 2.4. Let us see an example. Let B be given by:

B is tilted of type \tilde{D}_8 , with a complete slice in the postprojective component. Let us consider M_1 a module of the separating tubular family, such that the ordinary quiver of $\Lambda_1 = B[M_1]$, is given below. Then Λ_1 is wild and $q_{\Lambda_1}(I_3 \oplus I_3 \oplus I_8 \oplus 2S_e) = -1$.

3. Directed Modules

PROPOSITION 3.1. Let B be a tilted algebra of euclidean type, with the postprojective component of tree type and M an indecomposable B-module in this component. Then, if B[M] is wild, the Tits form $q_{B[M]}$ is strongly indefinite.

PROOF. Since B is of euclidean type we have two possibilities

1) B has a complete slice in the preinjective component, or

2) B has a complete slice in the postprojective component.

In the first case, all injectives are in the preinjective component, so for any I such that $Hom(M, I) \neq 0$, M and I are separated by a separating tubular family and the result follows from [PT].

In case 2 all projectives are in the postprojective component.

Let us consider \mathscr{C}' the component in the Auslander-Reiten quiver of B[M] that contains the new projective module P_e , we will see that \mathscr{C}' is a π -component (as in [Co]). For this, it is enough to prove that $l(Hom(_, B[M]) < \infty$, but as $B[M] = B \oplus P_e$ and the number of indecomposable modules that are predecessors of B[M] is finite, so, \mathscr{C}' is a π -component. Again two situations can occur:

1) The new simple injective I_e belongs to \mathscr{C}' , or

2) The new simple injective I_e does not belong to \mathscr{C}' .

Recall that the B[M]-indecomposable injectives are of the form $\overline{I}_i = (I_i, Hom(M, I_i), id.)$ when $Hom(M, I_i) \neq 0$, $(I_i, 0, 0)$ when $Hom(M, I_i) = 0$, where I_i are the indecomposable injectives of B and the new injective I_e is equal to (0, k, 0).

Let us consider 1), so $I_e \in \mathscr{C}'$, again by [Co], since \mathscr{C}' contains a projective module then $l(Hom(_, I_e)) < \infty$. But in this case the number of B[M]-modules that are not *B*-modules is finite and so B[M] is tame.

Let us consider 2). The new injective I_e does not belong to \mathscr{C}' . If no other injective belongs to \mathscr{C}' , by [Co] \mathscr{C}' is a postprojective component that contains all projectives and no injectives. In this case B[M] is a tilted algebra and the representation type is given by the corresponding quadratic form. Let us see that no injective belongs to \mathscr{C}' . Let I be a B-indecomposable injective, if $Hom(M, I) \neq 0$, there exists a non zero morphism $(I,0,0) \rightarrow (I, Hom(M,I), id.)$ Consider P the B-indecomposable projective associated to I, then (P,0,0) is the B[M]-projective associated to (I, Hom(M, I), id.) and $Hom((P,0,0), (I,0,0)) \neq 0$. As in B-mod, P and I are in different components, there exists infinite B-modules X_i such that $Hom(X_i, I) \neq 0$ but in this case, $Hom_{B[M]}((X_i, 0, 0), (I, 0, 0)) \neq 0$ for infinite modules, a contradiction to the fact that $(l(Hom(_, (I, 0, 0)) < \infty)$. So \mathscr{C} does not contain any injective.

We have been assuming that some of the directed components of B are of tree type. In general these hypothesis does not imply that the algebra is a good algebra or is strongly simply connected (see [S3] for definitions). But for tilted tame algebras, this is the case.

THEOREM 3.2 [ALP]. Let B be a tame tilted algebra. Then B is strongly simply connected if and only if the orbit quiver of each directed component of $\Gamma(mod B)$ is a tree.

COROLLARY 3.3. Let B be a strongly simply connected tilted algebra of euclidean type and M an indecomposable B-module. If B[M] is wild then $q_{B[M]}$ is strongly indefinite.

PROOF. If M is a postprojective module, we have the result by 3.1. If M is a module of the tubular family, the result follows by 2.3. Let us assume that Mis preinjective. If B has a complete slice in the postprojective component the result follows from [P1]. Let us assume that B has a complete slice in the preinjective component, we are going to use the same argument used by De la Peña in [P4]. Let $\mathscr{S}(M \to) = \{Y \in B - mod \text{ such that there exist a sectional path } M \to Y\}$ and let P_e denote the new projective in B[M]. Let us call $\mathscr{S} = \mathscr{S}(M \to) \cup \{P_e\}$. Then \mathscr{S} is a slice (in general not complete) in B[M], and we can consider C the full subcategory of B[M] determined by the vertices i such that $Y(i) \neq 0$ for $Y \in \mathscr{S}$. In this case, C is a convex subcategory of B[M], and \mathscr{S} is a complete slice in C, so C is tilted. Moreover all B[M]-modules are B-modules or are C-modules. If B[M] is wild, then C is wild, and as C is convex in $B[M] q_{B[M]}$ is strongly indefinite. \Box

References

- [A] Assem, I.; Tilting theory—an introduction; Topics in Algebra, Banach Center Publications, vol 26 (1990) 127–180.
- [AC] Assem, I.; Castonguay, D.; Strongly simply connected one-point extensions of tame hereditary algebras; Rapport n 207 (1997) Sherbrooke, Canada.
- [AL1] Assem, I.; Liu, S.; Strongly simply connected algebras, Rapport n 179 (1996) Sherbrooke, Canada.
- [AL2] Assem, I.; Liu, S.; Strongly simply connected tilted algebras, Rapport n 180 (1996) Sherbrooke, Canada.

- [ALP] Assem, I.; Liu, S.; Peña, J. A.; The strong simple connectedness of a tame tilted algebra, Rapport n 214 (1998) Sherbrooke, Canada.
- [ARS] Auslander, M.; Reiten, I.; Smalo, S.; Representation theory of Artin algebras; Cambridge Studies in Advanced Mathematics 36, 1995.
- [AS] Assem, I.; Skowroński, A.; Multicoil Algebras; Rapport n 99 (1992) Sherbrooke, Canada.
- [BB] Brenner, S.; Butler, M.; Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Proc. ICRA II (Ottawa, 1979), Lecture Notes in Math. 832, Springer, Berlin (1980), 103-169.
- [B1] Bekkert, V.; Schurian vector space categories of polynomial growth; Preprint (1995).
- [B2] Bekkert, V.; Non-domestic schurian vector space categories of polynomial growth; Preprint (1997).
- [B3] Bekkert, V.; Sincere cycle-finite schurian vector space categories; Preprint (1997).
- [Bo] Bongartz, K.; Algebras and quadratic forms; J. London Math. Soc. (2) 28 (1983) 461-469.
- [Co] Coelho, F. U.; Components of Auslander-Reiten quivers containing only preprojective modules; J. Algebra (157) (1993) 472-488.
- [CB] Crawley-Boevey, W. W.; On Tame algebras and Bocses; Proc. London Math. Soc. (3) 56 (1988) 451-483.
- [Ch] Chalom, G.; Vectorspace Categories Immersed in Directed Components; Comm. in Algebra, vol 28, n 9 (2000) 4321–4354.
- [D] Draxler, P.; Completely separating algebras; Journal of Algebra, vol 165, n 3 (1994) 550-565.
- [DR] Dlab, V.; Ringel, C. M.; Indecomposable representations of graphs and algebras; Memoirs Amer. Math. Soc. 173 (1976).
- [H] Happel, D.; Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Mathematical Society Lecture Notes Series, n 119 (1988).
- [HR] Happel, D.; Ringel, C. M.; Tilted Algebras, Trans. Amer. Math. Soc. 274 (1982), N 2, 399-443.
- [Ke] Keller, B.; Introduction to Abelian and Derived Categories; preprint.
- [K] Kerner, O.; Tilting wild algebras; J. London Math. Soc. (2) 39 (1989) 29-47.
- [L] Liu, S.; Tilted algebras and generalized standard Auslander Reiten components; Arch. Math. vol 61 (1993) 12-19.
- [L1] Liu, S.; Infinite radicals in standard Auslander Reiten components; Journal of Algebra 166 (1994) 245-254.
- [M1] Marmaridis, N.; Strongly Indefinite Quadratic Forms and Wild Algebras; Topics in Algebra, Banach Center Publications, vol 26 (1990) 341-351.
- [M2] Marmaridis, N.; Comma categories in representation theory; Communications in Algebra 11(17) (1983) 1919–1943.
- [MP] Marmaridis, N.; Peña, J. A.; Quadratic Forms and Preinjective Modules; Journal of Algebra 134 (1990) 326-343.
- [P1] Peña, J. A.; On the Representation Type of One Point Extensions of Tame Concealed Algebras; Manuscripta Math. 61 (1988) 183-194.
- [P2] Peña, J. A.; Tame algebras with sincere directing modules; Journal of Algebra 161 (1993) 171-185.
- [P3] Peña, J. A.; Algebras with hypercritical Tits form; Topics in Algebra, Banach Center Publications, vol 26 (1990) 353-369.
- [P4] Peña, J. A.; Tame Algebras—Some Fundamental Notions; Sonderforschungbereich Diskrete Strukturen in der Mathematik, Ergänzungsreihe 343, 95-010. Bielefeld (1995).
- [P5] Peña, J. A.; Algebras whose Derived Category is Tame—Trends in the Representation Theory of Finite Dimensional Algebras; Contemporary Mathematics, Amer. Math. Soc. n 229 (1998) 117-127.
- [PT] Peña, J. A.; Tomé, B.; Iterated Tubular Algebras; Journal of Pure and Applied Algebra 64 (1990) North Holand, 303-314.
- [R1] Ringel, C. M.; Tame Algebras-on Algorithms for Solving Vector Space Problems II; Springer Lecture Notes in Mathematics 831 (1980) 137-287.

- [R2] Ringel, C. M.; Tame Algebras and Integral Quadratic Forms; Springer Lecture Notes in Mathematics 1099.
- [R3] Ringel, C. M.; The regular components of the Auslander-Reiten quiver of a tilted algebras; Chin. Ann. of Math. 9B(1) (1988) 1-18.
- [Ro] Roiter, A. V.; Representations of posets and tame matrix problems; London Math. Soc. L.N.M. 116 (1986) 91-107.
- [S] Skowroński, A.; Tame quasitilted algebras; preprint (1996).
- [S2] Skowroński, A.; Simply connected algebras of polynomial growth; preprint.
- [S3] Skowroński, A.; Simply connected algebras and Hochschild Cohomologies; preprint.
- [T] Tomé, B.; One point extensions of algebras with complete preprojective components having non negative Tits forms; Comm. in Algebra 22(5) (1994) 1531-1549.
- [U] Unger, L.; Preinjective components of trees; Springer Lecture Notes in Mathematics 1177 (1984) 328-339.

Instituto de Matemática e Estatística Universidade de São Paulo

e-mail: agchalom@ime.usp.br, merklen@ime.usp.br