2024 Multiplicity of 2-nodal solutions of the Yamabe equation
Jorge Dávila Ortiz, Héctor Barrantes González, Isidro H. Munive Lima
Topol. Methods Nonlinear Anal. 64(1): 361-379 (2024). DOI: 10.12775/TMNA.2023.062

Abstract

Given a closed Riemannian manifold $(M,g)$, we use the gradient flow method and Sign-Changing Critical Point Theory to prove multiplicity results for $2$-nodal solutions of a subcritical non-linear equation on $(M,g)$, see (1.1) below. If $(N,h)$ is a closed Riemannian manifold of constant positive scalar curvature our result gives multiplicity results for the Yamabe-type equation on the Riemannian product $(M\times N , g + \varepsilon h )$, for $\varepsilon > 0$ small.

Citation

Download Citation

Jorge Dávila Ortiz. Héctor Barrantes González. Isidro H. Munive Lima. "Multiplicity of 2-nodal solutions of the Yamabe equation." Topol. Methods Nonlinear Anal. 64 (1) 361 - 379, 2024. https://doi.org/10.12775/TMNA.2023.062

Information

Published: 2024
First available in Project Euclid: 23 September 2024

MathSciNet: MR4824843
zbMATH: 07959975
Digital Object Identifier: 10.12775/TMNA.2023.062

Keywords: Center of mass , Gradient flow , nodal solution , Yamabe equation

Rights: Copyright © 2024 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.64 • No. 1 • 2024
Back to Top