Translator Disclaimer
2020 Multiple solutions for quasilinear equation involving Hardy critical Sobolev exponents
Fengshuang Gao, Yuxia Guo
Topol. Methods Nonlinear Anal. 56(1): 31-61 (2020). DOI: 10.12775/TMNA.2019.117

Abstract

We consider the following quasilinear elliptic equation with critical Sobolev and Hardy-Sobolev exponents: \[ \begin{cases} \displaystyle -\sum\limits_{i,j=1}^ND_j(b_{ij}(v)D_iv)+\frac{1}{2}\sum\limits_{i,j=1}^N b_{ij}'(v)D_ivD_jv \\ \displaystyle \qquad\quad =\frac{|v|^{2^*_sq-2}v}{|x|^s}+\mu|v|^{2^*q-2}v+a(x)|v|^{2q-2}v &\hbox{in }\Omega,\\ v=0 &\hbox{on } \partial\Omega, \end{cases} \] where $b_{ij}\in C^1(\mathbb{R},\mathbb{R})$ satisfies the growth condition $|b_{ij}(t)|\sim|t|^{2(q-1)}$ at infinity, $q\geq1$, $\mu\geq0$, $0< s< 2$, $2^*_s={2(N-s)}/({N-2})$, $2^*={2N}/({N-2})$, $0\in\overline{\Omega}$ and $\Omega$ is a bounded domain in $\mathbb{R}^N$. In this paper, we will investigate the effects of the lower order terms $a(x)|v|^{2q-2}v$ and the growth of $b_{ij}(v)$ at infinity on the existence of infinitely many solutions for the above equations.

Citation

Download Citation

Fengshuang Gao. Yuxia Guo. "Multiple solutions for quasilinear equation involving Hardy critical Sobolev exponents." Topol. Methods Nonlinear Anal. 56 (1) 31 - 61, 2020. https://doi.org/10.12775/TMNA.2019.117

Information

Published: 2020
First available in Project Euclid: 11 June 2020

MathSciNet: MR4175070
Digital Object Identifier: 10.12775/TMNA.2019.117

Rights: Copyright © 2020 Juliusz P. Schauder Centre for Nonlinear Studies

JOURNAL ARTICLE
31 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.56 • No. 1 • 2020
Back to Top