2024 Existence and multiplicity of normalized solutions to lower critical Choquard equation with kinds of bounded potentials
Xinfu Li, Li Xu
Topol. Methods Nonlinear Anal. 64(1): 61-86 (2024). DOI: 10.12775/TMNA.2023.042

Abstract

This paper studies the existence and multiplicity of normalized solutions to the lower critical Choquard equation with a $L^2$-subcritical local perturbation and kinds of bounded potentials\begin{equation*}\begin{cases}-\Delta u+V(x)u\\\qquad =\lambda u+\big(I_{\alpha}\ast|u|^{({N+\alpha})/{N}}\big)|u|^{({N+\alpha})/{N}-2}u+\mu|u|^{q-2}u& \text{in } \mathbb{R}^N, \\\displaystyle\int_{\mathbb{R}^N}|u|^2dx=a^2,\end{cases}\end{equation*}where $N\geq 1$, $\mu, a> 0$, $2< q< 2+{4}/{N}$, $\alpha\in (0,N)$, $I_{\alpha}$ is the Riesz potential, $V(x)$ is a bounded potential and $\lambda\in \mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier.

Citation

Download Citation

Xinfu Li. Li Xu. "Existence and multiplicity of normalized solutions to lower critical Choquard equation with kinds of bounded potentials." Topol. Methods Nonlinear Anal. 64 (1) 61 - 86, 2024. https://doi.org/10.12775/TMNA.2023.042

Information

Published: 2024
First available in Project Euclid: 22 June 2024

Digital Object Identifier: 10.12775/TMNA.2023.042

Keywords: bounded potentials , existence , lower critical Choquard equation , multiplicity , normalized solutions

Rights: Copyright © 2024 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.64 • No. 1 • 2024
Back to Top