2024 Characterization of the algebraic difference of special affine Cantor sets
Piotr Nowakowski
Topol. Methods Nonlinear Anal. 64(1): 295-316 (2024). DOI: 10.12775/TMNA.2023.057

Abstract

We investigate some self-similar Cantor sets $C(l,r,p)$, which we call S-Cantor sets, generated by numbers $l,r,p \in \mathbb N$, $l+r< p$. We give a full characterization of the set $C(l_1,r_1,p)-C(l_2,r_2,p)$ which can take one of the form: the interval $[-1,1]$, a Cantor set, an L-Cantorval, an R-Cantorval or an M-Cantorval. As corollaries we give examples of Cantor sets and Cantorvals, which can be easily described using some positional numeral systems.

Citation

Download Citation

Piotr Nowakowski. "Characterization of the algebraic difference of special affine Cantor sets." Topol. Methods Nonlinear Anal. 64 (1) 295 - 316, 2024. https://doi.org/10.12775/TMNA.2023.057

Information

Published: 2024
First available in Project Euclid: 15 September 2024

MathSciNet: MR4824840
zbMATH: 07959972
Digital Object Identifier: 10.12775/TMNA.2023.057

Keywords: $p$-adic sets , algebraic difference of sets , Cantor sets , Cantorvals , sets of $P$-sums

Rights: Copyright © 2024 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.64 • No. 1 • 2024
Back to Top