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ASYMPTOTICALLY ALMOST PERIODIC MOTIONS

IN IMPULSIVE SEMIDYNAMICAL SYSTEMS

Everaldo M. Bonotto — Luciene P. Gimenes — Ginnara M. Souto

Abstract. Recursive properties on impulsive semidynamical systems are
considered. We obtain results about almost periodic motions and asymp-

totically almost periodic motions in the context of impulsive systems.

The concept of asymptotic almost periodic motions is introduced via time
reparametrizations. We also present asymptotic properties for impulsive

systems and for their associated discrete systems.

1. Introduction

The theory of impulsive differential equations is an important tool to des-

cribe the evolution of systems where the continuous development of a process

is interrupted by abrupt changes of state. An impulsive differential equation is

modeled by a system that encompasses a differential equation, which describes

the period of continuous variation of state, and additional conditions, which

describe the discontinuities of the solutions of the differential equation or of

their derivatives at the moments of impulses.

One of the branches of the theory of impulsive differential equations is the

theory of impulsive dynamical systems. In recent years, a significant progress

has been made in the study of discontinuous dynamical systems. Moreover,

2010 Mathematics Subject Classification. Primary: 34C27; Secondary: 34A37, 54H20.
Key words and phrases. Impulsive semidynamical systems; almost periodic motions; as-

ymptotic motions; stability.
The first author was partially supported by the FAPESP grant 2014/21224-7, FAPESP

grant 2014/25970-5 and CNPq grant 307317/2013-7. The third author was supported by the

FAPESP grant 2012/20933-9.

133



134 E.M. Bonotto — L.P. Gimenes — G.M. Souto

this theory found application in many fields such as physics, pharmacokinetics,

biotechnology, economics, chemical technology, population dynamics and others.

The reader may consult, for instance, [5], [6], [9]–[11], [17].

The concepts of almost periodic and asymptotically almost periodic func-

tions were introduced by Bohr in [2] and Fréchet in [18], respectively. Later,

these concepts were developed in the context of dynamical systems by Bhatia

and Szego in [1] and by Cheban in [12]. The existence of almost periodic and

asymptotically almost periodic solutions is one of the most attractive topics in

the qualitative theory of differential equations, see [12] and [19], for instance.

The goal of this paper is to consider almost periodic motions in the context of

impulsive semidynamical systems. We shall give sufficient conditions to obtain

the existence of asymptotic almost periodic motions in impulsive semidynamical

systems. Since almost periodicity of motions is deeply connected with stability,

we also investigate this connection on impulsive systems. The reader may consult

some results about almost periodic motions on impulsive systems in [11].

In the next lines, we describe the organization of this paper. Section 2 deals

with the basis of the theory of semidynamical systems with impulses. Section 3

concerns with the main results. This section is divided in four parts. In Subsec-

tion 3.1, we study some results about almost periodic motions. We show that

all almost periodic points are positively Poisson stable in impulsive systems, see

Theorem 3.9. In Subsection 3.2, we present the concepts of asymptotic almost

periodic, stationary, periodic, recurrent and Poisson stable motions using time

reparametrizations. Some topological properties for these motions are consid-

ered. We also use the concept of quasi stability of Zhukovskĭı for impulsive

systems to get asymptotic properties. In Subsection 3.3, we consider discrete

systems in the sense of Kaul, [21], which are naturally associated to impulsive

semidynamical systems. We study the concepts of almost periodicity and asymp-

totic almost periodicity for these systems. Asymptotic properties are obtained

relating impulsive systems and their associated discrete systems. Finally, in Sub-

section 3.4, we present sufficient conditions to obtain Zhukovskĭı quasi stability

via Lyapunov stability.

2. Preliminaries

Let (X, d) be a metric space, R+ be the set of non-negative real numbers,

Z+ be the set of non-negative integers and N = {1, 2, . . .} be the set of natural

numbers. The triple (X,π,R+) is called a continuous semidynamical system

on X if the mapping π : X × R+ → X is continuous with π(x, 0) = x and

π(π(x, t), s) = π(x, t+ s), for all x ∈ X and t, s ≥ 0.

Along to this text, we shall denote the system (X,π,R+) simply by (X,π) and

we will call it as a semidynamical system, that is, dropping the word continuous.
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For every x ∈ X, we consider the continuous mapping πx : R → X given by

πx(t) = π(x, t) and we call it the motion of x. The positive orbit of a point

x ∈ X is given by π+(x) = {π(x, t) : t ∈ R+}. We define

π(A,∆) =
⋃
{π(x, t) : x ∈ A and t ∈ ∆} and π+(A) =

⋃
{π+(x) : x ∈ A},

where A ⊂ X and ∆ ⊂ [0,+∞).

For t ≥ 0 and x ∈ X, we write F (x, t) = {y ∈ X : π(y, t) = x} and, for

∆ ⊂ [0,+∞) and D ⊂ X, we define

F (D,∆) =
⋃
{F (x, t) : x ∈ D and t ∈ ∆}.

A point x ∈ X is called an initial point, if F (x, t) = ∅ for all t > 0.

An impulsive semidynamical system (X,π;M, I) consists of a semidynamical

system (X,π), a nonempty closed subset M of X such that for every x ∈ M ,

there exists εx > 0 such that

F (x, (0, εx)) ∩M = ∅ and π(x, (0, εx)) ∩M = ∅,

and a continuous function I : M → X whose action we explain below in the

description of the impulsive semitrajectory. The set M is called the impulsive

set and the function I is called the impulse function. Denote by M+(x) the set

π(x, (0,+∞)) ∩M , x ∈ X.

Consider the function φ : X → (0,+∞] given by

(2.1) φ(x) =

s if π(x, s) ∈M and π(x, t) /∈M for 0 < t < s,

+∞ if M+(x) = ∅.

This function is well-defined as presented in [14]. Note that if M+(x) 6= ∅
then φ(x) represents the least positive time for which the trajectory of x ∈ X
meets M . Thus for each x ∈ X, we call π(x, φ(x)) the impulsive point of x.

The impulsive semitrajectory of x in (X,π;M, I) is an X-valued function

π̃x defined on the subset [0, s) of R+ (s may be +∞). The description of such

trajectory follows inductively as described in the following lines.

If M+(x) = ∅, then π̃x(t) = π(x, t) for all t ∈ R+ and φ(x) = +∞. However,

if M+(x) 6= ∅, then φ(x) < +∞, π(x, φ(x)) = x1 ∈ M and π(x, t) /∈ M for

0 < t < φ(x). Then we define π̃x on [0, φ(x)] by

π̃x(t) =

π(x, t) if 0 ≤ t < φ(x),

x+1 if t = φ(x),

where x+1 = I(x1). We denote x by x+0 .

Since φ(x) < +∞, the process now continues from x+1 onwards. If M+(x+1 ) =

∅, then we define π̃x(t) = π(x+1 , t−φ(x)), for φ(x) ≤ t < +∞, and φ(x+1 ) = +∞.

When M+(x+1 ) 6= ∅, it follows that φ(x+1 ) < ∞, π(x+1 , φ(x+1 )) = x2 ∈ M and
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π(x+1 , t − φ(x)) /∈ M , for φ(x) < t < φ(x) + φ(x+1 ). Then we define π̃x on

[φ(x), φ(x) + φ(x+1 )] by

π̃x(t) =

π(x+1 , t− φ(x)) if φ(x) ≤ t < φ(x) + φ(x+1 ),

x+2 if t = φ(x) + φ(x+1 ),

where x+2 = I(x2), and so on. Notice that π̃x is defined on each interval [tn, tn+1],

where t0 = 0 and tn+1 =
n∑
i=0

φ(x+i ), n = 0, 1, . . . Hence, π̃x is defined on [0, tn+1].

The process above ends after a finite number of steps, whenever M+(x+n ) = ∅
for some n. However, it continues infinitely if M+(x+n ) 6= ∅, n = 1, 2, . . ., and in

this case π̃x is defined on the interval [0, T (x)), where T (x) =
+∞∑
i=0

φ(x+i ).

The impulsive positive orbit of a point x ∈ X is given by

π̃+(x) = {π̃(x, t) : t ∈ [0, T (x))}.

Analogously to the non-impulsive case, an impulsive semidynamical system

satisfies the following standard properties: π̃(x, 0) = x for all x ∈ X and

π̃(π̃(x, t), s) = π̃(x, t + s), for all t, s ∈ [0, T (x)) such that t + s ∈ [0, T (x)).

See [3] for a proof of it.

For details about the structure of these types of impulsive systems, the reader

may consult [3]–[7], [10], [14]–[17], [20]–[22].

2.1. Continuity of function φ. In the previous section, we defined the

function φ, see (2.1), which describes the times of meeting the impulsive set M .

In this section we discuss the continuity of this function. The reader may consult

[13] and [14] for more details.

Let (X,π) be a semidynamical system. Any closed set S ⊂ X containing x

(x ∈ X) is called a section or a λ-section through x, with λ > 0, if there exists

a closed set L ⊂ X such that:

(a) F (L, λ) = S;

(b) F (L, [0, 2λ]) is a neighbourhood of x;

(c) F (L, µ) ∩ F (L, ν) = ∅, for 0 ≤ µ < ν ≤ 2λ.

The set F (L, [0, 2λ]) is called a tube or a λ-tube and the set L is called a bar.

Any tube F (L, [0, 2λ]) given by a section S through x ∈ X such that

S ⊂ M ∩ F (L, [0, 2λ]) is called a TC-tube on x. We say that a point x ∈ M

fulfills the tube condition and we write TC, if there exists a TC-tube F (L, [0, 2λ])

through x. In particular, if S = M ∩ F (L, [0, 2λ]) we have a STC-tube on x and

we say that a point x ∈ M fulfills the strong tube condition (we write STC), if

there exists a STC-tube F (L, [0, 2λ]) through x.

The following result concerns the continuity of φ which is accomplished out-

side of M .
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Theorem 2.1 ([14, Theorem 3.8]). Consider an impulsive semidynamical

system (X,π;M, I). Assume that no initial point in (X,π) belongs to the impul-

sive set M and that each element of M satisfies TC. Then φ is continuous in x

if and only if x /∈M .

2.2. Additional definitions and auxiliary results. Throughout this pa-

per, we shall assume the following conditions:

(H1) No initial point in (X,π) belongs to the impulsive set M and each ele-

ment of M satisfies STC, consequently φ is continuous on X \M .

(H2) M ∩ I(M) = ∅.
(H3) For each x ∈ X, the motion π̃(x, t) is defined for every t ≥ 0.

For each x ∈ X, we denote the nth jump instant of x by tn(x), where

t0(x) = 0 and tn(x) =

n−1∑
j=0

φ(x+j ), n = 1, 2, . . . ,

where x+0 = x.

Given A ⊂ X and ∆ ⊂ [0,+∞), we set π̃(A,∆) =
⋃
{π̃(x, t) : x ∈ A, t ∈ ∆}.

If π̃(A, t) ⊂ A for every t ≥ 0, we say that A is positively π̃-invariant.

The positive limit set of a point x ∈ X in (X,π;M, I) is given by

L̃+(x) =
{
y ∈ X : there is a sequence {λn}n∈N ⊂ R+

such that λn
n→+∞−−−−−→ +∞ and π̃(x, λn)

n→+∞−−−−−→ y
}
.

It is well-known that L̃+(x)\M is positively π̃-invariant, see [10, Proposition 4.1].

A point x is called a stationary or rest point with respect to (X,π;M, I), if

π̃(x, t) = x for all t ≥ 0. If π̃(x, τ) = x for some τ > 0, then x will be called

π̃-periodic with respect to (X,π;M, I).

Next, we mention some important results that will be very useful later on.

Lemma 2.2 ([4, Corollary 3.9]). Let (X,π;M, I) be an impulsive semidyna-

mical system and x ∈ X \M . Suppose that {xn}n∈N is a sequence in X which

converges to x. Then, given t ≥ 0, there is a sequence {εn}n∈N ⊂ R+ such that

εn
n→+∞−−−−−→ 0 and π̃(xn, t+ εn)

n→+∞−−−−−→ π̃(x, t).

Lemma 2.3 ([4, Lemma 3.8]). Let (X,π;M, I) be an impulsive semidynamical

system, z /∈ M and {zn}n∈N be a sequence in X \M such that zn
n→+∞−−−−−→ z.

Then if αn
n→+∞−−−−−→ 0 and αn ≥ 0, for all n ∈ N, we have π̃(zn, αn)

n→+∞−−−−−→ z.

We note that if t ≥ 0 is not a jump instant of a point x, that is, π̃(x, t) 6= x+j
for every j = 1, 2, . . ., then the convergence in Lemma 2.2 does not depend on

the sequence {εn}n∈N. Thus, π̃(xn, t)
n→+∞−−−−−→ π̃(x, t) whenever t 6= tk(x), for

every k = 1, 2, . . . We formalize this fact in the next lemma.
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Lemma 2.4. Let (X,π;M, I) be an impulsive semidynamical system,

x ∈ X \M and {xn}n∈N ⊂ X be a sequence in X which converges to x. Given

t ≥ 0 such that t 6= tk(x), k = 1, 2, . . ., and {λn}n∈N ⊂ R+ is a sequence with

λn
n→+∞−−−−−→ t, then π̃(xn, λn)

n→+∞−−−−−→ π̃(x, t).

Proof. If t = 0 the result follows by Lemma 2.3. Let k ∈ {0, 1, . . .} be such

that tk(x) < t < tk+1(x). Since φ((xn)+j )
n→+∞−−−−−→ φ(x+j ) for each j = 0, 1, . . .,

and λn
n→+∞−−−−−→ t, we may assume that λn ∈ (tk(xn), tk+1(xn)) for all n ∈ N.

Then

π̃(xn, λn) = π((xn)+k , λn − tk(xn))
n→+∞−−−−−→ π(x+k , t− tk(x)) = π̃(x, t). �

Lemma 2.5. Let (X,π;M, I) be an impulsive semidynamical system,

x ∈ X \M and t ≥ 0. Suppose that the sequence {λn}n∈N ⊂ R+ is such that

λn ≥ t, for every n ∈ N, and λn
n→+∞−−−−−→ t. If {xn}n∈N ⊂ X is a sequence which

converges to x then there is a sequence {βn}n∈N ⊂ R+ such that βn
n→+∞−−−−−→ 0

and

π̃(xn, λn + βn)
n→+∞−−−−−→ π̃(x, t).

Proof. If t 6= tk(x), for every k = 1, 2, . . ., then in virtue of Lemma 2.4, we

get the result. However, if t = tk(x) for some k ∈ {1, 2, . . .}, then since λn ≥ t

for every n ∈ N, we can write λn = t+ sn with sn ≥ 0 and sn
n→+∞−−−−−→ 0. Now,

since φ((xn)+j )
n→+∞−−−−−→ φ(x+j ) for all j = 0, 1, . . ., we have

tk(xn)
n→+∞−−−−−→ tk(x).

Define Tn = tk(xn)− tk(x), n = 1, 2, . . . Thus,

λn = tk(xn)− Tn + sn, n = 1, 2, . . .

Taking βn = |Tn|, n = 1, 2, . . ., and using Lemma 2.3, we obtain

π̃(xn, λn + βn) = π̃(xn, tk(xn)− Tn + |Tn|+ sn)

= π̃(π̃(xn, tk(xn)), |Tn| − Tn + sn)

= π̃((xn)+k , |Tn| − Tn + sn)
n→+∞−−−−−→ π(x+k , 0) = π̃(x, t). �

Lemma 2.6. Let (X,π;M, I) be an impulsive semidynamical system,

x ∈ X \M and t = tk(x), for some k ∈ N. Let {λn}n∈N ⊂ R+ be a sequence

which converges to t and {xn}n∈N ⊂ X be a sequence which converges to x.

(a) If λn < t for all n ∈ N then π̃(xn, λn)
n→+∞−−−−−→ xk.

(b) If λn ≥ t for all n ∈ N then {π̃(xn, λn)}n∈N possesses a subsequence

which converges in π̃+(x).
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Proof. (a) Since λn < t for every n ∈ N, there are a sequence {sn}n∈N ⊂
[0, φ((xn)+k−1)) with sn

n→+∞−−−−−→ φ(x+k−1) and n0 ∈ N such that λn = tk−1(xn)+sn
for all n ≥ n0. Then,

π̃(xn, λn) = π((xn)+k−1, sn)
n→+∞−−−−−→ π(x+k−1, φ(x+k−1)) = xk.

(b) Following the proof of Lemma 2.5 for t = tk(x), if {sn − Tn}n∈N admits

a subsequence {sn`
− Tn`

}`∈N such that sn`
− Tn`

≥ 0 for all ` ∈ N then, using

Lemma 2.3, we have

π̃(xn`
, λn`

) = π̃(π̃(xn`
, tk(xn`

)),−Tn`
+ sn`

)
`→+∞−−−−−→ x+k ∈ π̃+(x).

However, if {sn − Tn}n∈N admits a subsequence {sm`
− Tm`

}`∈N such that

sm`
− Tm`

< 0 for all ` ∈ N then we write λm`
= tk−1(xm`

) + φ((xm`
)+k−1) −

Tm`
+ sm`

, ` = 1, 2, . . . Note that φ((xm`
)+k−1)− Tm`

+ sm`
> 0 for ` sufficiently

large. Then

π̃(xm`
, λm`

) = π̃(π̃(xm`
, tk−1(xm`

)), φ((xm`
)+k−1)− Tm`

+ sm`
)

= π̃((xm`
)+k−1, φ((xm`

)+k−1)− Tm`
+ sm`

)

`→+∞−−−−−→ π(x+k−1, φ(x+k−1)) = xk ∈ π̃+(x). �

Lemma 2.7 ([5, Lemma 3.6]). Let A ⊂ X be non-empty and relatively com-

pact. Then the set π̃(A, [0, `]) is relatively compact in X for each ` > 0.

Remark 2.8. Let y ∈M . By hypothesis (H1), M satisfies STC. Then there

is a STC-tube F (Ly, [0, 2λy]) through y given by a section Sy. Moreover, since

the tube is a neighbourhood of y, there is ηy > 0 such that

B(y, ηy) ⊂ F (Ly, [0, 2λy]).

From now on, we shall denote H
(y)
1 = F (Ly, (λy, 2λy]) ∩ B(y, ηy) and H

(y)
2 =

F (Ly, [0, λy]) ∩B(y, ηy).

3. Main results

This section concerns with the main results and it is divided in four subsec-

tions. In Subsection 3.1, we present results about almost periodic motions. In

Subsection 3.2, we deal with asymptotically almost periodic motions. In Sub-

section 3.3, we study recursive properties for impulsive systems and for discrete

systems in the sense of Kaul. Finally, Subsection 3.4 deals with Lyapunov sta-

bility and Zhukovskĭı quasi stability.

3.1. Almost periodic motions. In [10], Bonotto and Jimenez developed

a study about almost periodic motions in impulsive systems.
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Definition 3.1. A point x ∈ X is said to be almost π̃-periodic if for every

ε > 0, there exists T = T (ε) > 0 such that for every α ≥ 0, the interval [α, α+T ]

contains a number τα > 0 such that

(3.1) d(π̃(x, t+ τα), π̃(x, t)) < ε, for all t ≥ 0.

The set {τα : α ≥ 0} is called a family of almost period of x.

In [10, Lemma 4.22] it is proved that if x ∈ X is almost π̃-periodic, then

every point y ∈ π̃+(x) is also almost π̃-periodic. We shall proof a more general

result.

Theorem 3.2. If x ∈ X is almost π̃-periodic, then every point y ∈ π̃+(x)\M
is almost π̃-periodic. Moreover, if {τα : α ≥ 0} is a family of almost period of x

then {τα : α ≥ 0} is also a family of almost period for each y ∈ π̃+(x) \M .

Proof. Let ε > 0 be given. Since x ∈ X is almost π̃-periodic, there is

T = T (ε/3) > 0 such that for every α ≥ 0, the interval [α, α + T ] contains

a number τα > 0 such that

(3.2) d(π̃(x, t), π̃(x, t+ τα)) <
ε

3
, for all t ≥ 0.

Let y ∈ π̃+(x) \M . Then there exists a sequence {λn}n∈N in R+ such that

yn = π̃(x, λn)
n→+∞−−−−−→ y.

For each α ≥ 0, we consider τα ∈ [α, α + T ] which satisfies (3.2). Let t ≥ 0 be

fixed and arbitrary. By Lemma 2.2 there is a sequence {εn}n∈N ⊂ R+ such that

εn
n→+∞−−−−−→ 0 and π̃(yn, t + εn)

n→+∞−−−−−→ π̃(y, t). Since t + τα + εn ≥ t + τα, for

every n ∈ N, and t+ τα + εn
n→+∞−−−−−→ t+ τα, it follows by Lemma 2.5 that there

exists a sequence {βn}n∈N ⊂ R+ such that βn
n→+∞−−−−−→ 0 and

π̃(yn, t+ τα + εn + βn)
n→+∞−−−−−→ π̃(y, t+ τα).

Moreover, since π̃(y, t) /∈M , it follows by Lemma 2.3, that

π̃(yn, t+ εn + βn)
n→+∞−−−−−→ π̃(y, t).

Thus, there is n0 ∈ N such that, for all n ≥ n0,

d(π̃(yn, t+εn+βn), π̃(y, t)) <
ε

3
and d(π̃(yn, t+τα+εn+βn), π̃(y, t+τα)) <

ε

3
.

Define ηn = εn + βn, n ∈ N. Then by the above inequalities and (3.2), we

have

d(π̃(y, t), π̃(y, t+ τα)) ≤ d(π̃(y, t), π̃(yn0
, t+ ηn0

))

+d(π̃(yn0 , t+ηn0), π̃(yn0 , t+τα+ηn0))+d(π̃(yn0 , t+τα+ηn0), π̃(y, t+τα)) < ε.

Since t was taken arbitrary, it shows that y ∈ π̃+(x) \M is almost π̃-periodic

with the same family of almost period {τα : α ≥ 0}. �
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Theorem 3.2 shows that all the points from π̃+(x) \M are almost π̃-periodic

provided that x is almost π̃-periodic. In Theorem 3.3, we characterize the points

from π̃+(x) ∩M .

Theorem 3.3. Let x ∈ X be almost π̃-periodic, y ∈ π̃+(x)∩M and {yn}n∈N
⊂ π̃+(x) be a sequence such that yn

n→+∞−−−−−→ y. In notations of Remark 2.8 we

have:

(a) If {yn}n∈N admits a subsequence {ynk
}k∈N ⊂ H

(y)
2 , then y is almost

π̃-periodic. Moreover, y admits the same family of almost period of x.

(b) If {yn}n∈N admits a subsequence {ynk
}k∈N ⊂ H

(y)
1 , then I(y) is almost

π̃-periodic. Moreover, I(y) admits the same family of almost period of x.

Proof. Let y ∈ π̃+(x) ∩M . The proof of item (a) is similar to the proof of

Theorem 3.2.

Let us show that item (b) holds. Suppose without loss of generality that

{yn}n∈N ⊂ H(y)
1 . Then φ(yn)

n→+∞−−−−−→ 0 and by continuity of I and π, we obtain

zn = π̃(yn, φ(yn))
n→+∞−−−−−→ I(y).

Since {zn}n∈N ⊂ π̃+(x) \M (see hypothesis (H2)), it follows by Theorem 3.2

that zn is almost π̃-periodic, for each n ∈ N, with the same family of almost

period of x. Consequently, given ε > 0, there is T = T (ε/3) > 0 such that for

every α ≥ 0, we can find τα ∈ [α, α+ T ] which satisfies

(3.3) d(π̃(zn, t), π̃(zn, t+ τα)) <
ε

3
, for all t ≥ 0 and for all n ∈ N.

Fix α ≥ 0 and take τα ∈ [α, α + T ]. Now let t ≥ 0 be fixed and arbitrary.

Since I(y) 6∈M by hypothesis (H2), it follows from Lemma 2.2 that there exists

a sequence {εn}n∈N ⊂ R+ such that εn
n→+∞−−−−−→ 0 and π̃(zn, t + εn)

n→+∞−−−−−→
π̃(I(y), t). Note that t+τα+εn ≥ t+τα, for every n ∈ N, and t+τα+εn

n→+∞−−−−−→
t + τα. Thus, by Lemma 2.5, there exists a sequence {βn}n∈N ⊂ R+ such that

βn
n→+∞−−−−−→ 0 and

π̃(zn, t+ τα + εn + βn)
n→+∞−−−−−→ π̃(I(y), t+ τα).

Also, since π̃(I(y), t) /∈M , it follows by Lemma 2.3, that

π̃(zn, t+ εn + βn)
n→+∞−−−−−→ π̃(I(y), t).

Set ηn = εn + βn, n ∈ N. We can choose n0 ∈ N such that

d(π̃(zn, t+ ηn), π̃(I(y), t)) <
ε

3
and d(π̃(zn, t+ τα + ηn), π̃(I(y), t+ τα)) <

ε

3
,
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for all n ≥ n0. In virtue of the above inequalities and (3.3), we have

d(π̃(I(y), t), π̃(I(y), t+ τα)) ≤ d(π̃(I(y), t), π̃(zn0 , t+ ηn0))

+ d(π̃(zn0 , t+ ηn0), π̃(zn0 , t+ τα + ηn0))

+ d(π̃(zn0 , t+ τα + ηn0), π̃(I(y), t+ τα)) < ε.

Since the above inequality holds for each τα ∈ [α, α+ T ] (α ≥ 0) and t ≥ 0 was

taken arbitrary, I(y) is almost π̃-periodic. �

Remark 3.4. If x ∈ X is π̃-periodic, then using the same arguments of the

proof of Theorem 3.2, we can prove that each point y ∈ π̃+(x) \M is π̃-periodic.

If y ∈ π̃+(x)∩M then y is π̃-periodic or I(y) is π̃-periodic, its proof is analogous

to the proof of Theorem 3.3.

Definition 3.5 deals with the concept of relatively dense sets. This concept

is presented in Definition 3.11, Chapter III of [1].

Definition 3.5. A set D ⊂ R+ is said to be relatively dense in R+ if there

is a number L > 0 such that D ∩ [t, t+ L] 6= ∅ for all t ∈ R+.

Next, we present a result which relates the concept of almost π̃-periodic

motions with relatively dense sets.

Lemma 3.6. A point x ∈ X is almost π̃-periodic if and only if for every ε > 0

the set

D(ε) =
{
τ ∈ R+ : sup

t∈R+

d(π̃(x, t+ τ), π̃(x, t)) < ε
}

is relatively dense in R+.

Proof. Let x ∈ X be almost π̃-periodic and ε > 0 be given. Then there is

T = T (ε/2) > 0 such that for all α ≥ 0, one can find 0 6= τα ∈ [α, α + T ] such

that sup
t∈R+

d(π̃(x, t+ τα), π̃(x, t)) ≤ ε/2 < ε. Thus, D(ε) ∩ [α, α+ T ] 6= ∅ and the

set D(ε) is relatively dense in R+. The converse is straightforward. �

A point x ∈ X is called π̃-recurrent if for every ε > 0 there exists T = T (ε) >

0 such that for every t, s ≥ 0, the interval [0, T ] contains a number τ > 0 such

that d(π̃(x, t), π̃(x, s+ τ)) < ε. In [10, Theorem 4.23], the authors show that if a

point x ∈ X \M is almost π̃-periodic then it is π̃-recurrent provided that π̃+(x)

is compact. However, if X is a complete metric space then π̃+(x) is compact

provided x ∈ X is almost π̃-periodic, see Theorem 3.7 below. In conclusion, if

X is complete and x ∈ X \M is almost π̃-periodic then x is π̃-recurrent, see

Corollary 3.8.

Theorem 3.7. Let (X,π;M, I) be an impulsive system and X be a complete

metric space. If x ∈ X is almost π̃-periodic then the set π̃+(x) is compact.
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Proof. Let ε > 0 and x ∈ X be almost π̃-periodic. From Lemma 3.6, the

set D(ε/4) is relatively dense in R+. Thus

(3.4) d(π̃(x, t+ τ), π̃(x, t)) <
ε

4
,

for all t ∈ R+ and τ ∈ D(ε/4). Besides, we obtain

(3.5) d(π̃(x, t+ τ1), π̃(x, t+ τ2))

≤ d(π̃(x, t+ τ1), π̃(x, t)) + d(π̃(x, t+ τ2), π̃(x, t)) <
ε

2
,

for all t ∈ R+ and for all τ1, τ2 ∈ D(ε/4).

Define α = inf{τ : τ ∈ D(ε/4)}. Then there is a sequence {τn}n∈N ⊂ D(ε/4)

such that τn
n→+∞−−−−−→ α and τn ≥ α for all n ∈ N. Since π̃(x, · ) is continuous

from the right, we get

π̃(x, t+ τn)
n→+∞−−−−−→ π̃(x, t+ α).

Then, using (3.5), we obtain

(3.6) d(π̃(x, t+ α), π̃(x, t+ τ)) ≤ d(π̃(x, t+ α), π̃(x, t+ τn))

+ d(π̃(x, t+ τn), π̃(x, t+ τ)) ≤ d(π̃(x, t+ α), π̃(x, t+ τn)) +
ε

2

for all t ∈ R+ and for all τ ∈ D(ε/4). When n approaches to +∞ in (3.6), we

obtain

(3.7) d(π̃(x, t+ α), π̃(x, t+ τ)) ≤ ε

2
, for all t ∈ R+ and for all τ ∈ D

(
ε

4

)
.

On the other hand, as D(ε/4) is relatively dense in R+, there is L > 0 such

that D(ε/4) ∩ [t, t + L] 6= ∅ for all t ∈ R+. Let s > L, then one can choose

τs ∈ D(ε/4) ∩ [s− L, s]. By (3.7) we have

d(π̃(x, s), π̃(x, s− τs + α)) = d(π̃(x, (s− τs) + τs), π̃(x, (s− τs) + α)) < ε,

which implies that π̃(x, s) ∈ B(π̃(x, [α,L+ α]), ε) for all s > L. Thus,

π̃(x, t) ∈ B(π̃(x, [0, L+ α]), ε) ⊂ B(Qα, ε), for all t ≥ 0,

where Qα = π̃(x, [0, L+ α]). Since Qα is compact (Lemma 2.7), we get that

π̃+(x) is totally bounded and, as X is complete, we conclude that π̃+(x) is

compact. �

Corollary 3.8. If X is complete and x ∈ X \M is almost π̃-periodic then

x is π̃-recurrent.

Proof. The proof follows from Theorem 3.7 and [10, Theorem 4.23]. �



144 E.M. Bonotto — L.P. Gimenes — G.M. Souto

Let us recall that a point x ∈ X is said to be positively Poisson π̃-stable if

x ∈ L̃+(x). For details, the reader may consult [8]. The next result says that if

x ∈ X is almost π̃-periodic then the positive orbit of x is dense in its positive

limit set. As a consequence of Theorem 3.9, we conclude that x is positively

Poisson π̃-stable.

Theorem 3.9. If x ∈ X is almost π̃-periodic, then L̃+(x) = π̃+(x). More-

over, x is positively Poisson π̃-stable.

Proof. It is clear that L̃+(x) ⊂ π̃+(x). Let us show that π̃+(x) ⊂ L̃+(x).

Let ε > 0 and p ∈ π̃+(x), then there is a sequence {λn}n∈N ⊂ R+ such that

π̃(x, λn)
n→+∞−−−−−→ p. Take n0 ∈ N such that

d(π̃(x, λn), p) <
ε

2
, n ≥ n0.

Since x is almost π̃-periodic, one can conclude that π̃(x, λn) is almost π̃-

periodic for each n ∈ N with the same family of almost period of x, see Theo-

rem 3.2. Then, there are T > 0 and τn ∈ [n, n+ T ], n ∈ N, such that

d(π̃(x, λn + τn), π̃(x, λn)) <
ε

2
, for all n ∈ N.

Thus, for all n ≥ n0, we get

d(π̃(x, λn + τn), p) ≤ d(π̃(x, λn + τn), π̃(x, λn)) + d(π̃(x, λn), p) < ε.

As λn + τn
n→+∞−−−−−→ +∞, we have p ∈ L̃+(x) and the proof is complete. �

3.2. Asymptotically almost periodic motions. In [12], the author pre-

sents a study of asymptotic stability in the sense of Poisson for dynamical systems

(in particular, asymptotic almost periodic motions). He shows various results

of asymptotic periodicity and asymptotic almost periodicity using Lyapunov

stability. In this section, we present some generalizations for these results to the

impulsive case. In order to do that we use the concept of Zhukovskĭı stability

once that it permits lapse of time. For this purpose, we introduce the notion of

time reparametrization.

Definition 3.10. A function h : R+ → R+ is called a time reparametrization

if h is a homeomorphism and h(0) = 0.

Definition 3.11. A point x ∈ X is called asymptotically π̃-stationary (resp.

asymptotically π̃-periodic, asymptotically almost π̃-periodic, asymptotically π̃-

recurrent, asymptotically Poisson π̃-stable) if there exist a stationary (resp. π̃-

periodic, almost π̃-periodic, π̃-recurrent, positively Poisson π̃-stable) point p ∈ X
and a reparametrization hp such that

(3.8) lim
t→+∞

d(π̃(x, t), π̃(p, hp(t))) = 0.
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Remark 3.12. If h is a time reparametrization, then the inverse h−1 is also

a time reparametrization. Choosing s = h(t), t ∈ R+, one can write

d(π̃(x, t), π̃(y, h(t))) = d(π̃(x, h−1(s)), π̃(y, s)).

The next result says that if x possesses an asymptotic property then each

point from its positive orbit also possesses this property.

Lemma 3.13. If x ∈ X is asymptotically almost π̃-periodic (resp. asymptoti-

cally π̃-stationary, asymptotically π̃-periodic), then every point y ∈ π̃+(x) is also

asymptotically almost π̃-periodic (resp., asymptotically π̃-stationary, asymptoti-

cally π̃-periodic).

Proof. Suppose that x ∈ X is asymptotically almost π̃-periodic. Then,

there exist an almost π̃-periodic point p ∈ X and a time reparametrization

hp : R+ → R+ such that

(3.9) lim
t→+∞

d(π̃(x, t), π̃(p, hp(t))) = 0.

Let y ∈ π̃+(x), then y = π̃(x, s) for some s ∈ R+. Note that q = π̃(p, hp(s))

is almost π̃-periodic, see Theorem 3.2. Consider the function gy : R+ → R+

defined by

gy(t) = hp(t+ s)− hp(s), for all t ∈ R+.

It is clear that gy(0) = 0 and gy is a continuous function possessing a contin-

uous inverse function given by g−1y (t) = h−1p (t + hp(s)) − s. Then gy is a time

reparametrization. Moreover,

d(π̃(y, t), π̃(q, gy(t))) = d(π̃(x, t+ s), π̃(p, hp(s) + hp(t+ s)− hp(s)))

= d(π̃(x, t+ s), π̃(p, hp(t+ s)))
t→+∞−−−−−→ 0,

where the convergence follows by (3.9). Therefore, y ∈ π̃+(x) is asymptotically

almost π̃-periodic. The other cases are analogous. �

Theorem 3.14. Let (X,π;M, I) be an impulsive system and X be a complete

metric space. If x ∈ X is asymptotically almost π̃-periodic, then:

(a) π̃+(x) is compact;

(b) L̃+(x) coincides with the closure of an almost π̃-periodic orbit.

Proof. First, we show that (a) holds. Let x ∈ X be asymptotically almost

π̃-periodic and ε > 0. Then there are an almost π̃-periodic point p ∈ X, a time

reparametrization hp : R+ → R+ and t0 > 0 such that

(3.10) d(π̃(x, t), π̃(p, hp(t))) <
ε

4
, for all t ≥ t0.

It shows that π̃(x, [t0,+∞)) ⊂ B(π̃+(p), ε/4).
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According to Theorem 3.7, we have that π̃+(p) is compact because X is

complete. Thus, there are p1, . . . , pk ∈ π̃+(p) such that

(3.11) π̃+(p) ⊂ B
(
p1,

ε

4

)
∪ . . . ∪B

(
pk,

ε

4

)
.

Consequently,

B

(
π̃+(p),

ε

4

)
⊂ B

(
p1,

ε

2

)
∪ . . . ∪B

(
pk,

ε

2

)
.

Let hp(t0) = η. By Theorem 3.9, there is λj > η such that

d(π̃(p, λj), pj) <
ε

4
, for each j = 1, . . . , k.

Then, using (3.11), we get

π̃+(p) ⊂ B
(
π̃(p, λ1),

ε

2

)
∪ . . . ∪B

(
π̃(p, λk),

ε

2

)
.

For each j = 1, . . . , k, let sj > t0 (because λj > η) be such that hp(sj) = λj .

From (3.10) we have

d(π̃(x, sj), π̃(p, λj)) = d(π̃(x, sj), π̃(p, hp(sj))) <
ε

4
.

We claim that π̃(x, [t0,+∞)) ⊂ B(π̃(x, s1), ε) ∪ . . . ∪ B(π̃(x, sk), ε). Indeed,

let a ∈ π̃(x, [t0,+∞)), then there is j0 ∈ {1, . . . , k} such that d(a, pj0) < ε/2.

Thus,

d(a, π̃(x, sj0)) ≤ d(a, pj0) + d(pj0 , π̃(p, λj0)) + d(π̃(p, λj0), π̃(x, sj0)) < ε.

This shows that π̃(x, [t0,+∞)) is totally bounded and therefore, it is compact

since X is complete. By Lemma 2.7, the set π̃(x, [0, t0]) is compact. Hence,

π̃+(x) is compact.

Now, let us show that assertion (b) holds. It is enough to show that L̃+(x) =

π̃+(p), where p is the almost π̃-periodic point found above. Let q ∈ π̃+(p). By

Theorem 3.9, we have q ∈ L̃+(p). Then there is a sequence {sn}n∈N ⊂ R+ with

sn
n→+∞−−−−−→ +∞ such that π̃(p, sn)

n→+∞−−−−−→ q. Since

d(π̃(x, h−1p (sn)), q) ≤ d(π̃(x, h−1p (sn)), π̃(p, sn)) + d(π̃(p, sn), q)

and x is asymptotically almost π̃-periodic, we have

d(π̃(x, h−1p (sn)), q)
n→+∞−−−−−→ 0.

But h−1p (sn)→ +∞ as n→ +∞, which implies that q ∈ L̃+(x). Thus π̃+(p) ⊂
L̃+(x).

On the other hand, take q ∈ L̃+(x). Then there is a sequence {λn}n∈N ⊂ R+

such that λn
n→+∞−−−−−→ +∞ and π̃(x, λn)

n→+∞−−−−−→ q. By compactness of π̃+(p), the
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sequence {π̃(p, hp(λn))}n∈N admits a convergent subsequence. We may assume

without loss of generality that lim
n→+∞

π̃(p, hp(λn)) = y ∈ π̃+(p). As

d(π̃(x, λn), y) ≤ d(π̃(x, λn), π̃(p, hp(λn))) + d(π̃(p, hp(λn)), y)

and x is asymptotically almost π̃-periodic, we have

d(π̃(x, λn), y)
n→+∞−−−−−→ 0.

Thus, by uniqueness, we have q = y ∈ π̃+(p) which implies that L̃+(x) ⊂ π̃+(p).

Consequently, L̃+(x) = π̃+(p) and assertion (b) is proved. �

Now, we intend to give sufficient conditions for a point to be asymptotically

almost π̃-periodic and asymptotically π̃-periodic. Before that, we recall the

definition of Zhukovskĭı quasi π̃-stability which will be useful in the sequel. The

reader may consult [17] where this concept was introduced for impulsive systems.

Definition 3.15. A point x ∈ X \M is called Zhukovskĭı quasi π̃-stable with

respect to the set A ⊂ X, if for every ε > 0 there is δ = δ(x, ε) > 0 such that if

d(x, y) < δ for y ∈ A, then one can find a time reparametrization hy such that

d(π̃(x, t), π̃(y, hy(t))) < ε, for all t ≥ 0.

A subset B ⊂ X \M is Zhukovskĭı quasi π̃-stable with respect to the set A ⊂ X,

if each point z ∈ B is Zhukovskĭı quasi π̃-stable with respect to A.

Theorem 3.16. Let x ∈ X \M satisfy the following conditions:

(a) π̃+(x) is compact;

(b) L̃+(x) \M is Zhukovskĭı quasi π̃-stable with respect to the set π̃+(x);

(c) L̃+(x) coincides with the closure of an almost π̃-periodic orbit.

Then x is asymptotically almost π̃-periodic.

Proof. Let ε > 0 be given. By condition (c), there exists an almost π̃-

periodic point p ∈ X such that L̃+(x) = π̃+(p). Thus, there are T = T (ε) > 0

and τn ∈ [n, n+ T ] such that

(3.12) d(π̃(p, t+ τn), π̃(p, t)) <
ε

2
, for all t ≥ 0 and for all n ∈ N.

According to condition (a), we may assume that π̃(x, τn)
n→+∞−−−−−→ q. Since

τn
n→+∞−−−−−→ +∞, one can conclude that q ∈ L̃+(x) = π̃+(p).

Case 1. q ∈ π̃+(p) \M .

By Theorem 3.2, the point q is almost π̃-periodic with the same family of

almost period of p. Then

(3.13) d(π̃(q, t+ τn), π̃(q, t)) <
ε

2
, for all t ≥ 0 and for all n ∈ N.
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Since q ∈ L̃+(x) \M , it follows by (b) that there is δ = δ(q, ε/2) > 0 such that

if y ∈ π̃+(x) and d(q, y) < δ, one can find a time reparametrization hy such that

d(π̃(y, hy(t)), π̃(q, t)) <
ε

2
, for all t ≥ 0.

By the convergence π̃(x, τn)
n→+∞−−−−−→ q, we may choose n0 ∈ N for which

d(π̃(x, τn0), q) < δ. Consequently, we may find a time reparametrization h0
such that

(3.14) d(π̃(x, τn0 + h0(t)), π̃(q, t)) <
ε

2
, for all t ≥ 0.

Let us define hq : R+ → R+ by

(3.15) hq(t) =

h0(t− τn0) + τn0 if t > τn0 ,

t if t ∈ [0, τn0
].

Note that hq is a time reparametrization. Using (3.13) and (3.14), we have

d(π̃(x, hq(t)), π̃(q, t)) = d(π̃(x, h0(t− τn0) + τn0), π̃(q, t))

≤ d(π̃(x, τn0 + h0(t− τn0)), π̃(q, t− τn0)) + d(π̃(q, t− τn0), π̃(q, t)) < ε,

for all t ≥ τn0
. Hence, x is asymptotically almost π̃-periodic.

Case 2. q ∈ π̃+(p) ∩M .

Since M satisfies STC, in notation of Remark 2.8 we write

H
(q)
1 = F (Lq, (λq, 2λq]) ∩B(q, ηq) and H

(q)
2 = F (Lq, [0, λq]) ∩B(q, ηq).

Now, we need to consider the cases when {π̃(x, τn)}n∈N admits a subsequence

in H
(q)
1 and when {π̃(x, τn)}n∈N admits a subsequence in H

(q)
2 . For that, we

shall consider the cases {π̃(x, τn)}n∈N ⊂ H(q)
2 and {π̃(x, τn)}n∈N ⊂ H(q)

1 .

Subcase 2.1. {π̃(x, τn)}n∈N ⊂ H(q)
2 .

By Theorem 3.3, the point q is almost π̃-periodic with the same family of

almost period of p. Then, for the ε > 0 given before, we have

(3.16) d(π̃(q, t+ τn), π̃(q, t)) <
ε

2
, for all t ≥ 0 and for all n ∈ N.

Set q = π̃(q, s) for some s ∈ (0, φ(q)). By the tube condition we have

π̃(x, τn + s)
n→+∞−−−−−→ π̃(q, s) = q, that is, q ∈ L̃+(x) \M . Moreover, defining

tn = τn + s, it follows by condition (b), there is n1 ∈ N such that one can find

a time reparametrization h1 such that

(3.17) d(π̃(x, tn1
+ h1(t)), π̃(q, t)) <

ε

2
, for all t ≥ 0.

Suppose that t ≥ tn1
= τn1

+ s. From (3.16), we obtain

(3.18) d(π̃(q, t− tn1), π̃(q, t)) = d(π̃(q, t− τn1), π̃(q, t)) <
ε

2
.
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Let hq : R+ → R+ be given by

(3.19) hq(t) =

h1(t− tn1
) + tn1

if t > tn1
,

t if t ∈ [0, tn1
].

Then, hq is a time reparametrization. Using (3.17) and (3.18), we get

d(π̃(x, hq(t)), π̃(q, t)) = d(π̃(x, h1(t− tn1
) + tn1

), π̃(q, t))

≤ d(π̃(x, tn1
+ h1(t− tn1

)), π̃(q, t− tn1
)) + d(π̃(q, t− tn1

), π̃(q, t)) < ε,

for all t ≥ tn1
. Hence, x is asymptotically almost π̃-periodic.

Subcase 2.2. {π̃(x, τn)}n∈N ⊂ H(q)
1 .

In virtue of Theorem 3.3, the point I(q) is almost π̃-periodic with the same

family of almost period of p. Then, for the ε > 0 given before, we have

(3.20) d(π̃(I(q), t+ τn), π̃(I(q), t)) <
ε

2
, for all t ≥ 0 and for all n ∈ N.

Let yn = π̃(x, τn) and zn = π̃(yn, φ(yn)), for n ∈ N. Note that yn
n→+∞−−−−−→ q,

φ(yn)
n→+∞−−−−−→ 0 and

zn = π̃(yn, φ(yn)) = I(π(yn, φ(yn)))
n→+∞−−−−−→ I(π(q, 0)) = I(q).

Thus I(q) ∈ L̃+(x) \M . Moreover, since τn
n→+∞−−−−−→ +∞, we can choose n2 ∈ N

such that φ(yn) < τn for every n ≥ n2. By condition (b), there are n3 ∈ N with

n3 > n2 and a time reparametrization h3 such that

(3.21) d(π̃(zn3 , h3(t)), π̃(I(q), t)) <
ε

2
, for all t ≥ 0.

Define hI(q) : R+ → R+ by

(3.22) hI(q)(t) =


h3(t− τn3

) + τn3
+ φ(yn3

) if t > τn3
,

t+ φ(yn3) if t ∈ (φ(yn3), τn3 ],

2t if t ∈ [0, φ(yn3
)].

Then hI(q) is a time reparametrization and using (3.20), (3.21) and (3.22) we

have

d(π̃(x, hI(q)(t)), π̃(I(q), t)) = d(π̃(x, h3(t− τn3
) + τn3

+ φ(yn3
)), π̃(I(q), t))

= d(π̃(zn3
, h3(t− τn3

)), π̃(I(q), t))

≤ d(π̃(zn3
, h3(t− τn3

)), π̃(I(q), t− τn3
))

+ d(π̃(I(q), t− τn3
), π̃(I(q), t)) < ε,

for all t > τn3
. Therefore, x is asymptotically almost π̃-periodic and the result

is proved. �

Corollary 3.17. Let x ∈ X \M satisfy the following conditions:
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(a) π̃+(x) is compact;

(b) L̃+(x) \M is Zhukovskĭı quasi π̃-stable with respect to the set π̃+(x);

(c) L̃+(x) coincides with the closure of a π̃-periodic orbit.

Then x is asymptotically π̃-periodic.

Proof. Using the same arguments as in the proof of Theorem 3.16, we get

the result. �

Next we present a result which gives us conditions for a set to be Zhukovskĭı

quasi π̃-stable. In [17], this result was presented for a restricted system where

the phase space is X \M . Thus, our result generalizes [17, Theorem 3.4].

Theorem 3.18. Let (X,π;M, I) be an impulsive system and x ∈ X \M .

Suppose that T = sup
k≥1

φ(x+k ) < +∞ and the following assumptions hold:

(a) d(I(p), I(q)) ≤ λ1d(p, q) for all p, q ∈ M and d(π(p, φ(p)), π(q, φ(q))) ≤
λ2d(p, q) for all p, q ∈ π̃+(x) \M , where λ1, λ2 > 0 and λ1λ2 ≤ 1;

(b) |φ(p+1 )− φ(q+1 )| ≤ |φ(p)− φ(q)| for all p, q ∈ π̃+(x) \M ;

(c) π̃+(x) is compact.

Then every subset A in π̃+(x) \M is Zhukovskĭı quasi π̃-stable with respect to

π̃+(x).

Proof. Let ε > 0 be given and z ∈ π̃+(x) \ M . Since π is uniformly

continuous on K = π̃+(x) × [0, T ], there is δ1 = δ1(K, ε) > 0, δ1 < ε, such that

if y ∈ π̃+(x), t1, t2 ∈ [0, T ] and max{d(y, z), |t1 − t2|} < δ1, then

(3.23) d(π(z, t1), π(y, t2)) < ε.

Now, since φ is continuous on X \M , there is δ = δ(z, δ1) > 0, δ < δ1, such

that if y ∈ X and d(y, z) < δ then

(3.24) |φ(y)− φ(z)| < δ1.

Thus, if d(y, z) < δ, it follows by conditions (a), (b) and (3.24) that

d(z+1 , y
+
1 ) ≤ λ1λ2d(z, y) < δ ⇒ |φ(z+1 )− φ(y+1 )| ≤ |φ(z)− φ(y)| < δ1,

where z1 = π(z, φ(z)), y1 = π(y, φ(y)), z+1 = I(z1) and y+1 = I(y1). Using the

principle of induction, if d(z, y) < δ then d(z+n , y
+
n ) < δ, and therefore,

|φ(z+n )− φ(y+n )| < δ1, for all n = 0, 1, . . .

Define the time reparametrization hy : R+ → R+ by

hy(t) = tn(y) +
φ(y+n )

φ(z+n )
(t− tn(z)) if t ∈ [tn(z), tn+1(z)), n = 0, 1, 2, . . .

Thus, if t ∈ [tn(z), tn+1(z)), n = 0, 1, . . ., we have

d(π̃(z, t), π̃(y, hy(t))) = d

(
π(z+n , t− tn(z)), π

(
y+n ,

φ(y+n )

φ(z+n )
(t− tn(z))

))
.



Asymptotically Almost Periodic Motions 151

If d(z, y) < δ then d(z+n , y
+
n ) < δ for all n = 0, 1, . . . , consequently,∣∣∣∣t− tn(z)− φ(y+n )

φ(z+n )
(t− tn(z))

∣∣∣∣ < |φ(z+n )− φ(y+n )| < δ1,

and by (3.23), we obtain d(π̃(z, t), π̃(y, hy(t))) < ε. Since t ≥ 0 was taken

arbitrary, we may conclude that every point z ∈ A ⊂ π̃+(x) \M is Zhukovskĭı

quasi π̃-stable with respect to the set π̃+(x) and the proof is complete. �

Corollary 3.19. Let (X,π;M, I) be an impulsive system satisfying condi-

tions (a) and (b) of Theorem 3.18, X be complete and x ∈ X \M be asymp-

totically almost π̃-periodic. If φ(x+k ) < +∞ for all k ∈ N then L̃+(x) \M is

Zhukovskĭı quasi π̃-stable with respect to π̃+(x).

Proof. By Theorem 3.14, the set π̃+(x) is compact. Thus {x+k : k ∈ N}
is compact. By the compactness of {x+k : k ∈ N}, hypothesis (H2) and, since

{x+k }k∈N ⊂ I(M), we have {x+k : k ∈ N}∩M = ∅ and therefore, sup
k≥1

φ(x+k ) < +∞

because φ is uniformly continuous on compact sets K ⊂ X\M . The result follows

from Theorem 3.18. �

Example 3.20. Consider the impulsive semidynamical system (R2, π;M, I),

where (R2, π) is a continuous semidynamical system given by

π((x, y), t) = (x+ t, y), (x, y) ∈ R2 and t ≥ 0,

M = {(x, y) ∈ R2 : x = 2} and I : M → X is given by I(x, y) = (1, y/2),

(x, y) ∈M . Note that the impulse operator I satisfies

d(I(p), I(q)) ≤ 1

2
d(p, q), for all p, q ∈M.

It is easy to see that if (x, y) ∈ R2 and x < 2 then

φ(x, y) = 2− x and π((x, y), φ(x, y)) = (2, y).

We claim that the point (1, 1) is asymptotically π̃-periodic. In fact, it is

enough to show that the conditions of Corollary 3.17 are satisfied.

At first, we note that π̃+(1, 1) is a compact set. If p, q ∈ π̃+(1, 1) \ M
then |φ(p+1 ) − φ(q+1 )| = 0 ≤ |φ(p) − φ(q)|, d(π(p, φ(p)), π(q, φ(q))) ≤ d(p, q) and

φ((1, 1)+k ) = 1 for all k = 1, 2, . . . By Theorem 3.18, L̃+(1, 1) \M is Zhukovskĭı

quasi π̃-stable with respect to the set π̃+(1, 1).

Now, it is not difficult to see that L̃+(1, 1) = [1, 2] × {0}. Clearly, (1, 0)

is π̃-periodic and π̃+(1, 0) = [1, 2] × {0} = L̃+(1, 1). Hence, the conditions of

Corollary 3.17 are satisfied and hence (1, 1) is asymptotically π̃-periodic.

Theorem 3.21. Let x ∈ X \M be asymptotically π̃-periodic. Then there is

τ > 0 such that {π̃(x, nτ) : n ∈ N} is relatively compact in X.
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Proof. Since x ∈ X \M is asymptotically π̃-periodic, there exist p ∈ X,

π̃-periodic with period τ > 0, and a time reparametrization hp : R+ → R+

satisfying

lim
t→+∞

d(π̃(x, t), π̃(p, hp(t))) = 0.

In particular,

(3.25) lim
n→+∞

d(π̃(x, nτ), π̃(p, hp(nτ))) = 0.

For each n∈N, there are kn∈N and rn∈ [0, τ) such that hp(nτ)=knτ + rn.

We may assume without loss of the generality that rn
n→+∞−−−−−→ r0 ∈ [0, τ ].

Since π̃(p, hp(nτ)) = π̃(p, rn), by Lemmas 2.4 and 2.6, {π̃(p, hp(nτ))}n∈N ad-

mits a convergent subsequence in X. Using (3.25), we obtain that the sequence

{π̃(x, nτ)}n∈N possesses a convergent subsequence in X. �

The next result provides sufficient conditions to obtain the converse of The-

orem 3.21.

Theorem 3.22. Suppose that (X,π;M, I) satisfies conditions (a) and (b) of

Theorem 3.18, x ∈ X \M and sup
k≥1

φ(x+k ) < +∞. If the sequence {π̃(x, nτ)}n∈N

converges in X \M , for some τ > 0, then x is asymptotically π̃-periodic.

Proof. In order to show this result, we will show that the conditions of

Corollary 3.17 are satisfied. Let p ∈ X \M be such that π̃(x, nτ)
n→+∞−−−−−→ p.

Firstly, let us prove that π̃+(x) is compact. Indeed, let {yn}n∈N ⊂ π̃+(x)

be an arbitrary sequence. Then there is a sequence {tn}n∈N ⊂ R+ such that

yn = π̃(x, tn), for every n ∈ N.

If {tn}n∈N admits a convergent subsequence then {yn}n∈N also admits one.

Now, if tn
n→+∞−−−−−→ +∞, then for each n ∈ N there are an ∈ N and bn ∈ [0, τ)

such that tn = anτ + bn. We may assume that bn
n→+∞−−−−−→ b0 ∈ [0, τ ]. Since

anτ
n→+∞−−−−−→ +∞, bn

n→+∞−−−−−→ b0 and π̃(x, anτ)
n→+∞−−−−−→ p, it follows that the

sequence {yn}n∈N (yn = π̃(π̃(x, anτ), bn), n = 1, 2, . . .) admits a convergent

subsequence in π̃+(x), see Lemmas 2.4 and 2.6. Thus, π̃+(x) is compact.

According to Theorem 3.18, L̃+(x) \ M is Zhukovskĭı quasi π̃-stable with

respect to the set π̃+(x).

Now, we need to prove that L̃+(x) is the closure of a π̃-periodic orbit. Recall

that p = lim
n→+∞

π̃(x, nτ).

Since p /∈M , it follows by Lemma 2.2, that there is a sequence {εn}n∈N ⊂ R+

with εn
n→+∞−−−−−→ 0 such that

π̃(π̃(x, nτ), τ + εn)
n→+∞−−−−−→ π̃(p, τ).

On the other hand, using Lemma 2.3, we get

π̃(π̃(x, nτ), τ + εn) = π̃(π̃(x, (n+ 1)τ), εn)
n→+∞−−−−−→ π̃(p, 0) = p.
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By the uniqueness of limit, we get p = π̃(p, τ), that is, p is π̃-periodic.

We claim that L̃+(x) = π̃+(p) = π̃(p, [0, τ ]). Indeed, if q ∈ L̃+(x), then there

is a sequence {τn}n∈N ⊂ R+ such that τn
n→+∞−−−−−→ +∞ and π̃(x, τn)

n→+∞−−−−−→ q.

There are kn ∈ N and rn ∈ [0, τ) such that τn = knτ + rn, n ∈ N. Using

Lemmas 2.4 and 2.6, we may assume (we take a subsequence if necessary) that

π̃(x, τn) = π̃(π̃(x, knτ), rn)
n→+∞−−−−−→ q ∈ π̃(p, [0, τ ]).

On the other hand, let q ∈ π̃(p, [0, τ ]), then there is a sequence {sn}n∈N ⊂
[0, τ ] such that q = lim

n→+∞
π̃(p, sn). We may assume without loss of generali-

ty that sn
n→+∞−−−−−→ s0 ∈ [0, τ ]. If s0 6= tk(p), for every k = 1, 2, . . ., then by

Lemma 2.4, we get q = π̃(p, s0). Let tn = nτ + s0, thus tn
n→+∞−−−−−→ +∞ and,

using Lemma 2.4, again we have

π̃(x, tn) = π̃(π̃(x, nτ), s0)
n→+∞−−−−−→ π̃(p, s0) = q.

Then, q ∈ L̃+(x).

Now, if s0 = tk(p) for some k ∈ N, then looking at the proof of Lemma 2.6

and taking in account that π̃(x, nτ)
n→+∞−−−−−→ p, we get that either

π̃(x, tn) = π̃(π̃(x, nτ), s0)
n→+∞−−−−−→ π̃(p, s0) = p+k = q

or

π̃(x, tn) = π̃(π̃(x, nτ), s0)
n→+∞−−−−−→ pk = q.

In both of cases, we have q ∈ L̃+(x). Hence, L̃+(x) = π̃(p, [0, τ ]). By Corol-

lary 3.17 we have x is asymptotically π̃-periodic. �

Corollary 3.23. Suppose that (X,π;M, I) satisfies conditions (a) and (b)

of Theorem 3.18, x ∈ X \M and φ(x+k ) < +∞ for all k ∈ N. If the sequence

{π̃(x, nτ)}n∈N converges in X \M , for some τ > 0, then x is asymptotically

π̃-periodic.

Proof. By the proof of Theorem 3.22 we have that π̃+(x) is compact. Thus

{x+k : k ∈ N} is compact. By the compactness of {x+k : k ∈ N}, hypothesis (H2)

and, since {x+k }k∈N ⊂ I(M), we have {x+k : k ∈ N} ∩ M = ∅ and therefore,

sup
k≥1

φ(x+k ) < +∞ because φ is uniformly continuous on compact sets K ⊂ X \M .

The result follows from Theorem 3.22. �

We finish this section presenting necessary and sufficient conditions for a point

to be asymptotically π̃-stationary.

Theorem 3.24. Let (X,π;M, I) be an impulsive system. Then x ∈ X is

asymptotically π̃-stationary if and only if the sequence {π̃(x, tn)}n∈N converges

in X, where tn =
n∑
k=1

1/k, n ∈ N.
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Proof. First, we suppose that x is asymptotically π̃-stationary. Then, there

is a stationary point p ∈ X such that

(3.26) lim
t→+∞

d(π̃(x, t), p) = 0.

Since tn =
n∑
k=1

1/k
n→+∞−−−−−→ +∞, it follows from (3.26) that {π̃(x, tn)}n∈N con-

verges to p ∈ X.

Conversely, suppose that π̃(x, tn)
n→+∞−−−−−→ p ∈ X, where tn =

n∑
k=1

1/k, n ∈ N.

Let {sn}n∈N ⊂ R+ be an arbitrary sequence such that sn
n→+∞−−−−−→ +∞. There

are n0 ∈ N and a sequence {mn}n∈N ⊂ N such that tmn
< sn ≤ tmn+1, for all

n ≥ n0. Note that 0 < sn − tmn
≤ tmn+1 − tmn

= 1/(mn + 1) for n ≥ n0.

Case 1. p 6∈M . In this case we have

π̃(x, sn) = π̃(π̃(x, tmn
), sn − tmn

)
n→+∞−−−−−→ p,

since π̃(x, tmn)
n→+∞−−−−−→ p and (sn − tmn)

n→+∞−−−−−→ 0. Since {sn}n∈N is arbitrary,

we have

lim
t→+∞

d(π̃(x, t), p) = 0.

If 0 ≤ s < φ(p) then, by Lemma 2.4, we get

p = lim
t→+∞

π̃(x, t+ s) = π(p, s) = π̃(p, s).

Hence, p is stationary and x is asymptotically π̃-stationary.

Case 2. p ∈ M . By hypothesis (H1), the set M satisfies STC. Using

Remark 2.8, we may write H
(p)
1 = F (Lp, (λp, 2λp]) ∩ B(p, ηp) and H

(p)
2 =

F (Lp, [0, λp]) ∩ B(p, ηp). We may assume that {π̃(x, tmn
)}n∈N ⊂ H

(p)
1 . In fact,

suppose that there is a subsequence {mnk
}k∈N such that π̃(x, tmnk

) ∈ H(p)
2 for

all k ∈ N. Let {rk}k∈N ⊂ R+ be an arbitrary sequence such that rk
k→+∞−−−−−→ +∞.

As we did before, we may assume that tmnk
< rk ≤ tmnk

+1 for all k ∈ N. Then

π̃(x, rk) = π̃(π̃(x, tmnk
), rk − tmnk

)
k→+∞−−−−−→ p ∈M.

Since {rk}k∈N is arbitrary, we have lim
t→+∞

d(π̃(x, t), p) = 0. This shows that p is

stationary since

p = lim
k→+∞

π̃(x, s+ tmnk
) = π(p, s)

for all s ∈ [0, φ(p)). But p ∈M and it contradicts the definition of an impulsive

system.

Then, let us assume {π̃(x, tmn)}n∈N ⊂ H
(p)
1 . In this case, we may also sup-

pose that tmn
< sn − φ(π̃(x, tmn

)) ≤ tmn+1, for all n ≥ n0, since

φ(π̃(x, tmn))
n→+∞−−−−−→ 0. Consequently,

0 < sn − tmn
− φ(π̃(x, tmn

)) ≤ tmn+1 − tmn
=

1

mn + 1
.
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Since

π̃(x, tmn
+φ(π̃(x, tmn

)))
n→+∞−−−−−→ I(p) and [sn− tmn

−φ(π̃(x, tmn
))]

n→+∞−−−−−→ 0,

we have

π̃(x, sn) = π̃(π̃(x, tmn + φ(π̃(x, tmn))), sn − tmn − φ(π̃(x, tmn)))
n→+∞−−−−−→ I(p).

Since {sn}n∈N is arbitrary, we have lim
t→+∞

d(π̃(x, t), I(p)) = 0. Hence, I(p) is

stationary and x is asymptotically π̃-stationary. Therefore, the result is proved.�

3.3. Discrete dynamical systems in the sense of Kaul: almost pe-

riodic and asymptotically almost periodic motions. In [21], the author

considers an impulsive semidynamical system (Ω, π̃), where Ω ⊂ X is an open

set in a metric space X and the continuous impulse function I is defined on the

boundary ∂Ω of Ω in X and takes values in Ω. Kaul defines a discrete dynamical

system associated to the impulsive semidynamical system (Ω, π̃) and presents a

study of Lyapunov stability and recursive properties in (Ω, π̃) by relating them

to the corresponding discrete system, see [21] and [22].

Following Kaul’s ideas we also may define a discrete system associated to

a given impulsive system (X,π;M, I) as follows. Let H = {x ∈ I(M) : φ(x+n ) <

+∞ for all n = 0, 1, . . .}. Now, define the mapping g : H → H by

(3.27) g(x) = π̃(x, φ(x)) = I(π(x, φ(x))) = I(x1) = x+1 ,

for every x ∈ H. Note that g is a continuous function on H,

g0(x) = x and gk+1(x) = g(gk(x)) = x+k+1,

for each k = 0, 1, . . ., and x ∈ H. The pair (H, g) is called the discrete dynamical

system associated to the system (X,π;M, I) in the sense of Kaul.

Definition 3.25. A point x ∈ X is called almost π̃-periodic by time repara-

metrization, if given ε > 0, there is a number T = T (ε) > 0 such that for every

α ≥ 0, the interval [α, α + T ] contains a number τα > 0 and one can obtain

a time reparametrization hα such that

(3.28) d(π̃(x, hα(t) + τα), π̃(x, t)) < ε, for all t ≥ 0.

Definition 3.26. Let σ > 0. A time σ-reparametrization is a time reparame-

trization h : R+ → R+ such that |h(t)− t| < σ for all t ∈ R+. If 0 ≤ h(t)− t < σ

for all t ∈ R+, we say that h is a positive time σ-reparametrization.

Definition 3.27. A point x ∈ X is called almost π̃-periodic by time σ-

reparametrization, if given ε > 0, there is a number T = T (ε) > 0 such

that for every α ≥ 0, the interval [α, α + T ] contains a number τα > 0 and

one can obtain a time σ-reparametrization hα such that (3.28) holds. A point

x ∈ X is called almost π̃-periodic by a positive time σ-reparametrization, if the

reparametrization hα is a positive time σ-reparametrization.
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The next lemma shows that every point from a positive orbit π̃+(x) is almost

π̃-periodic by time σ-reparametrization provided x has this positive property.

Lemma 3.28. Let σ > 0 and x ∈ X be almost π̃-periodic by a positive time

σ-reparametrization. Then every point y ∈ π̃+(x) is almost π̃-periodic by time

σ-reparametrization.

Proof. Let ε > 0 be given. Since x ∈ X is almost π̃-periodic by a positive

time σ-reparametrization, there is T = T (ε) > 0 such that for every α ≥ 0,

the interval [α, α + T ] contains a number τα > 0 and one can find a time σ-

reparametrization hα such that

d(π̃(x, hα(t) + τα), π̃(x, t)) < ε, for all t ≥ 0.

Take y ∈ π̃+(x), then y = π̃(x, s) for some s ≥ 0. Let Ts = T + σ. For each

α ≥ 0 consider the number τα > 0 and the function hα : R+ → R+ chosen above

and define

τsα = τα + hα(s)− s and Hα(t) = hα(t+ s)− hα(s), for all t ≥ 0.

Then τsα ∈ [α, α + Ts], Hα : R+ → R+ is a time reparametrization and for all

t ≥ 0 we have

−σ < Hα(t)− t = hα(t+ s)−hα(s)− t = (hα(t+ s)− (t+ s))− (hα(s)− s) < σ.

Thus Hα is a time σ-reparametrization and

d(π̃(y, t),π̃(y,Hα(t) + τsα))

= d(π̃(x, s+ t), π̃(x, s+ hα(t+ s)− hα(s) + τα + hα(s)− s))

= d(π̃(x, s+ t), π̃(x, hα(t+ s) + τα)) < ε

for all t ≥ 0. The proof is complete. �

The concept of almost periodicity for discrete systems was introduced in [21].

Let us consider g : H → H as defined in (3.27).

Definition 3.29. A point x ∈ H is said to be almost g-periodic if, given

ε > 0, there is N1 > 0 such that for each n1 ∈ Z+, the interval [n1, n1 + N1]

contains a number mn1 ∈ Z+ such that

d(gn(x), gn+mn1 (x)) = d(x+n , x
+
n+mn1

) < ε, for all n ∈ Z+.

In the next result, we present sufficient conditions for a point to be almost

π̃-periodic by time reparametrization provided this point is almost g-periodic in

its associated discrete system (H, g).

Theorem 3.30. Let (X,π;M, I) be an impulsive system and (H, g) be its

associated discrete system in the sense of Kaul. If x ∈ H is a point almost g-

periodic, g+(x) ∩M = ∅ and g+(x) is compact, then x is almost π̃-periodic by

time reparametrization.
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Proof. Let ε > 0 be given. Since g+(x) is compact and g+(x) ∩M = ∅, we

have T = sup
k≥0

φ(x+k ) < +∞ because φ is uniformly continuous on the compact

set g+(x). The mapping π is uniformly continuous on g+(x)× [0, T ], then there

is δ ∈ (0, ε) such that if y, z ∈ g+(x) and t1, t2 ∈ [0, T ] satisfying max{d(y, z),

|t1 − t2|} < δ, then

(3.29) d(π(y, t1), π(z, t2)) < ε.

By the uniform continuity of φ on g+(x), one can obtain δ1 ∈ (0, δ) such that

if y, z ∈ g+(x) with d(y, z) < δ1, then |φ(y)− φ(z)| < δ.

By hypothesis, x ∈ H is almost g-periodic. For δ1 > 0 chosen above, there is

N0 ∈ Z+ such that for each m ∈ Z+, the interval [m,m+N0] contains a number

nm ∈ Z+ such that

d(gn(x), gn+nm(x)) = d(x+n , x
+
n+nm

) < δ1, for all n ∈ Z+.

Let T1 = (N0 + 1)T . We claim that T1 satisfies Definition 3.25. Indeed, given

α ≥ 0, there is k ∈ Z+ such that tk(x) ≤ α < tk+1(x). Thus there is nk ∈
[k + 1, k + 1 +N0] ∩ Z+ such that

d(x+n , x
+
n+nk

) < δ1, for all n ∈ Z+.

Let τα = tnk
(x). Then τα ∈ [α, α+ T1] because

α < tk+1(x) ≤ tnk
(x) = τα < tk+1+N0

(x) = tk(x) +

k+N0∑
i=k

φ(x+i ) ≤ α+ (N0 + 1)T.

Now, we define the time reparametrization hα : R+ → R+ by

hα(t) = tn(x+nk
) +

φ(x+n+nk
)

φ(x+n )
(t− tn(x)), t ∈ [tn(x), tn+1(x)), n = 0, 1, . . .

If t = tn(x), n ∈ Z+, we have

d(π̃(x, t), π̃(x, hα(t) + τα)) = d(x+n , π̃(x, tn(x+nk
) + tnk

(x)))

= d(x+n , x
+
n+nk

) < δ1 < ε.

If t ∈ (tn(x), tn+1(x)), n ∈ Z+, we have

d(π̃(x, t), π̃(x, hα(t) + τα))

= d

(
π(x+n , t− tn(x)), π

(
x+n+nk

,
φ(x+n+nk

)

φ(x+n )
(t− tn(x))

))
.

Since d(x+n , x
+
n+nk

) < δ1 and∣∣∣∣t− tn(x)−
φ(x+n+nk

)

φ(x+n )
(t− tn(x))

∣∣∣∣ < |φ(x+n )− φ(x+n+nk
)| < δ,
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we conclude by (3.29) that d(π̃(x, t), π̃(x, hα(t) + τα)) < ε. Hence,

d(π̃(x, t), π̃(x, hα(t) + τα)) < ε, for all t ≥ 0. �

Definition 3.31. A point x ∈ H is called strongly almost g-periodic if, given

ε > 0, there is N1 > 0 such that for each n1 ∈ Z+, the interval [n1, n1 + N1]

contains a number mn1
∈ Z+ such that

d(x+n , x
+
n+mn1

) < ε and |tk(x+n )− tk(x+n+mn1
)| < ε, for all n, k ∈ Z+.

Theorem 3.32. Let (X,π;M, I) be an impulsive system and (H, g) be its

associated discrete system in the sense of Kaul. If x ∈ H is a point strongly

almost g-periodic, g+(x) ∩M = ∅ and g+(x) is compact, then for every ε > 0,

the point x is almost π̃-periodic by time ε-reparametrization.

Proof. Let ε > 0 be given. Using the proof of Theorem 3.30, we need just

to note that if t ∈ [tn(x), tn+1(x)), n = 0, 1, . . ., then

|hα(t)− t| =

∣∣∣∣tn(x+nk
) +

φ(x+n+nk
)

φ(x+n )
(t− tn(x))− t

∣∣∣∣
≤ max

{
|tn(x+nk

)− tn(x)|, |tn+1(x+nk
)− tn+1(x)|

}
< ε,

where we have used the second condition of Definition 3.31. Therefore, x is

almost π̃-periodic by time ε-reparametrization. �

Definition 3.33. A point x ∈ H is said to be asymptotically almost g-pe-

riodic if there is an almost g-periodic point p ∈ H such that

(3.30) lim
n→+∞

d(gn(x), gn(p)) = 0.

Definition 3.34. A point x ∈ X is called asymptotically almost π̃-periodic by

time reparametrization, if there are an almost π̃-periodic by time reparametriza-

tion point p and a reparametrization hp such that

lim
t→+∞

d(π̃(x, t), π̃(p, hp(t))) = 0.

Next, we present sufficient conditions for a point in H to be asymptotically

almost π̃-periodic by time reparametrization.

Theorem 3.35. Let (X,π;M, I) be an impulsive system and (H, g) be its

associated discrete system in the sense of Kaul. Suppose that X is a com-

plete metric space. If x ∈ H is a point asymptotically almost g-periodic and

{x+n }n∈N is convergent in H, then x is asymptotically almost π̃-periodic by time

reparametrization.

Proof. By hypothesis, there exists an almost g-periodic point p ∈ H such

that

(3.31) lim
n→+∞

d(gn(x), gn(p)) = 0.
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Since {x+n }n∈N converges in H, we have that g+(x) is compact and g+(x)∩M = ∅
(g+(x) ⊂ H ⊂ I(M) and we have hypothesis (H2)). Now, using (3.31), we obtain

that g+(p) is compact and g+(p) ∩M = ∅. Hence, by Theorem 3.30, the point

p is almost π̃-periodic by time reparametrization.

Let ε > 0 be given. By the uniform continuity of π on (g+(x)∪g+(p))×[0, T ],

there is δ ∈ (0, ε) such that if y, z ∈ g+(x) ∪ g+(p) and t1, t2 ∈ [0, T ] satisfying

max{d(y, z), |t1 − t2|} < δ, then

(3.32) d(π(y, t1), π(z, t2)) < ε.

Let lim
n→+∞

x+n = lim
n→+∞

p+n = z ∈ H. By the continuity of φ at z, there is

δ1 ∈ (0, δ) such that if d(y, z) < δ1 then |φ(y)−φ(z)| < δ/2. Let n1 ∈ N be such

that d(x+n , z) < δ1 and d(p+n , z) < δ1 for all n ≥ n1.

By (3.31), there is n2 ∈ N, n2 ≥ n1, such that

d(x+n , p
+
n ) = d(gn(x), gn(p)) < δ1, for all n ≥ n2.

Now, we define a time reparametrization hp : R+ → R+ by

hp(t) = tn(p) +
φ(p+n )

φ(x+n )
(t− tn(x)), t ∈ [tn(x), tn+1(x)), n = 0, 1, . . .

If t = tn(x) for n ≥ n2, we have

d(π̃(x, t), π̃(p, hp(t))) = d(x+n , p
+
n ) < δ1 < ε.

If t ∈ (tn(x), tn+1(x)), for n ≥ n2, we have

d(π̃(x, t), π̃(p, hp(t))) = d

(
π(x+n , t− tn(x)), π

(
p+n ,

φ(p+n )

φ(x+n )
(t− tn(x))

))
.

Since d(x+n , p
+
n ) < δ1 and∣∣∣∣t− tn(x)− φ(p+n )

φ(x+n )
(t− tn(x))

∣∣∣∣ < |φ(x+n )− φ(p+n )|

≤ |φ(x+n )− φ(z)|+ |φ(z)− φ(p+n )| < δ,

for n ≥ n2, we may conclude by (3.32) that

d(π̃(x, t), π̃(p, hp(t))) < ε, for all t ≥ tn2(x).

Therefore, x is asymptotically almost π̃-periodic by time reparametrization. �

3.4. Lyapunov stability and Zhukovskĭı quasi stability. In this last

subsection, we present sufficient conditions to obtain Zhukovskĭı quasi stability

via Lyapunov stability. The concept of Lyapunov stability for discrete systems

in the sense of Kaul was introduced in [22] as presented below.
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Definition 3.36. A point x ∈ H is called Lyapunov g-stable with respect to

a set P ⊂ H if x ∈ P and, given ε > 0, there exists δ > 0 such that if d(x, p) < δ

with p ∈ P , then

d(gn(x), gn(p)) = d(x+n , p
+
n ) < ε, for all n ∈ Z+.

A subset A ⊂ H is called Lyapunov g-stable with respect to P ⊂ H if A ⊂ P

and each point x ∈ A is Lyapunov g-stable with respect to P ⊂ H.

If A ⊂ X is a set such that φ(a) < +∞ for every a ∈ A, then we may define

Ã =
⋃
x∈A

π̃(x, φ(x)).

Note that Ã ⊂ I(M). If φ(a+j ) < +∞ for all j = 0, 1, . . . , and for all a ∈ A, then

Ã ⊂ H.

Lemma 3.37. If B ⊂ X is positively π̃-invariant then B \M is positively

π̃-invariant.

Proof. Let b ∈ B\M and t ≥ 0. Then there exists a sequence {xn}n∈N ⊂ B
such that xn

n→+∞−−−−−→ b. By Lemma 2.2, there is a sequence {εn}n∈N ⊂ R+ such

that εn
n→+∞−−−−−→ 0 and π̃(xn, t+εn)

n→+∞−−−−−→ π̃(b, t). Since {π̃(xn, t+εn)}n∈N ⊂ B,

we have π̃(b, t) ∈ B \M as we have hypothesis (H2). �

Theorem 3.38. Let (X,π;M, I) be an impulsive system and (H, g) be its

associated discrete system in the sense of Kaul, where H is a closed set. Let

A,B ⊂ X \M , A ⊂ B and B be a relatively compact positively π̃-invariant set.

Suppose that φ(b) < +∞ for all b ∈ B \ M . If Ã is Lyapunov g-stable with

respect to B̃, then any set O ⊂ A \M is Zhukovskĭı quasi π̃-stable with respect

to B \M .

Proof. Let O ⊂ A \ M , x ∈ O be fixed and note that φ(x) < +∞ by

hypothesis. Since B is compact and H is closed, we have B̃ compact and B̃∩M =

∅. Note that B̃ ⊂ H because B is positively π̃-invariant. The continuity of φ on

the compactness of the set B̃ ∪ {x} implies that

T = sup
a∈B̃∪{x}

φ(a) < +∞.

Let ε > 0 be given. Using the uniform continuity of π in B × [0, T ], one

can obtain δ1 ∈ (0, ε) such that for each y, z ∈ B and t1, t2 ∈ [0, T ] satisfying

max{d(y, z), |t1 − t2|} < δ1 we have

(3.33) d(π(y, t1), π(z, t2)) < ε.
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Note that φ is uniformly continuous on the compact B̃. Thus there is δ2 ∈ (0, δ1)

such that if y, z ∈ B̃ and d(y, z) < δ2 then

(3.34) |φ(y)− φ(z)| < δ1.

By the Lyapunov g-stability of x+1 ∈ Ã with respect to B̃, there is δ3 ∈ (0, δ2)

such that if p ∈ B̃ with d(x+1 , p) < δ3 then

(3.35) d(gn(x+1 ), gn(p)) < δ2, for all n ∈ Z+.

Since π is continuous in X × R+, I is continuous in M and φ is continuous in

X \M one can find δ4 ∈ (0, δ3) such that if y ∈ B \M with d(x, y) < δ4 then

d(x+1 , y
+
1 ) = d(I(π(x, φ(x))), I(π(y, φ(y)))) < δ3.

Consequently, by (3.35), we have

(3.36) d(x+n , y
+
n ) < δ2, for all n ∈ Z+.

Since B is positively π̃-invariant, we have that B \M is positively π̃-invariant,

see Lemma 3.37. Thus, x+n , y
+
n ∈ B̃ for all n ∈ N, where y ∈ B \M . Then if

y ∈ B \M with d(x, y) < δ4 it follows by (3.36) and (3.34) that

(3.37) |φ(x+n )− φ(y+n )| < δ1, for every n ∈ Z+.

For y ∈ B \ M such that d(x, y) < δ4 we define the time reparametrization

hy : R+ → R+ by

hy(t) = tn(y) +
φ(y+n )

φ(x+n )
(t− tn(x)), t ∈ [tn(x), tn+1(x)), n = 0, 1, . . .

If t = tn(x), n ∈ N, we have

d(π̃(x, t), π̃(y, hy(t))) = d(x+n , y
+
n ) < δ2 < ε.

If t ∈ (tn(x), tn+1(x)), n ∈ N, we have

d(π̃(x, t), π̃(y, hy(t))) = d

(
π(x+n , t− tn(x)), π

(
y+n ,

φ(y+n )

φ(x+n )
(t− tn(x))

))
.

Since x+n , y
+
n ∈ B̃, d(x+n , y

+
n ) < δ2 < δ1 (see (3.36)) and∣∣∣∣t− tn(x)− φ(y+n )

φ(x+n )
(t− tn(x))

∣∣∣∣ < |φ(x+n )− φ(y+n )| < δ1

(see (3.37)), we conclude by (3.33) that d(π̃(x, t), π̃(y, hy(t))) < ε. Thus, every

point x ∈ O ⊂ A \M is Zhukovskĭı quasi π̃-stable with respect to the set B \M
and the proof is complete. �
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Corollary 3.39. Let (X,π;M, I) be an impulsive system and (H, g) be its

associated discrete system in the sense of Kaul, where H is a closed set. Let

x ∈ X \M , π̃+(x) be compact, φ(x+n ) < +∞ for all n ∈ Z+ and {x+n }n∈N be

convergent in H. If g+(x+1 ) is Lyapunov g-stable with respect to itself, then any

set O ⊂ π̃+(x) \M is Zhukovskĭı quasi π̃-stable with respect π̃+(x) \M .

Proof. It is enough to note that φ(y) < +∞ for all y ∈ π̃+(x) \M . In fact,

since

π̃+(x) \M = π+(x) ∪ (L̃+(x) \M)

and φ(y) < +∞ for all y ∈ π̃+(x), we need to show that φ(y) < +∞ for all

y ∈ L̃+(x) \M . Let y ∈ L̃+(x) \M then there is a sequence {sn}n∈N in R+ such

that sn
n→+∞−−−−−→ +∞ and π̃(x, sn)

n→+∞−−−−−→ y. For each n ∈ N there is kn ∈ Z+

such that tkn(x) ≤ sn < tkn+1(x). Then

π̃(x, sn) = π(x+kn , sn − tkn) and φ(π̃(x, sn)) = φ(x+kn)− (sn − tkn(x)).

Thus

(3.38) φ(π̃(x, sn)) ≤ φ(x+kn), for all n ∈ N.

Since {x+n }n∈N is convergent in H, we may write lim
n→+∞

x+n = z ∈ H. Then, using

the continuity of φ in X \M as n → +∞ in (3.38), we get φ(y) ≤ φ(z). Now,

since z ∈ H, we have φ(z) < +∞. Hence, φ(y) < +∞ for all y ∈ L̃+(x) \M .

The result follows by Theorem 3.38. �
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