2022 A-priori bound and Hölder continuity of solutions to degenerate elliptic equations with variable exponents
Ky Ho, Le Cong Nhan, Le Xuan Truong
Topol. Methods Nonlinear Anal. 60(2): 601-632 (2022). DOI: 10.12775/TMNA.2022.021

Abstract

We investigate the boundedness and regularity of solutions to degenerate elliptic equations with variable exponents that are subject to the Dirichlet boundary condition. By employing the De Giorgi iteration, we obtain a-priori bounds and the Hölder continuity for solutions. As an application, we obtain the existence of infinitely many small solutions for a class of degenerate elliptic equations involving variable exponents.

Citation

Download Citation

Ky Ho. Le Cong Nhan. Le Xuan Truong. "A-priori bound and Hölder continuity of solutions to degenerate elliptic equations with variable exponents." Topol. Methods Nonlinear Anal. 60 (2) 601 - 632, 2022. https://doi.org/10.12775/TMNA.2022.021

Information

Published: 2022
First available in Project Euclid: 10 December 2022

MathSciNet: MR4563250
zbMATH: 1509.35077
Digital Object Identifier: 10.12775/TMNA.2022.021

Keywords: a-priori bound , De Giorgi iteration , Hölder continuity , localization method , p(.)-Laplacian , weighted variable exponent Lebesgue-Sobolev spaces

Rights: Copyright © 2022 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.60 • No. 2 • 2022
Back to Top