REPRESENTATION TYPE OF ONE POINT EXTENSIONS OF TILTED EUCLIDEAN ALGEBRAS

By
Gladys Chalom and Hector Merklen

Abstract

We know, after [P1], that, given a tame algebra Λ, the Tits form q_{Λ} is weakly non negative. Moreover, the converse has been shown for some families of algebras, but it is not true in general. In the same article [P1], De la Peña proved that if Λ is a tame concealed algebra, not of type \tilde{A}_{n} and M is an indecomposable Λ module then $\Lambda[M]$ is tame if and only if $q_{\Lambda[M]}$ is weakly non negative. The purpose of this work is to show the same result for Λ a strongly simply connected tilted algebra of euclidean type.

1. Preliminaries

Throughout this paper, k denotes an algebraically closed field. By an algebra Λ we mean a finite-dimensional, basic and connected k-algebra of the form $\Lambda \cong k Q / I$ where Q is a finite quiver and I an admissible ideal. We assume that Q has no oriented cycles. Let Λ-mod denote the category of finite-dimensional left Λ-modules, and Λ-ind a full subcategory of Λ-mod consisting of a complete set of non-isomorphic indecomposable objects of Λ-mod.

We shall use freely the known properties of the Auslander-Reiten translations, τ and τ^{-1}, and the Auslander-Reiten quiver of $\Lambda-\bmod , \Gamma_{\Lambda}$. For basic notions we refer to [R2] and [ARS]. See also [A] and [CB].

Tame algebras have the Tits form weakly non negative and for some classes of algebras, as for instance tilted or quasi-tilted algebras, this fact is determinant, that is, if Λ is tilted or quasi-tilted, then Λ is tame if and only if the Tits quadratic form is weakly non negative. Also, we have

Theorem 1.1 (De la Peña) [P1]. Let $\Lambda=B[M]$ be a one point extension, where B is a tame concealed algebra, not of type \tilde{A}_{n}, and M an indecomposable B-module. Then Λ is tame if and only if q_{Λ} is weakly non negative.

It is natural to ask when a similar result extends to tilted algebras. In this work we will give a partial answer, that is, we prove the following:

Let B be a strongly simply connected tilted algebra of euclidean type and M an indecomposable B-module, then the one point extension $B[M]$ is tame if and only if $q_{B[M]}$ is weakly non negative.

Modules over a one point extension $B[M]$ can be identified with triples (X, U, φ) where $X \in B$-mod, U is a k-vectorspace and $\varphi: U \rightarrow \operatorname{Hom}(M, X)$ is k linear.

See [R1] for other notions and notations related to vectorspace categories.
We assume that B is such that $\operatorname{gldim} B \leq 2$. Then for any B-module M we have gldim $B[M] \leq 3$. Hence we would be able to relate the Euler and the Tits form for $A=B[M]$.

Definition 1.2 [R2]. Let C_{B} be the Cartan matrix of B and let x and y vectors in $K_{0}(B)$. Then we have a bilinear form $\langle\rangle=,x C_{B}^{-T} y^{T}$, where the corresponding quadratic form $\chi_{B}(x)=\langle x, x\rangle$ is called the Euler form of B.

Definition 1.3 [Bo]. The Tits quadratic form is given by:

$$
\begin{aligned}
q_{B}\left(x_{1}, x_{2}, \ldots, x_{l}\right)= & \sum_{i \in Q_{0}} x_{i}^{2}-\sum_{i, j \in Q_{0}} x_{i} \cdot x_{j} \cdot \operatorname{dim}_{k} E x t_{B}^{1}\left(S_{i}, S_{j}\right) \\
& +\sum_{i, j \in Q_{0}} x_{i} \cdot x_{j} \cdot \operatorname{dim}_{k} E x t_{B}^{2}\left(S_{i}, S_{j}\right)
\end{aligned}
$$

By [R2] the Euler form of $A=B[M]$ can be calculated in terms of χ_{B} : Let X be a A-module and let:

$$
\underline{\operatorname{dim}}_{A}(X)=\operatorname{dim}_{B}(Y)+n \cdot \operatorname{dim}_{A}\left(S_{e}\right),
$$

where e is the new vertex. Then

$$
\begin{aligned}
\chi_{A}(\underline{\operatorname{dim}} X)= & \chi_{B}(\underline{\operatorname{dim}} Y)+n^{2}-n\left(\operatorname{dim}_{k} \operatorname{Hom}_{B}(M, Y)\right. \\
& \left.-\operatorname{dim}_{k} \operatorname{Ext}_{B}^{1}(M, Y)+\operatorname{dim}_{k} \operatorname{Ext}_{B}^{2}(M, Y)\right)
\end{aligned}
$$

On the other hand, as gldim $B \leq 2$ then $\chi_{B}=q_{B}$, its Tits form is computed in following:

$$
\begin{aligned}
q_{A}\left(x_{1}, x_{2}, \ldots, x_{l}, n\right)= & q_{B}\left(x_{1}, x_{2}, \ldots, x_{l}\right)+n^{2} \\
& -\sum_{j \in Q_{0}} n \cdot x_{j}\left(\operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}\left(S_{e}, S_{j}\right)+\operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}\left(S_{j}, S_{e}\right)\right) \\
& +\sum_{j \in Q_{0}} n \cdot x_{j}\left(\operatorname{dim}_{k} \operatorname{Ext}_{A}^{2}\left(S_{e}, S_{j}\right)+\operatorname{dim}_{k} \operatorname{Ext}_{A}^{2}\left(S_{j}, S_{e}\right)\right)
\end{aligned}
$$

Comparing, we have:

Proposition 1.4. With the above notation:

$$
\chi_{A}(\underline{\operatorname{dim}} X)=q_{A}(\underline{\operatorname{dim}} X)-n \cdot \operatorname{dim}_{k} \operatorname{Ext}_{B}^{2}(M, Y)
$$

Theorem 1.5 (De la Peña) [P1].
If B is a tame algebra, then q_{B} is weakly non negative.

An algebra Λ is tilted of type Δ if there exists a tilting module T over a path algebra $k \Delta$ such that $\Lambda=\operatorname{End}_{k \Delta}(T)$. Tilted algebras are characterized by the existence of complete slices in a component of their Auslander-Reiten quiver, called the connecting component. The structure of the Auslander-Reiten quiver of a tilted algebra is given in [R2] and in [K]. Other facts about this subject can be seen in the survey of Assem, $[\mathrm{A}]$.

Theorem 1.6[K]. Let B be a tilted algebra of infinite representation type. The following conditions are equivalent:
(1) B is tame
(2) χ_{B} is weakly non negative

2. Modules of the Separating Tubular Family

Let us assume that B is a tilted algebra of euclidean type, and that M is an indecomposable B-module. We begin studying the case that M is not directed. We observe that 2.1 is very similar to [T$]$, but we do not assume that B is a good algebra, but that the preinjective component of B be of tree type.

Let B be a tilted tame algebra of euclidean type with

1) the complete slice in the preinjective component.
2) the preinjective component of tree type.

Let M be an indecomposable module, in the separating tubular family.

Proposition 2.1. In the above conditions, if $B[M]$ is wild then $q_{B[M]}$ is strongly indefinite.

To prove this proposition, we need some preliminar results, concerning derived categories. We refer to Happel ([H]) and Keller ([Ke]) for definitions and basic results.

Lemma $2.2[\mathrm{~T}]$. Let $B=\operatorname{End}_{A}(T)$ with T an A-tilting module and $M=$ $\operatorname{Hom}(T, R)$ with $R \in \mathscr{G}(T)$. Then there exists a $A[R]$-tilting module T^{\prime} such that $B[M]=\operatorname{End}_{A[R]}\left(T^{\prime}\right)$.

Proof of the Proposition. Let $B[M]$ be of wild type. Suppose that $H[R]$ is tame, in this case we have the possibilities: $H[R]$ is domestic tubular, tubular algebra or $H[R]$ is a 2-tubular algebra. But, in any case, $H[R]$ is derived tame (by $[\mathrm{P} 5])$ and $H[R]$ and $B[M]$ are derived equivalent (by [H], pag. 110), and so, $B[M]$ is also derived tame, and therefore tame, a contradiction. So, we have $H[R]$ wild.

Since B is tilted of euclidean type and the preinjective component of B is of tree type, H is tame, euclidean and \tilde{A}_{n}-free so, by [P1], there exist $V_{1}, V_{2}, \ldots V_{n}$, preinjective H-modules with $q_{H[R]}\left(\operatorname{dim}\left(\oplus V_{i} \oplus n S^{\prime} e\right)\right)<0$ and each $V_{i} \in \mathscr{G}(T)$, in this case let $W_{i}=\operatorname{Hom}\left(T, V_{i}\right), W_{i}$ is a preinjective B-module that belongs to $\mathscr{Y}(T)$. So, we have: $\chi_{B[M]}\left(\underline{\operatorname{dim}} \oplus W_{i} \oplus n S e\right)=\chi_{B}\left(\underline{\operatorname{dim}} \oplus W_{i}\right)+n^{2}-n\left\langle\underline{\operatorname{dim}} M, \underline{\operatorname{dim}} \oplus W_{i}\right\rangle_{B}$.

By [R2], pag. 175, there is an isometry $\sigma_{T}=K_{0}(H) \rightarrow K_{0}(B)$ such that: $\sigma_{T}\left(\underline{\operatorname{dim}} V_{i}\right)=\underline{\operatorname{dim}} W_{i}$ and $\sigma_{T}(\underline{\operatorname{dim}} R)=\underline{\operatorname{dim}} M$ so: $\chi_{H}\left(\underline{\operatorname{dim}} \oplus V_{i}\right)=\chi_{B}\left(\underline{\operatorname{dim}} \oplus W_{i}\right)$ and $\left\langle\underline{\operatorname{dim}} M, \underline{\operatorname{dim}} \oplus W_{i}\right\rangle_{B}=\left\langle\underline{\operatorname{dim} R}, \underline{\operatorname{dim}} \oplus V_{i}\right\rangle_{H}$ then: $\chi_{H[R]}\left(\underline{\operatorname{dim}}\left(\oplus V_{i} \oplus n S^{\prime} e\right)\right)=$ $\chi_{B[M]}\left(\underline{\operatorname{dim}}\left(\oplus W_{i} \oplus n S e\right)\right)<0$ by [P1]. But $q_{B[M]}\left(\underline{\operatorname{dim}}\left(\oplus W_{i}+n S e\right)\right)=\chi_{B[M]}(\operatorname{dim}(\oplus$ $\left.W_{i} \oplus n S e\right)+n \operatorname{dim}_{k} E x t_{B}^{2}\left(M, \oplus W_{i}\right)$ and again, since $\operatorname{Hom}\left(M, W_{i}\right) \neq 0 \forall i$ and W_{i} is a directed module, we have: $E x t^{2}\left(M, \oplus W_{i}\right)=0$ so $q_{B[M]}\left(\operatorname{dim}\left(\oplus W_{i} \oplus n S e\right)\right)<$ 0 . Clearly, $\underline{\operatorname{dim}}\left(\oplus W_{i} \oplus n S e\right)$ is a vector of positive coordenates.

We will see now that the same result see in 2.1 is true for algebras of euclidean type, with a complete slice in the postprojective component.

Theorem 2.3. Let B be a tilted algebra of euclidean type whose preinjective component is of tree type and let M be a indecomposable B-module in the separating tubular family such that the one-point extension $B[M]$ is wild.

Then $q_{B[M]}$ is strongly indefinite.
Proof. Since B is of euclidean type, either B has a complete slice in the preinjective component, and the result follows from 2.1 , or B has a complete slice in the postprojective component. Let us see the case when

1) there is a complete slice of B in the postprojective component, and
2) the preinjective component of B is of tree type.

By [R2], B is a branch coextension of a tame concealed algebra B_{0} and the preinjective component of B is the same preinjective component of B_{0}, and so B_{0} is \tilde{A}_{n}-free. Assume that $B={ }_{i=1}^{t}\left[E_{i}, R_{i}\right] B_{0}$ where E_{i} is a B_{0}-ray module and R_{i} is a branch, for all i. Let us consider separately the following situations: A) $M_{0}=\left.M\right|_{B_{0}}$ is such that $M_{0}=0$;
B) $M_{0}=\left.M\right|_{B_{0}}$ is such that $M_{0} \neq 0$.

In case $\mathrm{A}, \operatorname{supp} M$ is contained in a branch R and the vectorspace category $\operatorname{Hom}(M, B-m o d)$ is the same as $\operatorname{Hom}(M, R-\bmod)$. By [MP], if $\operatorname{Hom}(M, R-$ mod $)$ is wild then $q_{R[M]}$ is strongly indefinite. As $R[M]$ is a convex subcategory of $B[M]$, if $q_{R[M]}$ is strongly indefinite then $q_{B[M]}$ is strongly indefinite.

In case B, we can distinguish two situations:
$\mathrm{B} 1: B_{0}\left[M_{0}\right]$ is wild;
$\mathrm{B} 2: B_{0}\left[M_{0}\right]$ is tame.
We begin by B1. If $B_{0}\left[M_{0}\right]$ is wild, since the preinjective component of B is the same preinjective component of B_{0}, B_{0} is tame concealed and \tilde{A}_{n}-free. So, by $[\mathrm{P} 1], q_{B_{0}\left[M_{0}\right]}$ is strongly indefinite. But $B_{0}\left[M_{0}\right]$ is a convex subcategory of $B[M]$ and so $q_{B[M]}$ is strongly indefinite.

Let us see B 2 , that is $B_{0}\left[M_{0}\right]$ is tame, but $B[M]$ wild.
Again, since $B_{0}\left[M_{0}\right]$ is tame, we have two possibilities:
B2.1 M_{0} is a ray module.
B2.2 M_{0} is a module of regular length two in the tube of rank $n-2$ and B_{0} is tame concealed of type \tilde{D}_{n}. In the case B.2.1, we have that if M is a ray module over B, by [R2] 4.5 and 4.6 , the component $\mathscr{T}[M]$ is a standard inserted-co-inserted tube. Moreover, all indecomposable projectives of $B[M]$ lie in \mathscr{P}, the postprojective component, or on $\mathscr{T}[M]$ (where is the unique projective that is outside of \mathscr{P}) therefore, $B[M]$ is an algebra with acceptable projectives (see [PT]) and in this case, $B[M]$, it is wild if and only if $q_{B[M]}$ is strongly indefinite. On the other hand, if $M=M_{0}$ and therefore, M is a ray module over B_{0}, then $B[M]=B\left[M_{0}\right]$ is an iterated tubular algebra and in this case, $B[M]$ is tame, a contradiction. So, we can assume that M is not a ray module over B and moreover that $M \neq M_{0}$ and, therefore, that there exists an indecomposable injective I in \mathscr{T}, the tube where M lies, such that $\operatorname{Hom}(M, I) \neq 0$ and that there are two arrows starting in M. Also, we can assume that i, the coextension vertex belongs to supp M, so that there exists a morphism $M \rightarrow I_{i}$.

Let E be the ray module which is the root of the branch.
Let $B_{i}=[E] B_{0}$ and $M_{i}=\left.M\right|_{B_{i}}$. Then we have: $\operatorname{Hom}_{B_{i}}\left(M_{i}, M_{0}\right) \neq 0$, but $\operatorname{Hom}_{B_{i}}\left(M_{0}, M_{i}\right)=0$, and again we have two cases:
B.2.1.1 The branch is co-inserted in $E, E \neq M_{0}$;
B.2.1.2 The branch is co-inserted in $E=M_{0}$.

In the first case, since M is not a ray module over B, we can assume that there exists an arrow that start in M and points to the mouth of the tube, say $M \rightarrow Y$. Moreover, by [[R2], 4.5] there exists a sectional path $M \rightarrow M_{t} \rightarrow$ $M_{t-1} \rightarrow \cdots M_{0}$ that does not contain injectives. So, we can consider that all of these modules $\tau^{-1} M_{i}$, and in particular $\tau^{-1} M_{1}$, are non zero.

Since M_{0} is a B_{0}-ray module, then $\tau^{-1} M_{1}$ cannot be a B_{0}-module. But in this case, it is a co-ray module and therefore M_{0} is a co-ray module, contradiction. So, the situation B.2.1.1 does not occur.

If the branch is co-inserted in $E=M_{0}, M_{0}=\left.M\right|_{B_{0}}, M$ is not a ray module. Again, we can assume that there exists an arrow starting in M and pointing to the mouth of the tube. Moreover, since the branch is co-inserted in M_{0}, there is a sectional path $M \rightarrow I$ the injective of the co-insertion. Let us look at the category $\operatorname{Hom}(M, B-\bmod)$. This category has three pieces. Since B is tilted, $\operatorname{Hom}(M, X) \neq$ 0 only for modules X that are preinjective or in the same tube \mathscr{T} where M lies. Let X be a B_{0}-module. Since M is a co-inserted module, $\operatorname{Hom}_{B}(M, X) \neq 0$ and, hence, $\operatorname{Hom}_{B_{0}}\left(M_{0}, X\right) \neq 0$. Since B_{0} is a tame concealed algebra and M_{0} is a ray module over $B_{0}, \operatorname{Hom}(M, B-\bmod)$ contains the following subcategories: the ray of \mathscr{T} that starts in $M_{0}, \operatorname{Hom}\left(M_{0}, \mathscr{I}\left(B_{0}\right)\right.$ where $\mathscr{I}\left(B_{0}\right)$ is the preinjective component of B_{0} and the subcategory given by the sucessors of M in the tube, that are not B_{0}-modules. Since $B_{0}\left[M_{0}\right]$ is tame, $\operatorname{Hom}\left(M_{0}, \mathscr{I}\left(B_{0}\right)\right)$ is given by some of the patterns given in [[R1], pag. 254]. Let us assume that one of the following two situations occur:

Either M is injective and so the vectorspace category restricted to the tube is given by two sectional paths: one, finite, pointing to the mouth of the tube and one, infinite, (the ray) or M is not injective but the vectorspace category restricted to the tube is given by two parallel paths. We will see that in this situation, since $B_{0}\left[M_{0}\right]$ is tame, $B[M]$ is tame, in contradiction to the hypothesis, because $A=B[M]$ is a coil enlargement of B_{0}, by [AS] because $A^{+}=B_{0}\left[M_{0}\right], A^{-}=B$, are both tame. As that $A=B[M]$ is tame.

Let us assume then that M is not injective and that there exists a sectional path $M \rightarrow Y_{t}$ with $t \geq 1$. In first place, we observe that $\operatorname{Hom}_{B}\left(Y_{i}, X\right)=0$ for all preinjective X. But Y_{i} being on the coray, and to the right of M_{0}, there does not exist an infinite path coming out of it, and similarly $\operatorname{Hom}\left(\tau^{-1} M, X\right)=0$ for all preinjective X.

In particular, $\operatorname{Hom}\left(Y_{i}, X\right)=\operatorname{Hom}\left(\tau^{-1} M, X\right)=0$ for all X such that $\operatorname{Hom}\left(M_{0}, X\right) \neq 0$ with X in the preinjective component. Moreover $\operatorname{Hom}\left(Y_{i}, \tau^{-1} M\right)=$ $0=\operatorname{Hom}\left(\tau^{-1} M, Y_{j}\right)$ for $\forall j \geq 1$. Hence, by [[R1] (3.1)] we can find one of the following path-incomparable (see [Ch]) subcategories in $\mathscr{I}\left(B_{0}\right)$, with the only exception of the case $\left(\tilde{D}_{n}, n-2\right): K_{1}=\{A, B, C\}$, (in cases: $\left(\tilde{D}_{4}, 1\right),\left(\tilde{D}_{6}, 2\right)$, $\left(\tilde{D}_{7}, 2\right),\left(\tilde{D}_{8}, 2\right),\left(\tilde{E}_{6}, 2\right),\left(\tilde{E}_{7}, 3\right),\left(\tilde{E}_{7}, 4\right),\left(\tilde{E}_{8}, 5\right)$ and $K_{2}=\{A, B \rightarrow C\}$ in cases $\left(\tilde{D}_{5}, 2\right)$ and $\left(\tilde{E}_{6}, 3\right)$. So, in each case, adding the objects $Y_{1}, \tau^{-1} M$ to the categories K_{1} or K_{2} we have that $\operatorname{Hom}(M, B-\bmod)$ is wild and that $q_{B[M]}$ is strongly indefinite.

Let us calculate the quadratic form for the case $\left(\tilde{D}_{5}, 2\right)$, the other cases are similar. Let \tilde{L} be the B-module $\tilde{L}=2 Y_{1} \oplus 2 \tau^{-1} M \oplus 2 A \oplus B \oplus C$ and $L=$ $\tilde{L} \oplus 4 S_{e}$, then $q_{B[M]}(\underline{\operatorname{dim}} L)=\chi_{B[M]}(\underline{\operatorname{dim}} L)+4 \operatorname{dim}_{k} \operatorname{Ext}^{2}(M, \tilde{L})=\chi_{B[M]}(\underline{\operatorname{dim}} L)=$ $\chi_{B[M]}(\operatorname{dim} \tilde{L})+4^{2}-4(8)=15+16-32=-1$. Let us see the case $\left(\tilde{D}_{n}, n-2\right)$. In this case, the pattern is given by:

If $t>1$, considering that $K=\left\{A, B, \tau^{-1} M, Y_{1} \rightarrow Y_{2}\right\}$ is wild, again the quadratic form is strongly indefinite. On the other hand, if $t=1$ we have two possibilities:

Case 1

and case 2

In case 1 , we can again consider the wild subcategory $\left\{Y_{1}, \tau^{-1} M \rightarrow \tau^{-1} Z_{1}, A, B\right\}$ and the quadratic form is strongly indefinite. On the other hand, in case 2 , we have a vectorspace category which is in fact tame, by Nazarova Theorem, so that $B[M]$ is tame.

Let us examine now B.2.2, M_{0} is a module of regular length 2 in a tube of rank $n-2$ and B_{0} is tame concealed of type \tilde{D}_{n}. If $M=M_{0}$ lies in a stable tube, then $\operatorname{Hom}(M, B-\bmod)=\operatorname{Hom}\left(M_{0}, B_{0}-\bmod \right)$ and therefore both are tame or wild simultaneosly. So, we can assume that M belongs to a co-inserted tube. Since M_{0} has regular length 2 , there exist E_{1} and E_{0} ray-modules over B_{0} such that $\tau E_{0}=E_{1} \rightarrow M_{0} \rightarrow E_{0}$ is the ARS for E_{0}. Let $E_{0}, E_{1}, \ldots E_{n-3}$ be the ray-modules over B_{0} of the tube where M lies. Again, we divide in possibilities.
B.2.2.1 The branch is co-inserted in E_{0}.
B.2.2.2 The branch is co-inserted in E_{1}.
B.2.2.3 The branch is co-inserted in E_{j} for $j \neq 0$ or 1 .

Let us observe that if $M=M_{0}$, then $\operatorname{Hom}(M, B-\bmod)$ has the same pattern as $\operatorname{Hom}\left(M_{0}, B_{0}-\bmod \right)$. If M is a B_{0}-module, then $\operatorname{Hom}_{B}(M, N) \neq 0$ for modules N in the same tube as M or for modules N in the preinjective component. Hence, being $\operatorname{Hom}(M, N)=\operatorname{Hom}\left(M_{0}, N_{0}\right)$ it has the following pattern

which is tame, by [R1]. (In this picture we indicate the non zero modules in the category with \square indicating the objects of dimension 2.) We can assume that M belongs to the co-ray and that there exists an injective I in the tube \mathscr{T} such that $\operatorname{Hom}(M, I) \neq 0$.

Let us consider B.2.2.1. We have a co-inserted branch in E_{0}, and

If there exists a sectional path $M \rightarrow Y_{0} \rightarrow Y_{1}$, then, $\operatorname{Hom}\left(M, Y_{1}\right) \neq 0$. Let us observe that $\left.Y_{1}\right|_{B_{0}}=0$ and $\operatorname{Hom}\left(Y_{1}, X\right)=0$ for all preinjective module X and in particular, $\operatorname{Hom}\left(Y_{1}, X_{i}\right)=0$ for each of the preinjective $X_{i}^{\prime} s$ such that
$\operatorname{Hom}\left(M_{0}, X_{i}\right)$ has dimension 2. Hence $q_{B[M]}$ is strongly indefinite. Let us assume that the longest sectional path starting at M in the direction of the mouth of the tube has length 1. In this case, again, $\operatorname{Hom}(M, B-\bmod)$ has the same pattern than $\operatorname{Hom}\left(M_{0}, B_{0}-\bmod \right)$ and so it is tame.

Let us consider B.2.2.2. Since $\operatorname{Hom}\left(E_{1}, E_{0}\right)=0$, the morphisms from M to X, for X preinjective, are just the ones that factor through the successor of M_{0}, M_{1}, and those that factor through E_{0} are equal to zero and the vectorspace category $\operatorname{Hom}(M, B-\bmod)$ is of the form:

and we can repeat the arguments of the case B.2.1.2.
Finally, let us look at B.2.2.3. The branch is inserted in E_{j} with $j \neq 0$ or 1. But, in this case, $M=M_{0}, \operatorname{Hom}\left(M_{0}, I\right)=0$ for any I injective in \mathscr{T} and we fall again in a already examined case.

Example 2.4. Let us see an example.
Let B be given by:

B is tilted of type \tilde{D}_{8}, with a complete slice in the postprojective component. Let us consider M_{1} a module of the separating tubular family, such that the ordinary quiver of $\Lambda_{1}=B\left[M_{1}\right]$, is given below. Then Λ_{1} is wild and $q_{\Lambda_{1}}\left(I_{3} \oplus I_{3} \oplus I_{8} \oplus 2 S_{e}\right)=-1$.

3. Directed Modules

Proposition 3.1. Let B be a tilted algebra of euclidean type, with the postprojective component of tree type and M an indecomposable B-module in this component. Then, if $B[M]$ is wild, the Tits form $q_{B[M]}$ is strongly indefinite.

Proof. Since B is of euclidean type we have two possibilities

1) B has a complete slice in the preinjective component, or
2) B has a complete slice in the postprojective component.

In the first case, all injectives are in the preinjective component, so for any I such that $\operatorname{Hom}(M, I) \neq 0, M$ and I are separated by a separating tubular family and the result follows from [PT].

In case 2 all projectives are in the postprojective component.
Let us consider \mathscr{C}^{\prime} the component in the Auslander-Reiten quiver of $B[M]$ that contains the new projective module P_{e}, we will see that \mathscr{C}^{\prime} is a π component (as in $[\mathrm{Co}])$. For this, it is enough to prove that $l\left(\operatorname{Hom}\left({ }_{-}, B[M]\right)<\infty\right.$, but as $B[M]=B \oplus P_{e}$ and the number of indecomposable modules that are predecessors of $B[M]$ is finite, so, \mathscr{C}^{\prime} is a π-component. Again two situations can occur:

1) The new simple injective I_{e} belongs to \mathscr{C}^{\prime}, or
2) The new simple injective I_{e} does not belong to \mathscr{C}^{\prime}.

Recall that the $B[M]$-indecomposable injectives are of the form $\bar{I}_{i}=$ $\left(I_{i}, \operatorname{Hom}\left(M, I_{i}\right), i d.\right)$ when $\operatorname{Hom}\left(M, I_{i}\right) \neq 0,\left(I_{i}, 0,0\right)$ when $\operatorname{Hom}\left(M, I_{i}\right)=0$, where I_{i} are the indecomposable injectives of B and the new injective I_{e} is equal to $(0, k, 0)$.

Let us consider 1), so $I_{e} \in \mathscr{C}^{\prime}$, again by [Co], since \mathscr{C}^{\prime} contains a projective module then $l\left(\operatorname{Hom}\left({ }_{-}, I_{e}\right)\right)<\infty$. But in this case the number of $B[M]$-modules that are not B-modules is finite and so $B[M]$ is tame.

Let us consider 2). The new injective I_{e} does not belong to \mathscr{C}^{\prime}. If no other injective belongs to \mathscr{C}^{\prime}, by [Co] \mathscr{C}^{\prime} is a postprojective component that contains all projectives and no injectives. In this case $B[M]$ is a tilted algebra and the representation type is given by the corresponding quadratic form. Let us see that no injective belongs to \mathscr{C}^{\prime}. Let I be a B-indecomposable injective, if $\operatorname{Hom}(M, I) \neq 0$, there exists a non zero morphism $(I, 0,0) \rightarrow(I, \operatorname{Hom}(M, I), i d$.$) Consider P$ the B-indecomposable projective associated to I, then $(P, 0,0)$ is the $B[M]$-projective associated to $(I, \operatorname{Hom}(M, I), i d$.$) and \operatorname{Hom}((P, 0,0),(I, 0,0)) \neq 0$. As in B-mod, P and I are in different components, there exists infinite B-modules X_{i} such that $\operatorname{Hom}\left(X_{i}, I\right) \neq 0$ but in this case, $\operatorname{Hom}_{B[M]}\left(\left(X_{i}, 0,0\right),(I, 0,0)\right) \neq 0$ for infinite mod-
ules, a contradiction to the fact that $\left(l\left(\operatorname{Hom}\left({ }_{-},(I, 0,0)\right)<\infty\right.\right.$. So \mathscr{C} does not contain any injective.

We have been assuming that some of the directed components of B are of tree type. In general these hypothesis does not imply that the algebra is a good algebra or is strongly simply connected (see [S3] for definitions). But for tilted tame algebras, this is the case.

Theorem 3.2 [ALP]. Let B be a tame tilted algebra. Then B is strongly simply connected if and only if the orbit quiver of each directed component of $\Gamma(\bmod B)$ is a tree.

Corollary 3.3. Let B be a strongly simply connected tilted algebra of euclidean type and M an indecomposable B-module. If $B[M]$ is wild then $q_{B[M]}$ is strongly indefinite.

Proof. If M is a postprojective module, we have the result by 3.1. If M is a module of the tubular family, the result follows by 2.3 . Let us assume that M is preinjective. If B has a complete slice in the postprojective component the result follows from [P 1$]$. Let us assume that B has a complete slice in the preinjective component, we are going to use the same argument used by De la Peña in [P4]. Let $\mathscr{S}(M \rightarrow)=\{Y \in B-\bmod$ such that there exist a sectional path $M \rightarrow Y\}$ and let P_{e} denote the new projective in $B[M]$. Let us call $\mathscr{S}=\mathscr{S}(M \rightarrow) \cup\left\{P_{e}\right\}$. Then \mathscr{S} is a slice (in general not complete) in $B[M]$, and we can consider C the full subcategory of $B[M]$ determined by the vertices i such that $Y(i) \neq 0$ for $Y \in \mathscr{S}$. In this case, C is a convex subcategory of $B[M]$, and \mathscr{S} is a complete slice in C, so C is tilted. Moreover all $B[M]$-modules are B-modules or are C-modules. If $B[M]$ is wild, then C is wild, and as C is convex in $B[M] q_{B[M]}$ is strongly indefinite.

References

[A] Assem, I.; Tilting theory-an introduction; Topics in Algebra, Banach Center Publications, vol 26 (1990) 127-180.
[AC] Assem, I.; Castonguay, D.; Strongly simply connected one-point extensions of tame hereditary algebras; Rapport n 207 (1997) Sherbrooke, Canada.
[AL1] Assem, I.; Liu, S.; Strongly simply connected algebras, Rapport n 179 (1996) Sherbrooke, Canada.
[AL2] Assem, I.; Liu, S.; Strongly simply connected tilted algebras, Rapport n 180 (1996) Sherbrooke, Canada.
[ALP] Assem, I.; Liu, S.; Peña, J. A.; The strong simple connectedness of a tame tilted algebra, Rapport n 214 (1998) Sherbrooke, Canada.
[ARS] Auslander, M.; Reiten, I.; Smalo, S.; Representation theory of Artin algebras; Cambridge Studies in Advanced Mathematics 36, 1995.
[AS] Assem, I.; Skowroński, A.; Multicoil Algebras; Rapport n 99 (1992) Sherbrooke, Canada.
[BB] Brenner, S.; Butler, M.; Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Proc. ICRA II (Ottawa, 1979), Lecture Notes in Math. 832, Springer, Berlin (1980), 103-169.
[B1] Bekkert, V.; Schurian vector space categories of polynomial growth; Preprint (1995).
[B2] Bekkert, V.; Non-domestic schurian vector space categories of polynomial growth; Preprint (1997).
[B3] Bekkert, V.; Sincere cycle-finite schurian vector space categories; Preprint (1997).
[Bo] Bongartz, K.; Algebras and quadratic forms; J. London Math. Soc. (2) 28 (1983) 461-469.
[Co] Coelho, F. U.; Components of Auslander-Reiten quivers containing only preprojective modules; J. Algebra (157) (1993) 472-488.
[CB] Crawley-Boevey, W. W.; On Tame algebras and Bocses; Proc. London Math. Soc. (3) 56 (1988) 451-483.
[Ch] Chalom, G.; Vectorspace Categories Immersed in Directed Components; Comm. in Algebra, vol 28, n 9 (2000) 4321-4354.
[D] Draxler, P.; Completely separating algebras; Journal of Algebra, vol 165, n 3 (1994) 550-565.
[DR] Dlab, V.; Ringel, C. M.; Indecomposable representations of graphs and algebras; Memoirs Amer. Math. Soc. 173 (1976).
[H] Happel, D.; Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Mathematical Society Lecture Notes Series, n 119 (1988).
[HR] Happel, D.; Ringel, C. M.; Tilted Algebras, Trans. Amer. Math. Soc. 274 (1982), N 2, 399443.
[Ke] Keller, B.; Introduction to Abelian and Derived Categories; preprint.
[K] Kerner, O.; Tilting wild algebras; J. London Math. Soc. (2) 39 (1989) 29-47.
[L] Liu, S.; Tilted algebras and generalized standard Auslander Reiten components; Arch. Math. vol 61 (1993) 12-19.
[L1] Liu, S.; Infinite radicals in standard Auslander Reiten components; Journal of Algebra 166 (1994) 245-254.
[M1] Marmaridis, N.; Strongly Indefinite Quadratic Forms and Wild Algebras; Topics in Algebra, Banach Center Publications, vol 26 (1990) 341-351.
[M2] Marmaridis, N.; Comma categories in representation theory; Communications in Algebra 11(17) (1983) 1919-1943.
[MP] Marmaridis, N.; Peña, J. A.; Quadratic Forms and Preinjective Modules; Journal of Algebra 134 (1990) 326-343.
[P1] Peña, J. A.; On the Representation Type of One Point Extensions of Tame Concealed Algebras; Manuscripta Math. 61 (1988) 183-194.
[P2] Peña, J. A.; Tame algebras with sincere directing modules; Journal of Algebra 161 (1993) 171-185.
[P3] Peña, J. A.; Algebras with hypercritical Tits form; Topics in Algebra, Banach Center Publications, vol 26 (1990) 353-369.
[P4] Peña, J. A.; Tame Algebras-Some Fundamental Notions; Sonderforschungbereich Diskrete Strukturen in der Mathematik, Ergãnzungsreihe 343, 95-010. Bielefeld (1995).
[P5] Peña, J. A.; Algebras whose Derived Category is Tame-Trends in the Representation Theory of Finite Dimensional Algebras; Contemporary Mathematics, Amer. Math. Soc. n 229 (1998) 117-127.
[PT] Peña, J. A.; Tomé, B.; Iterated Tubular Algebras; Journal of Pure and Applied Algebra 64 (1990) North Holand, 303-314.
[R1] Ringel, C. M.; Tame Algebras-on Algorithms for Solving Vector Space Problems II; Springer Lecture Notes in Mathematics 831 (1980) 137-287.
[R2] Ringel, C. M.; Tame Algebras and Integral Quadratic Forms; Springer Lecture Notes in Mathematics 1099.
[R3] Ringel, C. M.; The regular components of the Auslander-Reiten quiver of a tilted algebras; Chin. Ann. of Math. 9B(1) (1988) 1-18.
[Ro] Roiter, A. V.; Representations of posets and tame matrix problems; London Math. Soc. L.N.M. 116 (1986) 91-107.
[S] Skowroński, A.; Tame quasitilted algebras; preprint (1996).
[S2] Skowronski, A.; Simply connected algebras of polynomial growth; preprint.
[S3] Skowronski, A.; Simply connected algebras and Hochschild Cohomologies; preprint.
[T] Tomé, B.; One point extensions of algebras with complete preprojective components having non negative Tits forms; Comm. in Algebra 22(5) (1994) 1531-1549.
[U] Unger, L.; Preinjective components of trees; Springer Lecture Notes in Mathematics 1177 (1984) 328-339.

Instituto de Matemática e Estatística
Universidade de São Paulo
e-mail: agchalom@ime.usp.br, merklen@ime.usp.br

