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Abstract. We investigate the classification of closed curves and eight
curves of saddle points defined on non-orientable closed surfaces, up to
an ambient homeomorphism. The classification obtained here is applied to
Morse–Bott foliations on non-orientable closed surfaces in order to define
a complete topological invariant.

1. Introduction

Global invariants of conjugated flows, foliations or functions by means of

a homeomorphism and defined on surfaces have been investigated since a long

time ago and with a wide variety of techniques and tools. For instance see

[4], [17], [19], [20] and the references therein. In this paper studies how the

topological aspects of the singularities can be used to define complete invariants.

To be more precise we need to introduce some notations and definitions.
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Let Π(q,m) be a closed, connected, compact surface of genus q with m

holes, Σ(g,m) an orientable surface of genus g (g ≥ 0). Υ(h,m), will be a non-

orientable surface with genus h ≥ 1. The boundary of each one is a collection of

m disjoint Jordan curves (J1, . . . , Jm). In general, we can assume that Σ(g,m)

is a subset of R3 and Υ(h,m) is a subset of R4.

Definition 1.1. Let Λi be curves contained in the surface Πi, we will say

that Λ1 and Λ2 are ambiently homeomorphic, in short ah or Λ1 � Λ2 if there

exists a homeomorphism h : Π1 → Π2 such that h(Λ1) = Λ2.

Two homeomorphic objects will be related by the symbol ∼= and an ambient

homeomorphism equivalence by �.

Notice that the answer to an ah-equivalence problem depends on the answer

to an extension problem. For this reason, this paper is organized as a succession

of extension problems allowing ah-classifications, from simple curves to foliations.

In Section 3 we begin with simple closed curves and in Section 4 we consider

figure eight curves.

Definition 1.2. A separatrix eightB, figure eight curve or in short an eight,

is the image of an immersion of S1 into Σ, ψ : S1 → Σ, homeomorphic to two

circumferences s1 and s2 glued by a point p, B = s1
⋃

p
s2. A component of B is

one of the circumferences si.

These eight curves usually appear as level sets (points with the same image) of

a real function f : W 2 → R defined on a surface and also as invariant manifolds of

saddle equilibrium points of a flow. The collection of all level sets of the function

defines a singular foliation on the surface. Morse functions are generic in the

set of twice differentiable functions, Morse–Bott functions (Definition 2.2) are

a wider class of functions. The singularities can be manifolds but the restriction

of the function to a normal plane to the singular manifold is a Morse function.

In [13] we classified up to an ambient homeomorphism simple closed curves and

eights on orientable closed surfaces. The classification in [13] can be applied

to Morse–Bott foliations and Morse–Bott integrable flows allowing us to define

complete invariants.

In this paper we extend some results of [13] to non-orientable surfaces. In

some sense the non-orientable case contains the orientable case if we do not

care of one-sided curves. One can find some results on the classification of

simple curves in the Klein bottle in [24] and the topological classification of

Morse functions defined on non-orientable surfaces obtained from the Reeb graph

associated to the function in [9]. In [6] the classification of simple curves is an

important tool used to simplify proofs.

Non-orientable surfaces appear in several areas as manifolds of internal states

of a medium (see [15]), as level sets of functions on manifolds and in blow-ups of
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singularities. They find applications to nematic crystals (see [10]) and barcodes.

Level sets on a surface can be considered as cuts of an image or a data set and

allow to define some graphs or structures.

After some kind of identification (for instance described in [7]) non-orientable

surfaces are obtained.

In Sections 3 and 4 we classify the basic leaves, closed curves and saddles

with their separatrices on non-orientable surfaces. These classifications differ

from the homotopic or homological classifications, and can be applied to various

areas. Theorem 3.6 states that the number of non-equivalent embeddings of S1

on Υ(h, 0) is h+ 3 if h ≥ 3 and Theorem 4.10 enumerates all eights.

In Section 4 we investigate the existence of invariants for Morse–Bott folia-

tions on non-orientable surfaces using their basic leaves and closed curves. We

recall the definition of Reeb graphs.

Definition 1.3. Let f be a continuous function on a compact manifold W

to R. A fiber is a connected component of a level set of f . If the fiber contains

a singular point then it is called a singular fiber. The Reeb graph, RG(f), is the

graph that as a set is the space obtained from W by contracting each connected

component of the level sets to a point and whose vertices are the singular fibers

of the function. See [21].

Our invariant will be a new graph (Definition 5.5) derived from the Reeb

graph and two indications on saddle singularities: the way to attach one small

neighbourhood to the graph and the ah characterization. See subsection 5.2.

2. Definitions and background concepts

Consider a compact manifold W with the Riemannian metric induced by an

embedding of W in R
m and let f be a function from W to R, f ∈ Ck, k ≥ 2.

Definition 2.1. A point p ∈ W is called a singular point if the rank of df(p)

is less than one. Otherwise p is a regular point. A value b ∈ R is called a singular

value if f−1(b) contains a singular point. Otherwise b ∈ R is called a regular

value.

The singular set of the function f denoted here by Sing(f), is the collection

of all singular points.

Definition 2.2. A smooth submanifold S ⊂ Sing(f) is said to be a nonde-

generate singular submanifold if the following hold:

• S is compact and connected,

• for all s ∈ S, we have TsS = kerHesssf .

The function f is called a Morse–Bott function (MB function from now on) if

the set Sing(f) consists of nondegenerate singular submanifolds. See [3], [5], [18].
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Let p ∈ S ⊂ Sing(f), then the Morse–Bott Lemma says that there is

a local chart of W around p and a local splitting of the normal bundle of S,

Np(S) = N+
p (S)⊕N−

p (S) so that if p = (s, x, y), s ∈ S, x ∈ N+
p (S), y ∈ N−

p (S):

Tp(W ) = Tp(S)⊕N+
p (S)⊕N−

p (S),

f(p) = f(s) + |x|2 − |y|2.

The dimension of N−
p (S) is the index of S.

A foliation defined by the level sets of an MB function g will be denoted by

F(g). In this paper we will assume that F(g) is simple, in the sense that the

singular points of a singular fiber form a unique connected subset.

From now on we will assume that W is a surface.

Definition 2.3. We will say that two foliations on a surface Π are topolog-

ically equivalent if there exists a homeomorphism on Π that sends the leaves of

one foliation to the leaves of the other one.

Definition 2.4. We say that l is a regular leaf of a foliation F if there exists

a neighbourhood of l such that F restricted to this neighbourhood is equivalent

to the foliation in S1 × I given by (α, x) whose leaves are defined by x = k, with

k ∈ I ⊂ R. A singular leaf of a foliation is a leaf that is not a regular leaf.

Remark 2.5. The singularities of f and the singularities of F(f) are not the

same. An oriented critical circle (o) of the function is not a singularity of F(f).

Let f be an MB function, the singular fibers of F(f) are:

• center points (ci),

• one-sided circles (o−i ),
• eights (B).

For the case of Morse functions, see the book [22]. On the other hand, RG(f)

has vertices of degree one, two or three. Vertices of degree one can be associated

to center points or critical circumferences that are one-sided curves. These o−i
are maximum or minimum of the function f . Other vertices of degree two and

vertices of degree three are associated to saddle points of the function.

Definition 2.6. An MB foliation is a foliation that has a finite number of

singularities and which singularities are topologically equivalent to singularities

of F(f) where f is an MB function. We will denote such foliation by FMB.

For instance, a singularity locally defined by f(x1, x2) = x41 + x82 will be an

admissible singularity of an FMB foliation.
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3. Simple closed curves

In this section we classify up to an ambient homeomorphism simple closed

curves on Υ(q,m). The m boundary curves of a surface will be denoted by

(J1, . . . , Jm). First we recall some extension theorems.

Definition 3.1 ([25]). A concordant orientation of (J1, . . . , Jm) consists of

an orientation on each J1, . . . , Jm, such that the orientation induced on a surface

Π(q,m) by the orientation on Ji is independent of i = 1, . . . ,m.

Theorem 3.2 ([14], [25]). A homeomorphism h : (J1
1 , . . . , J

1
m) → (J2

1 , . . . , J
2
m)

can be extended to a homeomorphism between Σ1(g,m) and Σ2(g,m) if and only

if h carries a concordant orientation of (J1
1 , . . . , J

1
m) into a concordant orienta-

tion of (J2
1 , . . . , J

2
m).

Theorem 3.3 ([14], [25]). A homeomorphism h : (J1
1 , . . . , J

1
m) → (J2

1 , . . . , J
2
m)

can always be extended to a homeomorphism between Υ1(g,m) and Υ2(g,m).

Definition 3.4. An embedded circle on Π is image of an embedding φ : S1 →
Π. An oriented embedded circle, or shortly, an oriented circle, is an embedded

circle with one of the two possible orientations.

Definition 3.5. Two embeddings φi, i = 1, 2, of S1 into Π are topologically

equivalent if there is a homeomorphism h : Π → Π such that

h(φ1(S
1)) = φ2(S

1).

Two embedded circles are ah-equivalent if they can be defined by equivalent

embeddings φi. Two oriented circles are equivalent if the homeomorphism that

conjugates the embedded circles preserves their orientations.

Given an embedding φ : S1 → Π such that φ(α) = β and given an orientation

of S1 then φ induces an orientation on its image; the embedding φ− : S1 → Π

defined by φ−(α) = −β induces the opposite orientation.

Next, we introduce some notation about surgery on a surface.

If φ(S1) = J is the image of an embedding then Π(q, 0)\J could have one or

two connected components. Denote by K the compact surface with holes that

is the closure of Π(q, 0) \ J and by Ki, i = 1, 2, the connected components of

Π(q, 0) \ J if K is not connected. Moreover, we denote by P(K) (resp. P(Ki))

the patched surface obtained by attaching discs to the holes of K (resp. Ki).

Π(q, 0) is the connected sum of P(K1) and P(K2) and K is equipped with

a homeomorphism k between two of its boundary components. The above can

be generalized in an obvious way to the case of Π(q, 0) \⋃
i

Ji.

We say that J is essential if it is not homotopic to zero. J is said to be

two-sided if a regular neighbourhood of J is a cylinder and one-sided if a regular

neighbourhood of J is homeomorphic to a Möbius band.
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By l we denote a class of ah-simple closed curves J . We will say that l is the

topological type of J .

Now, we introduce some more notation. The coherence of this notation is

a consequence of Theorem 3.6. To indicate that J is an essential curve we will

add the capital letter K as subscript of l. We add a sign to K indicating that K

is orientable (+) or not (−). Otherwise, if J is homologous to zero we write an

integer subscriptm of l related with the genus of Ki with a double sign. The sign

± indicates that one of the connected components of Υ(h, 0) \ J is orientable

and the other one is non-orientable, and the sign = means that both of the

connected components of Υ(h, 0) \ J are non-orientable. The double plus sign

will be omitted. The superscript of l indicates if J is a one-sided or two-sided

curve, l+ points out that J is a two-sided curve and l− that it is a one-sided

curve. Cutting along a one-sided curve cannot separate a surface. Therefore, we

have the following notations:

l±m: if Υ(h, 0)\J is the disjoint union of two surfaces, K1 orientable of genus

m and K2 non-orientable of genus h− 2m,

l=m: if Υ(h, 0) \ J is the disjoint union of two non-orientable surfaces K1, K2

of genus h1 and h2 where m = min(h1, h2) and h = h1 + h2,

lm: if Υ(h, 0) \ J is the disjoint union of two orientable surfaces K1 and K2

of genus g1 and g2, respectively, with m = min(g1, g2),

l+K : if Υ(h, 0) \ J is an orientable surface and J is two-sided,

l−K : if Υ(h, 0) \ J is an orientable surface and J is one-sided,

l−−K : if Υ(h, 0) \ J is a non-orientable surface and J is one-sided,

l+−K : if Υ(h, 0) \ J is a non-orientable surface and J is two-sided.

If l−K ⊂ Υ(h, 0) (respectively, l+K ⊂ Υ(h, 0)) then h must be odd (respectively, h

must be even).

The classification of embedded circles on orientable surfaces is given in [12].

The classification of the embedded circles in the projective plane Υ(1, 0) and in

the Klein bottle Υ(2, 0) can be found in [16], [24].

In the next theorem we classify all embeddings of S1 on Υ(h, 0). As usual,

�a� and 	a
 will represent the ceiling and floor values of a.

Theorem 3.6. Let Υ(h, 0) be a non-orientable surface of genus h ≥ 1. The

number of non-equivalent embeddings of S1 on Υ(h, 0) is h + 3 if h ≥ 3 with

representative classes:

• l±0, l±1, . . . , l±m, . . . , l±�(h−1)/2�;
• l=1, l=2, . . . , l=m, . . . , l=�h/2�;
• l−K with h odd ;

• l−−K ;

• l+K with h even;

• l+−K .
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For Υ(1, 0) we have two classes of embeddings represented by l±0 and l−K (see

Figure 1) and for Υ(2, 0) there are four classes of embeddings represented by

l±0, l=1, l
+
K , l

−
−K (see Figure 2).

a

a

l±0
l−K

Figure 1. Classes of embeddings of S1 into Υ(1, 0).
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l+K
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b b
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l−−K

a

a

b b

(d)

Figure 2. Classes of embeddings of S1 into Υ(2, 0).

Proof. The proof proceeds in two steps. First we divide the set of all

embeddings in classes such that two embeddings J1 and J2 belong to the same

class if and only if Υ(h, 0) \ J1 ∼= Υ(h, 0) \ J2. Then in Step 2 we will show that

each class has only one element.

Step 1. (a) If Υ(h, 0) \ J is connected, then J is a not a null homologous

curve. Moreover, χ(Υ(h, 0)) = χ(Υ(h, 0) \ J), so
(3.1) 2− h = χ(Υ(h, 0) \ J).
Let J be one-side and h > 1. If Υ(h, 0)\J is non-orientable then it is homeomor-

phic to Υ(h−1, 1) by (3.1). Otherwise, it is homeomorphic to Σ((h− 1)/2, 1). In

this second case the genus h of Υ(h, 0) must be odd. Now, if h = 1 we have only
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Figure 3. Non-equivalent embeddings of S1 on Υ(3, 0).

one curve and this is the unique not homologous to zero curve in the projective

plane.

Similarly, if J is a two-sided curve Υ(h, 0) \ J has two holes and it can be

orientable or not. In the first case, Υ(h, 0)\J ∼= Σ(g, 2) and by (3.1), g = h/2−1

and h must be even. In the second case, Υ(h, 0) \ J ∼= Υ(h − 2, 2), h ≥ 3. In

fact, Υ(h, 0) can be reconstructed gluing a handle. If h = 2, Υ(2, 0) \ J will be

a cylinder.

(b) If Υ(h, 0) \ J has two connected components Ki, i = 1, 2, then J on

Υ(h, 0) is homologous to zero and two-sided.

Each Ki has one hole on the boundary. Moreover, Υ(h, 0) is the connected

sum P(K1)#P(K2) and

(3.2) χ(Υ(h, 0)) = χ(K1) + χ(K2).

The connected components Ki, i = 1, 2, cannot be both orientable surfaces

because in this case the connected sum Υ(h, 0) = P(K1)#P(K2) will be an

orientable surface.

Let us suppose that K1 � Σ(g1, 1) is an orientable surface and K2 � Υ(h2, 1)

is a non-orientable surface then from (3.2) we have 2g1 + h2 = h. Fixing h ≥ 1

and giving values for g1 ∈ {0, . . . ,−1+ �h/2�} we obtain �h/2� cases that satisfy
the equation 2g1 + h2 = h. Moreover, if K1 and K2 are non-orientable then

h1 + h2 = h; and fixing h ≥ 1 we have 	h/2
 cases.
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Figure 4. Non-equivalent embeddings of S1 on Υ(4, 0).

Step 2. Let J1 = φ1(S
1) and J2 = φ2(S

1) be two embeddings of S1 into

Υ(h, 0) that belong to the same class. Consider the map H : J1 → J2 given by

h = φ−1
1 ◦ φ2. We must prove that there is an extension of H to Υ(h, 0).
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If c, i = 1, 2, has two connected components Ki
j, j = 1, 2, then each of these

components has one closed boundary curve where H is defined. The extension

of H to Υ(h, 0) is a direct consequence of Theorems 3.2, 3.3 and the Pasting

Lemma.

In the case that Υ(h, 0) \ Ji, i = 1, 2, is connected, say Ki, i = 1, 2, then we

need to consider some cases. If Ki, i = 1, 2, is a non-orientable surface or has

a unique hole, the extension of H to Υ(h, 0) again follows from Theorems 3.2

and 3.3.

Finally, if Ji is a two-sided curve and Ki are orientable surfaces, then each

surface Ki, i = 1, 2, has two closed curves on their boundaries equivalent to Ji.

If h = 2, Υ(2, 0) \ J is a cylinder with the structure of an interval not trivially

fibred by circles, Ψ. The extension for h = 2 is straightforward. If h > 2,

Υ(h, 0) \ J ∼= Σ(h/2 − 1, 2). We extend H to Σ(h/2 − 1, 2) as in Theorem 18

of [12]. Consider Ψ, whose boundary consists of two copies of J1 and an extension

of f to Ψ. As Υ(h, 0) can be obtained gluing Σ(h/2 − 1, 2) and Ψ along their

boundaries, applying the Pasting Lemma, we get the required extension H . �

a

a

b

b x

x

y

y

a1a1

a2

a2

a3
a3

a4

a4

l=2 l=2

Figure 5. The curve l=2 on Υ(4, 0). On the left: Υ(4, 0) is represented as
the connected sum of four projective planes. On the right: Υ(4, 0) as the
connected sum of a torus and the Klein bottle.

By Theorem 3.6 we have six non-equivalent embeddings of S1 on Υ(3, 0)

represented in Figure 3 and there are seven non-equivalent embeddings of S1 on

Υ(4, 0), see Figure 4. In these figures we display the embeddings using the same

polygonal representation of the surfaces. Some embeddings can have a simpler

representative in one polygonal representation of a surface than in another one.

For instance choosing two different polygonal representations of Υ(4, 0) we get

two different ways to represent the class l=2 (see Figure 5).

4. Figure eight curves

With the notation of Definition 1.2, letB, B′ be eights on the surface Π(q, 0),

and h a homeomorphism h : B → B′. Then h is composed of two homeomor-

phisms hi : si → s′i such that h1(p) = h2(p) = p′. We assume that the definitions
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of ah-equivalence and topological type of simple circles are extended in an obvi-

ous way to eights.

Lemma 4.1. Let d be the dimension of the subgroup of the first group of

homology of Π(q, 0) spanned by the components of B, s1 and s2. Then B splits

Π(q, 0) in 3− d connected regions.

Proof. ConsiderB as a graph whose vertices are the vertices of two triangles

glued by a common vertex and the edges are the edges of the two triangles. Thus

by [8, p. 181], we should get

(4.1) α0(B) − α1(B) + r = k + 1− d,

where d is the dimension of the image of i∗ : H1(B, 2) → H1(Π(g, 0), 2), r is the

number of connected regions of Π(g, 0) \B, k is the number of components of

B and αp = |p-simplexes| of B. Obviously α0(B) = 5, α1(B) = 6 and as B is

connected we have k = 1. From (4.1) we obtain r = 3− d. �

Definition 4.2. We will say that an eight B is a non-separating eight if

r = 1. Otherwise, we will say that B is a separating eight.

Denote by NB a closed regular neighbourhood of B = s1
⋃

p
s2. The next

result classifies these NB.

p p

s1

s1

s2
s2

(a) NB ∼= Σ(0, 3)

p

s1

s2

(b) NB ∼= Σ(1, 1)

Figure 6. Orientable closed regular neighbourhood of B.

Lemma 4.3. Let NB be a closed regular neighbourhood of an eight B on

Υ(h, 0). If NB is orientable then NB is homeomorphic either to Σ(0, 3) or to

Σ(1, 1). If NB is non-orientable then NB is homeomorphic either to Υ(1, 2) or
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p
p

s1

s1

s2
s2

(a) NB ∼= Υ(1, 2), s1 is a two-sided curve and s2 is a one-

sided curve.

pp
s1

s1 s2s2

(b) NB ∼= Υ(1, 2), s1 and s2 are one-sided curves.

pp

s1s1
s2

s2

(c) NB ∼= Υ(2, 1), s1 is a two-sided curve and s2 is a

one-sided curve.

p
p

s1

s1
s2 s2

(d) NB ∼= Υ(2, 1), s1 and s2 are one-sided curves.

Figure 7. Non orientable closed regular neighbourhood of B.

to Υ(2, 1) and the components s1 and s2 of B can be both one-sided curves or

one component is a one-sided curve and the other one is a two-sided curve.

Proof. Consider on the surfaceNB a circle centered at the point p and small

enough so that B cuts the circle in exactly four points. Taking into account

the component that corresponds to each point we have two cyclic orderings:
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s1, s1, s2, s2 and s1, s2, s1, s2. Also taking into account if the components s
′
i of

B are one-sided or not, we get the result. See Figures 6 and 7. �

Definition 4.4. Let B be an eight in Υ(h, 0) with h ≥ 1. We will say that

B is

(a) A planar eight if NB ∼= Σ(0, 3) (see Figure 6 (a)).

(b) A toroidal eight if NB ∼= Σ(1, 1) (see Figure 6 (b)).

(c) A projective eight of the type NB− if NB ∼= Υ(1, 2) and one component

of B is a one-sided curve and the other one is a two-sided curve (see

Figure 7 (a)).

(d) A projective eight of the typeNB+ ifNB ∼= Υ(1, 2) and both components

of the B are one-sided curves (see Figure 7 (b)).

(e) A Klein eight of the type NB− if NB ∼= Υ(2, 1) and one component

of B is a one-sided curve and the other one is a two-sided curve (see

Figure 7 (c)).

(f) A Klein eight of the type NB+ if NB ∼= Υ(2, 1) and both components

of B are one-sided curves (see Figure 7 (d)).

Lemma 4.5 classifies the set Υ(h, 0) \NB according to the type of NB and

its connected components.

Lemma 4.5. Let B be an eight on Υ(h, 0) with h ≥ 1.

(a) If B is a planar eight then Υ(h, 0) \NB is homeomorphic to one of the

following sets (where  denotes the disjoint union):

(a1) Σ(g1, 1)  Σ(g2, 1) Υ(h3, 1), 2g1 + 2g2 + h3 = h;

(a2) Σ(g1, 1) Υ(h2, 1) Υ(h3, 1), 2g1 + h2 + h3 = h;

(a3) Υ(h1, 1) Υ(h2, 1) Υ(h3, 1), h1 + h2 + h3 = h;

(a4) Σ(g1, 2)  Σ(g2, 1), if 2g1 + 2g2 = h− 2;

(a5) Σ(g1, 2) Υ(h2, 1), if 2g1 + h2 = h− 2;

(a6) Σ(g1, 1) Υ(h2, 2), if 2g1 + h2 = h− 2;

(a7) Υ(h1, 1) Υ(h2, 2), if h1 + h2 = h− 1;

(a8) Υ(h1, 3), h1 = h− 4, h ≥ 5 or Σ((h− 4)/2, 3) with h ≥ 4 even.

(b) If NB ∼= Σ(1, 1) then Υ(h, 0) \NB ∼= Υ(h− 2, 1).

(c) If NB ∼= Υ(1, 2) then Υ(h, 0) \NB is homeomorphic to one of the fol-

lowing sets:

(c1) Σ(g1, 1)  Σ(g2, 1), 2g1 + 2g2 = h− 1;

(c2) Σ(g1, 1) Υ(h2, 1), 2g1 + h2 = h− 1;

(c3) Υ(h1, 1) Υ(h2, 1), h1 + h2 = h− 1;

(c4) Σ(g1, 2), 2g1 = h−; 3

(c5) Υ(h1, 2), h1 = h− 3.

(d) If NB = Υ(2, 1) then Υ(h, 0) \NB is homeomorphic to Σ((h− 2)/2, 1)

or Υ(h− 2, 1).
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Proof. Let χ(NB) = k1 and χ(Υ(h, 0) \NB) = k2. Then χ(Υ(h, 0)) =

k1+k2. So, using Lemma 4.1 and depending on the components of B, s1 and s2,

we calculate the number of the components of the set Υ(h, 0) \NB. The rest of

the statements follows from a direct computation of the Euler characteristic. �

The boundary curves J of NB that are contractible to s1 or to s2 will be

distinguish by a subindex s: Js. The other boundary curves will be denoted by

JB. An orientation on an si induces an orientation in Js that can be contracted

to si.

Lemma 4.6. Let B and B′ be eights on Π and h : B → B′ a homeomorphism.

Suppose that the two hi, i = 1, 2, are simultaneously preserving or reversing

orientation homeomorphisms. Then the map h can be extended to the regular

neighbourhood NB.

Proof. Consider Υ(h, 0)\B and the notations of Section 3. If the boundary

of Ki comes from a component si of B we have the homeomorphism hi : ∂Ki →
∂K ′

i. If ∂Ki comes from B, then there exists a homeomorphism between ∂Ki

and ∂K ′
i if and only if the two hi, i = 1, 2, are simultaneously preserving or

reversing orientation homeomorphisms. Let us assume that this is the case.

Then by Theorems 3.2 and 3.3 it is possible to extend the homeomorphism on

the boundary to all Ki and in particular to each component of K∩NB. Pasting

together these homeomorphisms we get the extension required in the lemma. �

s1

s2
l±0 l−K

l±0 Σ(0, 1) Σ(0, 1)

Υ(1, 1)

l−K Σ(0, 1) Σ(0, 1) Σ(0, 1)

Σ(0, 1)

Table 1. Combinations of representative curves and connected components
of the closure of Υ(1, 0) \NB.

In the next two propositions we introduce the simplest examples of types

of NB.

Proposition 4.7. In Υ(1, 0) there are three non ah-equivalent eights, B,

which are listed in Table 1.

Proof. Two ah-equivalent eights must contain ah-equivalent si and home-

omorphic Ki. These conditions are also sufficient.
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If h : si → s′i is a homeomorphism, then h− is also a homeomorphism, there-

fore one can always apply Lemma 4.6 and extend the homeomorphism between

B and B′ to all Υ(1, 0).

l±0

l±0

a

a

Figure 8. The eight B(l±0, l±0) on Υ(1, 0).

l±0

a

a

l−K

(a)

a

a

l−K

l−K

(b)

Figure 9. On the left: the eight B(l±0, l
−
K); on the right: the eight B(l−K , l−K).

By Theorem 3.6 we have two non-equivalent embeddings of S1 into Υ(1, 0)

which representative curves are l±0 and l−K . Then in order to obtain the number

of non-equivalent eights on Υ(1, 0), we need to make combinations of l±0 with

l−K and then to analyze the connected components of the set Υ(1, 0) \ NB. If

NB ∼= Σ(0, 3), by Lemma 4.5, Υ(h, 0) \NB ∼= Σ(0, 1)  Σ(0, 1)  Υ(1, 1). On

the other hand, if NB ∼= Σ(0, 3), then the components of B must be two-sided

curves and consequently with representative curves l±0 (see Figure 8).

The cases (b) and (d) of Lemma 4.5 cannot happen if h = 1. Finally, if

NB ∼= Υ(1, 2), by Lemma 4.5, Υ(1, 0) \NB ∼= Σ(0, 1)  Σ(0, 1) since the cases

from (c2) to (c5) cannot happen when h = 1. In fact, for this possibility we have

two non-equivalent eights, see Figure 9. �

Proposition 4.8. There are 9 of non-equivalent eights on Υ(2, 0). They are

described in Table 2.
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s1
s2

l±0 l=1 l+K l−−K

l±0 Σ(0, 1)

Σ(0, 1)

Υ(2, 1)

l=1 Σ(0, 1)

Υ(1, 1)

Υ(1, 1)

Σ(0, 1)

Υ(1, 1)

l+K Σ(0, 2)

Σ(0, 1)

No Σ(0, 2)

Σ(0, 1)

l−−K Σ(0, 1)

Υ(1, 1)

Σ(0, 1)

Υ(1, 1)

Σ(0, 1) Υ(1, 1)

Σ(0, 1)

Table 2. Combinations of representative curves and connected components
of the closure of Υ(2, 0) \NB.

Proof. The arguments are similar to those used in Proposition 4.7. Let B

be an eight on Υ(2, 0). If NB ∼= Σ(0, 3), by Lemma 4.5 we have that the closure

of Υ(2, 0) \NB must be:

(a1) Σ(0, 1)  Σ(0, 1) Υ(2, 1). This is the eight B(l±0, l±0). See Figure 10.

l±0

l±0

a

a

b b

Figure 10. B(l±0, l±0).

(a2) Σ(0, 1)Υ(1, 1)Υ(1, 1). For this case we have two non-equivalent eights

on Υ(2, 0). See Figure 11.

(a4) Σ(0, 2)Σ(0, 1). There are only two non-equivalents eights and they are

shown in the Figure 12.

In Υ(2, 0), NB cannot be homeomorphic to Σ(1, 1).

WhenNB ∼= Υ(1, 2), Υ(2, 0) \NB is the disjoint union of Σ(0, 1) and Υ(1, 1).

These eights are represented in Figure 13.

Finally, if NB ∼= Υ(2, 1) then Υ(2, 0) \NB ∼= Σ(0, 1). See Figure 14. �

In Theorem 4.10 we classify eights for any Υ(h, 0), but in Proposition 4.9 we

describe all eights in Υ(3, 0) in order to give an example of the general case in



An Invariant for Morse–Bott Foliations 199

l±0

l=1

a

a

b b

(a)

l=1

l=1

a

a

b b

(b)

Figure 11. On the left: the eight B(l±0, l=1); on the right the eight B(l=1, l=1).

l±0

l+K

a

a

b b

(a)

l+K

a

a

b b

l+K

(b)

Figure 12. On the left: the eight B(l±0, l
+
K); on the right: the eight B(l+K , l+K).

l±0

l−−K

a

a

b b

(a)

l−−K

a

a

b b
l−−K

(b)

l=1

l−−K

a

a

b b

(c)

Figure 13. (a) B(l±0, l
−
−K); (b) B(l−−K , l−−K); (c) B(l=1, l

−
−K).

l−−K

a

a

b b

l+K

Figure 14. The eight B(l+K , l−−K).

a non-orientable surface, when this surface is the connected sum of an n-torus

and Υ(1, 0) or Υ(2, 0).

Proposition 4.9. The number of non-equivalent eights on Υ(3, 0) is 23.

They are detailed in Table 3.
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s1
s2

l±0 l±1 l=1 l−K l−−K l+−K

l±0 Σ(0, 1)

Σ(0, 1)

Υ(3, 1)

l±1 Σ(0, 1)

Σ(1, 1)

Υ(1, 1)

Σ(0, 1)

Σ(1, 1)

Υ(1, 1)

l=1 Σ(0, 1)

Υ(1, 1)

Υ(2, 1)

No Σ(0, 1)

Υ(1, 1)

Υ(2, 1)

Υ(1, 1)

Υ(1, 1)

Υ(1, 1)

l−K Σ(0, 1)

Σ(1, 1)

Σ(0, 1)

Σ(1, 1)

No Σ(0, 1)

Σ(1, 1)

l−−K Σ(0, 1)

Υ(2, 1)

No Υ(1, 1)

Υ(1, 1)

Σ(0, 1)

Υ(2, 1)

Σ(0, 2) Σ(0, 1)

Υ(2, 1)

Υ(1, 1)

l+−K Σ(0, 1)

Υ(1, 2)

Σ(0, 2)

Υ(1, 1)

Σ(0, 2) Υ(1, 1) Σ(0, 2) Σ(0, 2) Υ(1, 1) Σ(0, 1)

Υ(1, 2)

Υ(1, 1)

Table 3. Combinations of curves and connected components of Υ(3, 0) \NB.

l±0

l±0
a

ab

b

c c

(a)

l±1

l±0
a

ab

b

c c

(b)

l±1

l±1a

ab

b

c c

(c)

Figure 15. (a) the eight B(l±0, l±0); (b) the eight B(l±0, l±1); (c) the eight B(l±1, l±1).

Proof. The number of non-equivalent embeddings of S1 into Υ(3, 0) is six

and their representative curves are: l±0, l±1, l=1, l
−
K , l−−K and l+−K . Using

Lemma 4.5 we describe the connected components of Υ(3, 0) \NB, for distinct

closed regular neighbourhoods of B and describe all eights as in the previous

propositions. �

From now on, we denote by B(τ, υ, q, n) the class of eights on a non-orientable

surface Υ(h, 0) where τ, υ denote the representative curves of the components

s1 and s2 of B respectively, q is the minimum value of the genus of the connected

components of the closure of Υ(h, 0) \NB and n indicates the number of non-

orientable components of Υ(h, 0) \NB . If there is no ambiguity, we use the

simplified notation B(τ, υ).
Next theorem gives us the ah-classification of eights on non-orientable sur-

faces.
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l±0

l=1

a

ab

b

c c

(a)

l=1

l=1

a

ab

b

c c

(b)

Figure 16. On the left: the eight B(l±0, l=1); on the right: the eight B(l=1, l=1).

l=1

l=1

a

ab

b

c c

Figure 17. B(l=1, l=1).

l±1

l+−K

a

ab

b

c c

(a)

l=1

l+−K

a

ab

b

c c

(b)

Figure 18. On the left: the eight B(l±1, l
+
−K); on the right: the eight B(l=1, l

+
−K).

l±0

l+−K

a

ab

b

c c

(a)

l+−K

l+−K

a

ab

b

c c

(b)

Figure 19. On the left: the eight B(l±0, l
+
−K); on the right: the eight B(l+−K , l+−K).
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l+−K
l+−Ka

ab

b

c c

Figure 20. B(l+−K , l+−K).

l±0

l−K
a

ab

b

c c

(a)

l−Kl−K
a

ab

b

c c

(b)

l−K

l±1a

ab

b

c c

(c)

Figure 21. (a) the eight B(l±0, l
−
K); (b) the eight B(l−K , l−K); (c) the eight B(l−K , l±1).

1

2

2

1

l±0

l−−Ka

ab

b

c c

(a)

l−−K

l−−Ka

ab

b

c c

(b)

l
−
−K

l=1

a

ab

b

c c

(c)

Figure 22. (a) the eight B(l±0, l
−
−K); (b) the eight B(l−−K , l−−K); (c) the

eight B(l=1, l
−
−K).

Theorem 4.10. Let Υ(h, 0) be a non-orientable surface with genus h ≥ 1.

Then the number of non-equivalent eights on Υ(h, 0) is

(a) 3, if h = 1;

(b) 9, if h = 2;

(c) (h+ 4)2/2, if h is even and h ≥ 3;

(d) (h+ 4)2/2− 3/2, if h is odd and h ≥ 3.

Proof. First we distinguish the eights according to the ah-class of si and

the connected components of Υ(h, 0) \NB.
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l=1

l−−k

a

ab

b

c c

Figure 23. The eight B(l=1, l
−
−k).

l−K

l−−K

a

ab

b

c c

(a)

l+−K

l−K
a

ab

b

c c

(b)

l−−K

l+−K

a

ab

b

c c

(c)

Figure 24. (a) the eight B(l−K , l−−K); (b) the eight B(l+−K , l−K); (c) the eight B(l−−K , l+−K).

l−−K

l−−K

a

ab

b

c c

(a)

l−−K

l+−K

a

ab

b

c c

(b)

Figure 25. (a) B(l−−K , l−−K), (b) B(l−−K , l+−K).

Theorem 3.6 classifies the embeddings of S1 into Υ(h, 0). These curves are

the possible components of an eight on Υ(h, 0). We eliminate the pairs of curves

that do not generate an eight because they intercept in two or more points

(see [1]). When they define an eight we analyze the type of their regular neigh-

bourhood. Lemma 4.5 allows us to obtain the connected components of the

closure of Υ(h, 0) \ B.
We arrange the embeddings of S1 into Υ(h, 0) in three groups. The first

group is composed by l±p curves, the second group consists of l=m curves and

the third one is formed by l±±K curves. We begin looking for the eights B(l±m, l)

where l is a curve of arbitrary type.
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s1

s2
l±0 l±1 · · · l±m · · · l±�h−1

2 �

l±0

Σ(0, 1)

Σ(0, 1)

Υ(h, 1)

l±1

Σ(0, 1)

Σ(1, 1)

Υ(h− 2, 1)

Σ(0, 1)

Σ(1, 1)

Υ(h− 2, 1)

...
...

...
...

l±m

Σ(0, 1)

Σ(m, 1)

Υ(h− 2m, 1)

Σ(1, 1)

Σ(m− 1, 1)

Υ(h− 2m, 1)

· · ·
Σ(0, 1)

Σ(m, 1)

Υ(h− 2m, 1), h > 2m+ 1

...
...

...
...

...
...

l±�h−1
2 �

Σ(0, 1)

Σ
(�h

2 �, 1
)

Υ(n, 1)

n = 1, 2

Σ(1, 1)

Σ
(	h−1

2 
 − 1, 1
)

Υ
(
h− 2	h−1

2 
, 1)
· · ·

Σ(m, 1)

Σ
(	h−1

2 
 −m, 1
)

Υ(j, 1)

j = 1, 2

· · ·
Σ(0, 1)

Σ
(	h−1

2 
, 1)
Υ(j, 1), j = 1, 2

l=1

Σ(0, 1)

Υ(1, 1)

Υ(h− 1, 1)

Σ(1, 1)

Υ(h− 3, 1)

Υ(1, 1), h > 3

· · ·
Σ(m, 1)

Υ(1, 1)

Υ(h− 1− 2m, 1), if h > 2m+ 1

· · ·
Σ
(	h−1

2 
, 1)
Υ(1, 1)

Υ(1, 1), if h is even

l=2

Σ(0, 1)

Υ(2, 1)

Υ(h− 2, 1)

Σ(1, 1)

Υ(2, 1), h > 5

Υ(h− 4, 1)

· · ·
Σ(m, 1)

Υ(2, 1)

Υ(h− 2− 2m, 1), h > 2m+ 3

· · · No

...
...

...
...

...
...

...

l=p

Σ(0, 1)

Υ(p, 1)

Υ(h− p, 1)

Σ(1, 1)

Υ(p, 1)

Υ(h− 2− p, 1)

h− 2− p ≥ 1

· · ·

Σ(m, 1)

Υ(p, 1)

Υ(h− 2m− p, 1)

h ≥ 2(m+ p) even

h ≥ 1 + 2(m+ p) odd

· · · No

...
...

...
...

...
...

...

l=�h
2 �

Σ(0, 1)

Υ
(	h

2 
, 1
)

Υ
(	h

2 
, 1
) No · · · No, if h is even and p ≤ h/2−m.

No, if h is odd and p ≤ 	h−1
2 
 −m.

· · · No

l−K
Σ(0, 1)

Σ
(	h

2 
, 1
)

h odd

Σ(1, 1)

Σ
(
h−3
2 , 1

)
h > 2 odd

· · ·
Σ(m, 1)

Σ
(
h−1−2m

2 , 1
)

h ≥ 1 + 2m odd

· · ·
Σ(0, 1)

Σ
(	h−1

2 
, 1)
if h is odd

l−−K
Σ(0, 1)

Υ(h− 1, 1)

Σ(1, 1)

Υ(h− 3, 1)

h > 3

· · ·
Σ(m, 1)

Υ(h− 2m, 1)

h ≥ 2m+ 1

· · ·
Σ
(	h−1

2 
, 1)
Υ(1, 1)

if h is even

l+K

Σ(0, 1)

Σ
(	h−1

2 
, 2)
h even

Σ(1, 1)

Σ(h− 2, 2)

h > 3 even

· · ·
Σ(m, 1)

Σ(h/2−m− 1, 2)

h ≥ 2(1 +m) even

· · ·
Σ(0, 2)

Σ
(	h−1

2 
, 1)
if h is even

l+−K
Σ(0, 1)

Υ(h− 2, 2)

Σ(0, 2)

Υ(h− 2, 1)

Σ(1, 1)

Υ(h− 4, 2)

· · ·
Σ(m− 1, 2)

Υ(h− 2m, 1)

Σ(m, 1)

Υ(h− 2m− 2, 2)

· · ·
Σ
(	h−1

2 
 − 1, 2
)

Υ(1, 1)

Σ
(	h−1

2 
 − 1, 2
)

Υ(2, 1)

Total h+ 3 h+ 2 · · · h+ 4− 2m · · · 5, if h is even

3, if h odd

Table 4. Combinations with l of type l±.

Assume l = l±p. As these curves are two-sided curves and homologous to zero

then the eight formed by them has a closed regular neighbourhood homeomorphic

to Σ(0, 3). According to Lemma 4.5 the only possibility here is (a1). Let us
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suppose that m ≤ p. Then the closed connected components of Υ \ B are

homeomorphic to Σ(m, 1), Σ(p−m, 1) and Υ(h− 2p, 1).

If l = l=p by Lemma 4.5 the only possibility is (a2). So Υ(h, 0) \NB is the

disjoint union of Σ(m, 1), Υ(p, 1) and Υ(h− 2m− p, 1). But we need to exclude

the cases where the curves l±m and l±p have more than one interception point.

Then h ≥ 2(m+ p) if h is even and h ≥ 1 + 2(m+ p) if h is odd.

When l = l−K or l = l−−K the curves l±m and l cannot have more than

one interception point so the eight B(l±m, l) has a closed regular neighbourhood

homeomorphic to Υ(1, 2) that corresponds to cases (c1) and (c2) of Lemma 4.5.

The connected components of the closure of Υ(h, 0) \ Υ(1, 2) in case (c1) are

Σ(m, 1) and Σ((h− 1− 2m)/2, 1), with (h− 1− 2m)/2 ≥ 0, h even. In case

(c2) the closure of Υ(h, 0) \Υ(1, 2) is the union of Σ(m, 1), Υ(h− 2m, 1), where

h− 2m ≥ 1 and h is odd.

When l = l+−K or l = l+K , as in the previous case we have an eight which closed

regular neighbourhood is homeomorphic to Σ(0, 3). Therefore we are in cases

(a5) or (a6) of Lemma 4.5. The connected components of the set Υ(h, 0) \ Σ(0, 3)
in case (a5) are Σ(m, 1) and Υ(h− 2m− 2, 2) or Σ(m− 1, 2) and Υ(h− 2m, 1).

In case (a6) connected components of the set Υ(h, 0) \ Σ(0, 3) are Σ(m, 1) and

Σ(h/2−m− 1, 2), for h even.

Now we compute the number of non-equivalent eights of type B(l±m, l). If

m ≥ 1 it follows from the previous considerations that there are h + 4 − 2m

non-equivalent eights. If m = 0 there are h + 3 eights (note that h + 3 is the

number of non-equivalents embeddings of S1 on Υ(h, 0)). If m = 	(h− 1)/2
 we
have five cases for h even and three for h odd. Then the total is (h2+10h−3)/4,

if h ≥ 5 and h is odd and, (h2 + 10h− 8)/4, if h ≥ 4 and h is even. See Table 4.

We shall study now the eights B(l=m, l), where l = l=p and l = l±±K , with

m ≤ p and m, p �= {1, 	h/2
}. When l = l=p the regular neighbourhood of the

eight is homeomorphic to Σ(0, 3). Then according to item (a3) of Lemma 4.5 we

obtain two different decompositions for the closure of Υ(h, 0) \Σ(0, 3): Υ(m, 1),

Υ(h− p, 1), Υ(p−m, 1) or Υ(m, 1), Υ(p, 1), Υ(h− p−m, 1).

The representative curves l=m and l = l−K intercept in two or more points,

so they do not form an eight. The same happens when l = l+K because l+K is by

definition an exceptional curve, so they intercept l=m even number of times (see

[1]). The eights B(l=m, l
−
−K) has a closed regular neighbourhood homeomorphic

to Υ(1, 2) and the closure of the components of Υ(h, 0)\Υ(1, 2) can be obtained

by the items (c2) and (c3) of Lemma 4.5. Whence we have two possible decom-

positions: Υ(m, 1), Υ(h− 1−m, 1) and Υ(n, 1), Σ((h− 1− n)/2, 1), where if m

is even then n = m and if m is odd then n = h−m.

Note that when the components si of the eight are of types l=m and l+−K , with

1 < m < 	h/2
, then the decomposition of the closure of Υ(h, 0)\Σ(0, 3) is given
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s1
s2

l=1 l=2 · · · l=m · · · l=�h
2 �

l=1

Σ(0, 1)

Υ(1, 1)

Υ(h− 1, 1)

Υ(1, 1)

Υ(1, 1)

Υ(h− 2, 1)

· · · · · ·

l=2

Υ(1, 1)

Υ(1, 1)

Υ(h− 2, 1)

Υ(1, 1)

Υ(2, 1)

Υ(h− 3, 1)

Σ(0, 1)

Υ(2, 1)

Υ(h− 2, 1)

Υ(2, 1)

Υ(2, 1)

Υ(h− 4, 1)

· · · · · ·

...
...

...
...

...
...

...

l=p

Υ(1, 1)

Υ(p− 1, 1)

Υ(h− p, 1)

Υ(1, 1)

Υ(p, 1)

Υ(h− p− 1, 1)

Υ(2, 1)

Υ(p− 2, 1)

Υ(h− p, 1)

Υ(2, 1)

Υ(p, 1)

Υ(h− p− 2, 1)

· · ·

Υ(m, 1)

Υ(p−m, 1)

Υ(h− p, 1)

Υ(m, 1)

Υ(p, 1)

Υ(h− p−m, 1)

· · ·

...
...

...
...

...
...

...

l=�h
2 �

Υ(1, 1)

Υ
(	h

2 
 − 1, 1
)

Υ
(
h− 	h

2 
, 1
)

Υ(1, 1)

Υ
(	h

2 
, 1
)

Υ
(	h

2 
, 1
)

Υ(2, 1)

Υ
(	h

2 
 − 1, 1
)

Υ
(
h− 	h

2 
, 1
)

Υ(2, 1)

Υ
(	h

2 
, 1
)

Υ
(	h

2 
, 1
)

if h is odd

Υ(2, 1)

Υ
(	h

2 
 − 1, 1
)

Υ
(
h− 	h

2 
, 1
)

if h is even

· · ·

Υ(m, 1)

Υ
(	h

2 
 −m, 1
)

Υ
(
h− 	h

2 
, 1
)

Υ(m, 1)

Υ
(	h

2 
, 1
)

Υ
(
h− 	h

2 
 −m, 1
)

· · ·

Σ(0, 1)

Υ
(	h

2 
, 1
)

Υ
(	h

2 
, 1
)

if h is even

Σ(0, 1)

Υ
(	h

2 
, 1
)

Υ
(	h

2 
, 1
)

Υ(1, 1) Υ
(	h

2 
, 1
)

Υ
(	h

2 
, 1
)

if h is odd

l−K No No · · · No · · · No

l−−K

Σ(0, 1)

Υ(h− 1, 1)

Υ(1, 1)

Υ(h− 2, 1)

Σ
(
h−3
2 , 1

)
Υ(2, 1)

Υ(2, 1)

Υ(h− 3, 1)

· · ·

Σ
(
h−1−m

2 , 1
)

Υ(m, 1)

Υ(m, 1)

Υ(h− 1−m, 1)

if m is even and h odd

Σ
(
h−1−m

2 , 1
)

Υ(m, 1)

Υ(h−m, 1)

Σ
(
m−1
2 , 1

)
if m is odd and h even

· · ·

Σ
(

h−1−�h
2 �

2 , 1
)

Υ
(	h

2 
, 1
)

Υ
(	h

2 
, 1
)

Υ
(
h− 1− 	h

2 
, 1
)

if 	h
2 
 is even and h odd

Σ
(

h−1−�h
2 �

2 , 1
)

Υ
(	h

2 
, 1
)

Υ
(
h− 	h

2 
, 1
)

Σ
( � h

2 �−1

2 , 1
)

if 	h
2 
 is odd and h even

l+K No No · · · No · · · No

l+−K
Σ(0, 2)

Υ(h− 2, 1)

Υ(2, 1)

Υ(h− 4, 2)
· · · Υ(m, 1)

Υ(h−m− 2, 2)
· · · Σ(0, 2)

Υ(h− 2, 1)

Total h+ 2 h+ 2 · · · h+ 2 · · · 3, if h is even

5, if h is odd

Table 5. Combinations with l of type l=.

by: Υ(m, 1), Υ(h −m − 2, 2). When m = 1 or m = 	h/2
, the decomposition

is: Σ(0, 2), Υ(h− 2, 1). Therefore, the number of all eights with a component of

type l=m, 1 ≤ m ≤ 	h/2
, is (h+ 7)(h− 1)/4, if h is odd and h(h+ 6)/4, if h is

even. See Table 5 for details.
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Finally, we consider the eights B(l±±K , l
±
±K). In this case we have ten eights

if h is even and nine if h is odd. See Tables 6 and 7 for details.

s1
s2

l−K l−−K l+K l+−K

l−K No

l−−K No Σ(0, 1) Υ(h − 1, 1)

l+K No Σ(h−2
2

, 1)

Σ(0, 1)

Σ(h−2
2 , 2)

Σ(0, 1)

Υ(h − 2, 2)

l+−K No
Υ(h− 3, 2)

Υ(h− 2, 1)
Σ( h−4

2 , 3)

Σ(0, 1)

Υ(h − 2, 2)

Υ(h − 2, 1)

Υ(h − 4, 3)

Table 6. Combinations of curves and connected components of

Υ(h, 0) \NB for h even, l essential.

s1
s2

l−K l−−K l+K l+−K

l−K Σ(0, 1)

Σ(h−1
2 , 1)

l−−K Σ(h−3
2 , 2) Υ(h − 2, 1)

l+K No No No

l+−K Σ(h−3
2 , 2)

Σ(h−3
2 , 2)

Υ(h − 2, 1)
No

Σ(0, 1) Υ(h − 2, 2)

Υ(h − 2, 1)

Υ(h − 4, 3)

Table 7. Combinations of curves and connected components of

Υ(h, 0) \NB for each possible combination, h odd, l essential.

On the other hand, classes of eights distinguished by the ah-class of si and the

connected components of Υ(h, 0) \NB contain only one ah-type of eight due to

similar arguments as in the previous propositions. Therefore, the number of non-

equivalent eights on a non-orientable surface Υ(h, 0) where h ≥ 3 is (h + 4)2/2

if h is even and ((h+4)2 − 3)/2 if h is odd. It follows from Propositions 4.7 and

4.8 that there are 9 non-equivalent eights on Υ(2, 0) and 3 on Υ(1, 0). �

Note that some eights have the same components, but distinct decompo-

sitions for the complementary set Υ(h, 0) \ NB, see for instance the eights

B(l=1, l=1). From the proof of Theorem 4.10, the cases where the full notation

B(τ, υ, g, n) is necessary to avoid ambiguity are the following ones:

B(l=p, l=p, g, n), B(l=p, l
−
−K , g, n), B(l+−K , l

+
−K , g, n),

B(l−−K , l
−
−K , g, n), B(l+−K , l

−
−K , g, n), B(l+K , l−−K , g, n).
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5. Invariant for FMB on non-orientable surfaces

In [12] we present a complete topological invariant for MB systems on ori-

entable surfaces. The case of Morse functions on orientable or non-orientable

surfaces is considered among others in [23] and for functions with not necessarily

Morse singularities in [11]. In this section we define a complete invariant for MB
foliations on non-orientable surfaces. First we introduce some basic properties

of MB foliations.

5.1. Morse–Bott foliations.

Proposition 5.1. On a non-orientable surface, a toroidal eight, a projective

eight of type NB− and a Klein eight are not admissible in FMB.

Proof. Let B be a toroidal eight or a projective eight of type NB+ or a

Klein eight of an MB foliation F(g) on Υ and g(B) = 0. Assuming that p is

a saddle singular point we can find two sectors in a neighbourhood of p where g is

positive. In the complementary sectors g is negative. But, the interior of NB is

filled by regular closed curves contractible to B. As these curves connect positive

and negative sectors, they cannot be level curves of a map g and consequently

cannot be leaves of FMB. �

Proposition 5.2. On a non-orientable surface FMB have only one topolo-

gical type of projective eight.

Proof. Since a saddle singularity is not a maximum nor a minimum, Υ(h, 0)\
NB must have two holes. By the cases stated in Theorem 4.10, there exists only

one topological type. �

From now on we assume that all eights are planar or projective eight of type

NB+. The next proposition shows that the structure of an MB foliation differs

from the structure of a Morse foliation.

Proposition 5.3 ([12]). In a Morse foliation two components of an eight B

of F(g) cannot be connected by a family of closed curves. Moreover, two regular

cylinders connecting two eights contain only Js circles.

As an example, the foliation in Figure 27 cannot be a Morse foliation.

5.2. Reduced graphs and complete invariants.

Remark 5.4. Let f be an MB function, the vertices of RG(f) of degree 2

and vertices of degree 3 are associated to saddle points of the function. In this

case, one vertex of degree two will be associated to a projective eight and vertices

of degree 3 to a planar eight.
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Definition 5.5 (Graph for MB foliations on surfaces). Let F = Θ(F) be

an MB foliation on a non-orientable surface. The graph Θ(F) of F is:

(a) A circle, in the case of a regular foliation by circles on the Klein bottle.

(b) The graph obtained from the Reeb graph of f by replacing each vertex

of degree two v associated to critical two-sided circumference of f and

their two incidents edges for a new edge.

The graph Θ(F) carries the information about the surface Π. But this graph

is not a complete invariant as shown the next example (see also [12]).

p

00

q

s1

s2

s3 s4

Θ(F1)

Θξ(F1)

Figure 26.

p

00

q
s1

s2

s3

s4

Θ(F2)

Θξ(F2)

Figure 27.

Example 5.6. In the Figures 26 and 27 we show two non-topologically equiv-

alent MB foliations on the torus, F1 and F2, whose graphs and spaces of leaves

are isomorphic. In fact, would there exist a homeomorphism h which sends the

leaves of the first foliation to leaves of the second one then the topological type of

the leaves would be the same. But this does not happen for all the components

of the saddle points, so such homeomorphism does not exist.

The topological type of an eight must be included in any complete invariant

associated with MB foliations on surfaces. Nevertheless, the topological type

associated to a vertex v can be sometimes obtained considering the components

of Θ(F) \ v or with some additional information. Then, an explicit reference to

the topological type is not needed in the invariant, it is in some way hidden.
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Let ξ be a function on Θ(F) that associates to each saddle vertex of degree

three the edge that contains JB circles and τ , the function that associates to

each univalent vertex the number zero if it is a center point, the number +1 if

it is a circle of type l−K and −1 if it is of type l−−K . The triple Θ(F), ξ, τ , will

be noted by Θξ,τ (F).

Each edge on Θ(F) can have 0 ≤ n ≤ 2 distinctions according to the number

of times that ξ distinguishes it. We denote the edge by an n-edge. In [12],

a 0-edge is unmarked, a 1-edge is an arrow directed towards the vertex that

distinguishes and a 2-edge is represented by a left-right arrow. The sense of the

arrow indicates the sense of branching of the graph.

The foliation associated to Θξ,τ will be denoted by Fol(Θξ,τ).

We assume here that Θξ,τ (F1) and Θξ,τ (F2) are isomorphic if there exists

an isomorphism from Θ(F1) onto Θ(F2) that preserves the assignments of the

functions ξ and τ .

5.3. Complete invariant.

Theorem 5.7. Θξ,τ (F) is a complete topological invariant for MB foliations

on closed surfaces.

Proof. Necessity. Θ(F) can be considered as a quotient space by fiber

equivalence. Then equivalent foliations must share the same graph. The topo-

logical type of the singularities is by definition another necessary invariant. Since

it is determined by Θ(F), ξ and τ , the type of Js of JK curve and the assignments

of τ must be the same for equivalent foliations.

Sufficiency. Let F1(f) and F2(g) be two MB foliations on Π. Assume

that there exists an isomorphism θ : Θξ,τ (F1) → Θξ,τ (F2). Denote by S(F1)i =

f−1(ai) and S(F2)i = g−1(bi), bi = θ(ai) two related singular levels of the

foliations; then there exist homeomorphisms θsi : S(F1)i → S(F2)i. We can

assume that all these θsi are orientation preserving. We are going to prove that

it is possible to extend θsi to a homeomorphism h : Π → Π sending leaves of F1

to leaves of F2.

We assume that there exist singularities ci that are not centers in order to

avoid trivial cases and also that the extension of θsi to NBi, denoted here by θri
and defined in Lemma 4.6 and in Step 2 of Theorem 3.6, sends level curves to

level curves. The restrictions of θri to the components of ∂NBci are orientation

preserving and concordant by construction. There exist extensions of θri to each

component that we denote by hNBi
.

Consider two connected singularities ci, cj and let C1
ij be one connecting

cylinder. We have a homeomorphism between each components of the border

of C1
ij . Then we can construct an extension, θC1

ij
, of the homeomorphism on the

border to the entire cylinder. The homeomorphism obtained pasting together
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θri , θ
r
j , and all θC1

ij
can be extended to a homeomorphism hNBci,NBcj on the

entire Π as in the case of one singularity. We iterate the extension to new

singularities that are not center points until all of them have been involved,

obtaining a homeomorphism hNB : Π → Π.

Finally, consider saturated neighbourhoodsNck of the centers. They are disk

trivially foliated by circles and hNB defines a homeomorphism between ∂Nck and

∂Nθ(ck). Since we can extend a homeomorphism between the borders of two

disks fixing one point in the interior of one disk and its image on the other, we

get the desired extension h. �

Example 5.8. Let f be the height function on the projective plane. Then

the singularities of f are a maximum point, a minimum point and a saddle point.

The foliation generated by f is an MB foliation. In this case, the singular leaves

of the foliation are two points and a projective eight of type NB+. The foliation

and its invariant are shown in Figure 28. The vertex that corresponds to the

eight is labeled in the invariant, but this is not necessary because in each case

the vertices associated to planar eights have degree two.

0

0

A

A

Figure 28. On the left: the invariant Θξ,τ (F); on the right: an MB
foliation on Υ(1, 0).

Example 5.9. The 3-projective Υ(3, 0) can be seen as the connected sum of

Σ(1, 0) and Υ(1, 0). An MB foliation is shown in Figure 29. Suppose that this

function has a critical circumference, in Figure 29. It is denoted by the red line

drawn in the Möbius band of Υ(1, 0). This critical circumference is a one-sided

curve so it is a codimension zero singular leaf of the foliation. The remaining

singular leaves are two center points and two planar eights.

Example 5.10. Recall that the 3-projective Υ(3, 0) can be also presented as

the result of gluing a hexagon, as shown in the Figure 30. Other example of MB
foliation in Υ(3, 0) is shown in Figure 30. This foliation has four singular leaves:

one-sided curve, two center points and an eight.
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0

+1

F
Θξ,τ (F)

Figure 29. On the left: the invariant Θξ,τ (F); on the right: an MB
foliation in Υ(3, 0).

1

2

2

1

F

Θξ,τ (F)

0
0

−1

a

a
b

b

c c

l−−K

Figure 30. On the left: the invariant Θξ,τ (F); on the right, an MB folia-
tion in Υ(3, 0).
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