Translator Disclaimer
2018 Lipschitz retractions onto sphere vs spherical cup in a Hilbert space
Jumpot Intrakul, Phichet Chaoha, Wacharin Wichiramala
Topol. Methods Nonlinear Anal. 52(2): 677-691 (2018). DOI: 10.12775/TMNA.2018.034

Abstract

We prove that, in every infinite dimensional Hilbert space, there exists $t_0>-1$ such that the smallest Lipscthiz constant of retractions from the unit ball onto its boundary is the same as the smallest Lipschitz constant of retractions from the unit ball onto its $t$-spherical cup for all $t\in[-1,t_0]$.

Citation

Download Citation

Jumpot Intrakul. Phichet Chaoha. Wacharin Wichiramala. "Lipschitz retractions onto sphere vs spherical cup in a Hilbert space." Topol. Methods Nonlinear Anal. 52 (2) 677 - 691, 2018. https://doi.org/10.12775/TMNA.2018.034

Information

Published: 2018
First available in Project Euclid: 25 November 2018

zbMATH: 07051686
MathSciNet: MR3915657
Digital Object Identifier: 10.12775/TMNA.2018.034

Rights: Copyright © 2018 Juliusz P. Schauder Centre for Nonlinear Studies

JOURNAL ARTICLE
15 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.52 • No. 2 • 2018
Back to Top