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COVERS AND ENVELOPES OVER
GORENSTEIN RINGS

By
Edgar E. Enochs Overtoun M.G. Jenda and Jinzhong Xu

Abstract. A module over a Gorenstein ring is said to be
Gorenstein injective if it splits under all modules of finite projective
dimension. We show that over a Gorenstein ring every module has a
Gorenstein injective envelope. We apply this result to the group
algebra 2,,G (with G a finite group and Z,, the ring of p-adic
integers for some prime p) and show that ever finitely generated
ZI,G -module has a cover by a lattice. This gives a way of lifting
finite dimensional representations of G over Z/(p) to modular

representations of G over Z,.

1. Introduction

In this paper we will use the terminology of Enochs [6]. We recall that if &
is a class of left R-modules for some ring R, then a linear map ¢: F —> M with
Fe% is called an F-cover of M if

a) any diagram

L F’

.
.
.
.
.
k

F2sMm

can be completed to a commutative diagram if F'e %
b) The diagram

. F
k// l¢
F2sMm

can be completed to a commutative diagram only by automorphisms of F.

If ¢:F— M satisfies a) and perhaps not b), then it called an F-precover of
M.
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If an F-cover of M exists it is unique to isomorphism. If & is for example,
the class of flat modules, then an %-cover is called a flat cover.

& -preenvelopes and F-envelopes are defined dually. We follow a convention
like the one above when dealing with preenvelopes and envelopes. So our
terminology agrees with the customary terminology. For example, injective
envelopes and projective covers are as usual.

We note that Auslander and Reiten use the terms right %- approximation,
minimal right %-approximation, left %-approximation and minimal left %-
approximation for %-precover, %-cover, %F-preenvelope and %F-envelope

respectively. Also see Auslander and Smal¢ [3].

DEFINITION 1.1. If & is a class of left (right) R-modules, we let F* be the
class of left (right) R-modules K such that Ext'(F,K)=0 for all Fe%. We let
% be those K such that Ext'(K,F)=0 forall Fe%.

We note that if 0 > K —- F— M — 0 is an exact sequence of left R-modules
with Fe% for some class of left R-modules and with K e %", then for any
Fe%,

Hom (F’, X) - Hom (F’,M) — Ext'(F’,K)=0

is exact. This shows that F— M is an F-precover of M. Wakamatsu’s lemma

(see [2]) says that conversely, if

O->K—->F—->M->0

is exact and if F—> M is an F-cover of M where & is a class of modules closed
under extensions, then K e %*. There is a dual result concerning envelopes.
These ideas are considered in section 3. In section 5 we use these ideas to prove
the existence of covers and envelopes.

If R is a Gorenstein ring, the class £ of left R-modules of finite projective
dimension is an important class of modules. We call the modules in £* the
Gorenstein injective modules. We consider the Gorenstein injective modules in
section 4 and then in section 6 show that over a Gorenstein ring every left R-
module has a Gorenstein injective envelope and an & -cover.

We note that Auslander and Reiten consider similar questions in [2] but
concerning finitely generated modules over artin rings. We remark that with these
chain conditions it is easier to prove the existence of covers (envelopes) once
precover (preenvelopes) are known to exist.

In the final sections we consider the Gorenstein ring ZPG (with 2,, the ring
of p-adic integers and G any finite group). In this case we note that Gorenstein
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injective envelopes are just divisible envelopes. We use these envelopes to show

that every finitely generated left 2PG -module has a cover by a lattice and then
that the category of lattices is a stably reflective subcategory of the category of
finitely generated left ipG -modules. We note that our results give a canonical
way of lifting representations of G over Z/(p) to modular representations of G
over 2,,.

For a ring R we have

THEOREM 1.2 ([6], Proposition 2.1 and Theorem 2.1). Every left R-module
has an injective cover if and only if R is left noetherian.

We say that a class & of left R-modules is resolving if it contains the
projective modules and is closed under extensions and taking kernels of surjective
maps. If F is resolving, it is easy to argue that for K e ¥, Ext'(F,K)=0 for all
izl and all Fe%.

If R is a ring, the symbol M will indicate that M is a left R-module.

2. Gorenstein Rings

In this short section we define the Gorenstein rings, note how they can be

constructed and give some properties of their modules. Most of the content of this
section is due to Iwanaga.

DEFINITION 2.1 (Iwanaga [12]. A ring is said to be Gorenstein if it is left and
right noetherian and if it has finited injective dimension as a module over itself
both on the left and on the right. If R is Gorenstein and n=0 is an upper bound
for these two injective dimensions, then R is said to be n-Gorenstein.

REMARK 2.2. If R is n-Gorenstein, it can be argued that the ring of lower
triangular matrices (of any given size) over R is n+1-Gorenstein.

The path algebra of any finite quiver over a Gorenstein ring R#0 is
Gorenstein if and only if the quiver is the disjoint union of cycles with no multiple
edges and quivers not having cycles (Bronstein, Enochs, Herzog [4]).

If R is n-Gorenstein and G is a finite group then RG is n-Gorenstein ([4],
Eilenberg and Nakayama).

The 0-Gorenstein rings are just the quasi-Frobenius rings. Over a quasi-
Frobenius ring a module is injective if and only if it is projective. The following

“can be interpreted as a higher dimensional analogue of this fact.
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THEOREM 2.3 (|12}, Iwanaga). If R is n-Gorenstein and if M is a left R-
module the following are equivalent:

a) proj. dim M <o

b) proj.dim M <n

c)inj.dim M <oo

d) inj.dim M <n

DEFINITION 2.4 (Iwanaga[12]). If R is ring, a ring extension Rc A is said to
be left quasi-Frobenius extension if ;A is finitely generated and projective and if
4Ag 1s a direct summand of the direct sum of a finite number of copies of
Hom,(zA,,z Ry). A right quasi-Frobenius extension is defined similarly. If
Rc A is both a left and a right quasi-Frobenius extension, then it is called a

quasi-Frobenius extension.

REMARK. If G is a finite group and R is any ring, Rc RG is a quasi-
Frobenius extension.

THEOREM 2.5 [12], Iwanaga). If Rc A is a quasi-Frobenius extension then
R is n-Gorenstein if and only if A is.

3. Fibrations and Wakamatsu’s lemma

Let R be aring and & a class of modules closed under extensions. We show
that if 0 > L > X > M — 0 is an exact sequences of left R-modules with X -> M
an ¥-cover, then in fact X - M is an ¥ -fibration. We take this to mean that if
AcC B are left R-modules with B/Ae&, then a linear map A— X has an
extension to B if and only if A — X — M has an extension to B. Furthermore any
extension B— M can be lifted to an extension B— X.

With the above conditions as hypotheses this result can be stated as:

PROPOSITION 3.1. Any commutative diagram
A— B

L
,
,

p

'3

X—™M

can be completed to a commutative diagram.

PROOF. We form the pushout
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0 - A > B —- B/lA — 0
\) \J I
0 - X -» P - B/lA - 0

By our hypothesis on X,PeX.
This gives rise to a commutative

Since X — M is an ¥-cover and Pe ¥, there is a map P — X making

P
N
X —m—mM

commutative. Since X —> M is a cover the composition X—>P— X is an
automorphism if X. Composing P — X with the inverse of this automorphism if
necessary, we see we can assume X — P — X is the identity on X. Then

A ——>/B
l/P |
X — M

is seen to be the desired commutative diagram.

COROLLARY 3.2 (Wakamatsu’s lemma and [13]). f 05 L—>X—>M—-0
is exact and X > M is an X -cover then Le%X™*.

PROOF. If A— L is a linear map then A— L— X — M can be extended to
the constant map B — M . Then the map B — X guaranteed by the proposition has
its image in L and gives and extension B—L of A— L i.e. Hom(B,L)—
Hom (A, L) — 0 is exact.

If 0> L— N->Y -0 is then any exact sequence with Ye&, let A=N and

B=N. Since Hom(N,L)— Hom(L,L)— 0 is exact, this sequence splits and so
Ext'(Y,L)=0.

REMARK 3.3. See (lemma 2.2 of [8] and Proposition 2.2 and Corollary 1 of
[6]) for special cases of the above Proposition and its Corollary.
Dual proofs give
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PROPOSITION 3.4 If & is a class of left R-modules closed under extensions
and if

0 »- M - X - L - 0

.

’
.
.
.
.
.
,

14

0 - Y » B - C - 0

is any commutative diagram with exact rows such that M — X is an ¥-envelope
and such that Ye&, then the diagram can be completed to a commutative
diagram.

COROLLARY 3.5. Le*%.

4. Gorenstein Injective Modules

In this sections we define Gorenstein injective modules over Gorenstein rings.
We consider their behavior under restrictions of scalars when we have a quasi-
Frobenius extension.

DEFINITION 4.1. For any ring R we will let £ denote the class of left R-
modules of finite projective dimension.

DEFINITION 4.2. For a Gorenstein ring R, £* will be called the class of
Gorenstein injective left R-modules. Hence K is Gorenstein injective if and only
if Ext'(L,K)=0 whenever proj. dim L<o. Since & is a resolving category we
know that in fact Ext'(L,K)=0 for all i>1.

The Gorenstein injective right R-modules are defined analogously.

PROPOSITION 4.3. If R is Gorenstein, K is a Gorenstein injective left R-
module and E — K is an injective cover of K then E — K is surjective and is also
an & -cover of K. Furthermore, ker( E — K) is Gorenstein injective.

PROOF. Let 0> R—E —>C—0 be exact with E injective. Then by
Theorem 2.3, Ce ¥, so Ext'(C,K)=0. Hence Hom(f,K)-—)Hom(R,K)—)O is
exact. But any linear map E — K can be factored E — E — K. Since every
x € E is in the image of a linear of a linear map R— K, it is in the image of an
extension E — K. Then any factorization E — E — K shows that x is in the
image of E— K. Let € denote the class of injective left R-modules. Then by
Corollary 3.2, N=ker (E— K)e€" i.e. Ext'(E,N)=0 for all Ee€%. But we
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know Ext'(L,K)=0 for i>1 and LeX. Since € ¥ we have Ext'(E,K)=0 for
Ec€and i>1.
Then by the exactness of
OoN>SE->S>K-—-0

with E injective, we get that Ext'(E,N)=0 for all E €. Since any Le X has
finite injective dimension, we get that Ext'(L,N)=0 for all Le¥ ie. NeZ".
This implies that £ — K is an & -precover since E€ ¥ . Then since E— K is an
injective cover, we get that E— K is an &£ -cover. But then by Corollary 3.2,
ker(E— K)isin £*,i.e. ker(E— K) is Gorenstein injective.

PROPOSITION 4.4. If R is an n-Gorenstein ring then a left R-module K is
Gorenstein injective if and only if K is an n-th cosyzygy, i.e. there is an exact

sequence

0>M—>E°SE -5 E"" 5 K—0 with E°,---,E"'injective.

PROOF. Given such an exact sequence of modules over the n-Gorenstein ring
R, let proj. dim,L<e . Then by Theorem 2.3, proj. dimL<n. Hence
Ext'(L,K)=Ext"'(L,M)=0. Hence Ke%*.

Conversely, suppose Ke¥*.let E— K be an injective cover of K. This
exists by Theorem 1.2 above. If K =ker(E — K) then K € £* by Proposition 4.3.
Then if E— K is an injective cover of K, we have the exact sequence
E—E—K—0. It is clear this procedure can be continued and so gives the
result.

THEOREM 4.5 (Auslander, Buchweitz [1]. If R is Gorenstein, then for any
left R-module M there is an exact sequence

O->-M—>K—->L->0
with Ke¥%* and Le <.

PROOF. The argument is dual to the proof of Theorem 1.1 in [1]. We let
X e¥* be the class of Gorenstein injective modules and let €c¥ be the
injective modules. Then in the language of [1], Proposition 4.4 says that € is a
generator for ¥. Then an appeal to Proposition 4.4 says for every module M,
there is an exact sequence 0 >M — X° —»...—> X" >0 (taking R to be n-
Gorenstein) with X°,---, X" € ¥. Then the dual of Theorem 1.1 of [1] gives the
result.

We note that there is a different proof of this claim in [9].
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COROLLARY 4.6. $N<E* is the class of injective left R-modules.

PROOF. If Me LN<L*, then by Theorem 2.3 inj. dimM <n if we take R to

be n-Gorenstein.
Let 0> M — E°(M)—---— E*(M)— 0 be a minimal injective resolutions of
M with EX(M)#0 (so k <n). By Theorem 2.3, EX(M)e L. If k=1, then

Ext*(E*(M),M)=0 so EX'(M)— E*(M)

has a section. By minimality, this is impossible so k = 0. Hence M is injective.
PROPOSITION 4.7. If R is Gorenstein then *(£*)=%.
PROOF. This follows from Proposition 1.11 and Proposition 4.1 of [10].

COROLLARY 4.8. A Gorenstein ring has finite left global dimension if and
only if the class of Gorenstein injective left R-modules coincides with the class of

injective left R-modules.

PROOF. Letting € be the class of injective left R-modules, then if £' =%,
we get L ="(L*) =*€ is the class of all modules and so R has finite left global
dimensions. Conversely if R has finite left global dimension then & is the class of
all modules, so £* =$€.

REMARK 4.9. Other properties of Gorenstein injective modules are given in

[9].

REMARK 4.10. If Rc A is a quasi-Frobenius extension, then for any injective
left R-module E, A®, E is an injective left A-module. For , A, is a summand of
copies of Homg(zA,,x R;). But Hom,(A,R)®, E=Hom,(A,E) as left R-
modules since A is finitely generated and projective. But Hom,(A,E) is an
injective left A-module.

THEOREM 4.11. If Rc A is a quasi-Frobenius extension with R a Gorenstein
ring, then a left A-module K is Gorenstein injective if and only if if K is

Gorenstein injective.

PROOF. Let ,K be Gorenstein injective. Assume R is n-Gorenstein. Then by
Theorem 2.5, so is A, By Proposition 4.4, there is an exact sequence
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n—I|

E'S5E »5-.-5E" S5K—>0

of left A-modules with the E' injective left A-modules. Since A is flat, the E'
are also injective as left R-modules, and so by Proposition 4.4, K is Gorenstein
injective as an R-module.

Conversely, suppose ,K 1is such that K is Gorenstein injective. Let
E°—>.-—> E"™" - K-—>0 be an exact sequence of left R-modules with the E’
injective left R-modules. Tensoring we get the exact sequence

AQLE' - - 5 A®E" - A®,K—0

exact, and by the remark above, the A-modules A ®.E' are injective. Hence
A®, K is a Gorenstein injective left A-module. We have the obvious A-linear
surjection A®,K — K which has an R-linear section. Hence if

0O->N->A®,K—>K—>0

is exact, N is a summand of A®,K as an R-module. By the first part of the
proof, A®,;K is a Gorenstein injective R-module, and hence so is N. We can
now repeat the procedure with N.

In this manner we can construct an exact sequence

n-1

0->M—->K - 5K 5K-0

of left A-modules with K°,---,K"" all Gorenstein injective left A-modules.
Hence if ,L has finite projective dimension, Ext}(L,K')=0 for j>1 and
0<i<n-1.

But then ExtL(L,K)EExt’},”(L,M). Since A is n-Gorenstein, proj. dim L<n
and so Ext:“(L,M)=(). So Ext'A(L,K)=O for all such L and hence K is a
Gorenstein injective left A-module.

5. Generators of Extensions

Wakamatsu’s lemma suggests that when trying to find an ¥ -envelope of a left
R-module M we consider exact sequences

O->M->SN->L->O0

with Le *%¥. This suggests we make the definition below (with th £ in the
definition thought of as *% for some %)

DEFINITION 5.1. Let £ be a class of left R-modules and let M be a left R-
module. Then an element &EecExt'(L,M) where LeX is said to generate
Ext' (£, M) if for any Le ¥ and §eExt'(Z,M) there is a linear f:L — L such
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that Ext'(f,M)(&)=E& .
Diagrammatically this says we have a commutative diagram
0 » M - G - L - 0
Il 2 )
O > M - G - L - 0

where the rows represent the extensions E and &. Then &€ Ext'(L,M) is said to
be a minimal generator if it is a generator and if for any fe€ Hom (L,L) such that
and Ext'(f,M)&)=E&, fis necessarily an automorphism of L. Then we see that if
EeExt'(L,M) and & eExt'(L,M) are both minimal generators of Ext'(¥£,M),
then any f e Hom(L, L) such that Ext'(f, M)(&) =§ is an isomorphism.

If £€Ext'(L,M) is a generator of Ext'(¥£,M) and Ext'(f,M)&)=& for
& eExt'(L,M) and L e ¥ then & is also a generator.

PROPOSITION 5.2. If & is a class of left R-modules closed under extensions
and if £:05M—>K—->L—>0 is a minimal generator for Ext'(¥£,M) then
Ke¥t.

PROOF. Given a short exact sequence 0 > K >N —> L->0 with Le%,
using a pushout we can construct a commutative diagram

0 0
l 2

0O - M - K - L —» 0
[ 2 d

O » M > N - P - 0
l l

L =L - 0
l 2
0 0

with exact rows and columns. Since £ is closed under extensions, P€ &£ . Since
£E:0>M — K — L—0 generates Ext'($,M), there is a commutative diagram

O » M - N - P - 0
I d d
0 » M - K - L — 0

Since £:0>M —> K— L—0 is minimal, the composition L—P— L is an
automorphism of L. Hence K— N — K is an automorphism of K and so
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0—K—N-—L-0 splits.

We now get out main result.

THEOREM 5.3. If R is a ring, &£ is a class of left R-modules closed under
direct limits and direct summands and if for some left R-module M Ext'(£,M)
has a generator, then there is a minimal generator for Ext'(£,M).

PROOF. We will let 9 be the category of exact sequences 0—- M —
N—L—0 where LeL. A morphism of £:05M>N—>L—->0 to £:0—
M — N — L — 0 will be given by a commutative diagram

E:0 > M > N > L >0
| 2 l
E:0 - M - N - L - 0

We note that & is a generator for Ext'(L,M) and only if Hom,(&,&) =@ of all
objects € of 9. Also note that @ has direct limits since L is closed under limits
and since the direct limit functor is exact.

Now let 6 be the full subcategory of 9 whose objects are the & which are
generators of Ext'(L,M) (or equivalently such that HomD(E,é‘):&@ for all
objects E of @). Then € may not have direct limits, but every directed system in
€ certainly admits a map into some object of 6 (gotten by mapping the limit of
the system, which is in 9, to some object of €).

Also suppose £:0 > M —- N — L—0 is in € and that we have a morphism

E: 0 > M - N - L - 0

I le Ln
E:0 > M > N » L > 0

such that ker(gog) = ker(g), ker(hoh) = ker(h), in (gog) = im(g) and (hoh) =
im(k). Then im(h) is a direct summand of L and so in L by our hypothesis on L.
Also the sequence 0 - M — im (g) — im (k) — 0 is exact and so is an object in €.

We now appeal to Theorem 1 of [11] and see that Ext'(L, M) has a minimal
generator.

REMARK. In [11] the symbol ker(f) has a different meaning than if does here.
However, we see that the morphism & — & above is (in the terminology of [11]) a
quasi-retraction.

6. Covers and Envelopes

We apply the results of the previous section to argue that over Gorenstein
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rings every module has Gorenstein injective envelope and a cover by a module of

finite projective dimension.

THEOREM 6.1. If R is a Gorenstein ring, the every left R-module has a

Gorenstein injective envelope.
PROOF. If M is a left R-module, Theorem 4.5 shows that there is an exact
sequence

0->-M>5K->L->0

with K Gorenstein injective and Le¥. Since Ke¥*, Ext'(L,M)=0 for all
LeX.
But then if 0 > M — K — L — 0 is exact with L € &£ then

Hom(K,K) — Hom(M,K) — Ext'(L,K)=0

1S exact, so

M > K
[ y
M —> K

can be completed to a commutative diagram. This shows that 0> M —
K — L— 0 generated Ext'($¥,M). By Theorem 2.3, & is closed under inductive
limits, so there is a minimal generator

O->M->K->L->0
of Ext'(¥,M). By Proposition 5.2, K€ %" i.e. K is Gorenstein injective. But then
if Ke$*
Hom(K — K) — Hom(M,K) — Ext'(L,K)=0
is exact showing that M — K is a £*-preenvelope. Since 0 > M - K —> L —>0

is a minimal generator, M — K is also a il-envelope, i.e. is a Gorenstein

injective envelope.

THEOREM 6.2. If R is a Gorenstein ring, then every left R-module has an < -

cover.

Proof. By Theorem 6.1 we know M has a Gorenstein injective envelope, i.e.
a $*-envelope, say M — K. Easily M — K is an injection since M cE for
some injective module E and E€ ™.
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Let 0> M — K — L — 0 be exact. Then by Corollary 3.5, Le *(£") .
By Proposition 4.7, *(£*)=% so Le ¥.

Let E— K be an injective cover of K. Then using a pull back we can form a
commutative diagram

0 - U -

\!
o

0 - U -

O N v O
\J

O N EXREERXR &0
\
o

with exact rows and columns.

Since E, Le ¥, we have Pe¥. UeX%" by Proposition 4.3 and Corollary
3.2. This gives that P — M is an & -precover. It remains to argue that P—> M is
a cover. To facilitate the argument we will make the obvious identifications (e.g.
U with a submodule of P, P/U with M etc.).

Let P— P is a map over M. We need to show this map is an isomorphism.

The map P — P can be extended to a map E — E since E is injective and
PcE. since P> P maps U into U, the map E—E induces a map
K=FE/U—> E/U=K.The map P— P induces the identity mapan M = P/U, so
K — K 1is such that

M— K
N

is commutative. Since M — K is an envelope, K — K is an automorphism of K.
Then since E — K is an injective cover and E — E is such that

E —- K
l l
E - K

is commutative, £ — E is an automorphism of E.

Then our maps E—S>E, K—> K, P> P and id: M > M give a map of the
pull back
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P - M
d l
E - K

into itself.
Since this map is an isomorphism on each of E.,K and M, it is also an

isomorphism on P.

7. Divisible Envelopes and Lattice Covers

In this section we let D be a discrete valuation ring and let G be a finite
group. Let E=FE, (k) where k is the residue field of D and for any DG-module
(left or right), let N* =Hom ,(N,E) (i.e. N" is the Matlis dual of N). So if N is
a left DG-module, NV is a right DG-module. We will use the familiar properties

of the Matlis dual.
A left DG-module will be said to be divisible if it is divisible if it i1s divisible

as a D-module.

THEOREM 7.1. Every left DG-module has a divisible envelope.

PROOF. Since Dc DG is a quasi-Frobenius extension, by Theorem 2.5, DG
is 1-Gorenstein. By Theorem 4.11 and Corollary 4.8, a left DG-module K is
Gorenstein injective if and only if K is divisible. Now we only need appeal to

Theorem 6.

PROPOSITION 7.2. If M is a left DG-module which is artinian as a D-module
and if M — K is a Gorenstein injective envelope of M (as DG-modules) then K

is also an artinian D-module.

PROOF. By Theorem 4.11 and Corollary 4.8, K is a divisible D-module, so
E,(M)c K (as D-modules). But E,(M) is an artinian D-module.

Let K=Y 8E,(M) (the sum over g€ G). Then K is a DG-module which is
divisible as a D-module. Hence K is Gorenstein injective DG-module. Then
M c K can be factored M — K — K since M — K is an envelope. But then
K - K — K (with K — K the canonical injective) is an automorphism of K, so
K — K. Hence ,K is artinian.

We recall that by a lattice we mean a left DG-module U which is free and

finitely generated as a D-module.
Note that if U is a lattice, then the right DG-module U" is divisible as a D-
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module and so is Gorenstein injective.

Conversely if D is complete and if K is a Gorenstein injective right DG-
module with K artinian, then K" is a lattice.

This gives a duality which will be used in the proof below.

THEOREM 7.2. If D is complete, every finitely generated left DG-module has
a cover by a lattice.

PROOF. Let M be a finitely generated left DG-module. Then M" is artinian
as a D-module and so if M” — K is a Gorenstein injective envelope, K is also
artinian, and so reflexive. Since K is also a divisible D-module, K" is a lattice.
We argue that K* — M" = M is the desired cover.

If U is a lattice then U is reflexive and U"” is Gorenstein injective. Hence to
complete

U

v \
K'—M
to a commutative diagram it suffices to complete
M*— K=K"
\ {
UD
But we can complete the latter to a commutative diagram. If

KD
N

| M

kv~

is a commutative diagram, then so is

Since M" — K is an envelope, K — K is an isomorphism, and hence so is
K’ > K".

PROPOSITION 7.3. Let D be complete. If M is a finitely generated left DG-
module and U — M is a cover by a lattice, then P=Xker (U — M) is a (finitely
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generated) projective DG-module.

PROOF. Clearly P is a free DG-module, so P is a Gorenstein injective right
DG-module. Since

0->M'>U"—>P" -0

is exact and since by the duality mentioned above we have that M* - U" is an
Gorenstein injective envelope, the by Corollary 3.5, P’ e*(£')=<%. Hence
P’ €e£N¥* and so is an injective DG-module by Corollary 4.6. Then by duality
again we easily see that P"” = P is a projective DG-module.

We note that for any finitely generated projective left DG-module P, id:
P — P is its cover by a lattice.

Now assume D is a complete discrete valuation domain and that G is a finite
group. Let € be the category of finitely generated left DG-modules. By the
stable category @ we mean the category whose objects are the objects of 6 and
whose morphisms are equivalence classes of linear maps with f,g: M, > M,
equivalent if and only if f~g can be factored through a projective left DG-module.

let U c% be the full subcategory of lattices and let AU be its associated
stable category.

For each finitely generated left DG-module, we pick a lattice cover U > M .

If f:M, > M, is linear between two such finitely generated modules and if
fi:U —> M, f:L, — M, are their lattice covers then there isa g:U, =» U,

u - M,
gl ¥
u - M,

commutative. If g:U, —» U, is another map making the diagram commutative,
then im (g-g)cker(U, > M,). Since ker(U,— M,) is projective, the
equivalence class of g in L is well defined.

With the obvious notation, we now note that a factorization M, > P> M,
with P finitely generated and projective leads to a factorization L, —»P— L, .
With these remarks we see we have a well defined additive functor
% — AU which is the identity on U C @.so we say U is stably reflective in €.
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