Translator Disclaimer
2018 Three-dimensional thermo-visco-elasticity with the Einstein-Debye $(\theta^3+\theta)$-law for the specific heat. Global regular solvability
Irena Pawłow, Wojciech M. Zajączkowski
Topol. Methods Nonlinear Anal. 52(1): 161-193 (2018). DOI: 10.12775/TMNA.2018.016

Abstract

A three-dimensional thermo-visco-elastic system for the Kelvin-Voigt type material at small strain is considered. The system involves the constant heat conductivity and the specific heat satisfying the Einstein-Debye $(\theta^3+\theta)$-law. Such a nonlinear law, relevant at relatively low temperatures, represents the main novelty of the paper. The existence of global regular solutions is proved without the small data assumption. The crucial part of the proof is the strictly positive lower bound on the absolute temperature $\theta$. The problem remains open in the case of the Debye $\theta^3$-law. The existence of local in time solutions is proved by the Banach successive approximations method. The global a priori estimates are derived with the help of the theory of anisotropic Sobolev spaces with a mixed norm. Such estimates allow to extend the local solution step by step in time.

Citation

Download Citation

Irena Pawłow. Wojciech M. Zajączkowski. "Three-dimensional thermo-visco-elasticity with the Einstein-Debye $(\theta^3+\theta)$-law for the specific heat. Global regular solvability." Topol. Methods Nonlinear Anal. 52 (1) 161 - 193, 2018. https://doi.org/10.12775/TMNA.2018.016

Information

Published: 2018
First available in Project Euclid: 18 August 2018

zbMATH: 07029866
MathSciNet: MR3867984
Digital Object Identifier: 10.12775/TMNA.2018.016

Rights: Copyright © 2018 Juliusz P. Schauder Centre for Nonlinear Studies

JOURNAL ARTICLE
33 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.52 • No. 1 • 2018
Back to Top