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MIXED BOUNDARY CONDITION

FOR THE MONGE–KANTOROVICH EQUATION

Noureddine Igbida — Stanislas Ouaro — Urbain Traore

Abstract. In this work we give some equivalent formulations for the op-

timization problem

max

{∫
Ω
ξ dµ+

∫
ΓN

ξ dν; ξ ∈W 1,∞(Ω) such that

ξ/ΓD
= 0, |∇ξ(x)| ≤ 1 a.e. x ∈ Ω

}
,

where the boundary of Ω is Γ = ΓN ∪ ΓD.

1. Introduction and main result

In this paper, we study the equivalence between the Monge–Kantorovich

equation in a bounded domain and weak formulations with mixed boundary

condition. Recall that the Monge–Kantorovich equation found its origin in the

Monge–Kantorovich optimal mass transport problem (cf. [1], [10]) as well as in

the optimal mass transfer problem (cf. [5]). Then, the equation was extensively

used in the description of the dynamics of granular matter like the sandpile

(cf. [10] and [9]) and also in the deformation of polymer plastic during compres-

sion molding (cf. [2]).
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Given two Radon measures f+ and f− such that f+(RN ) = f−(RN ) < ∞,

it is known (cf. [1]) that the problem

(1.1) max

{∫
RN

ξ df, ξ ∈ Lip1(RN )

}
,

is closely related to the optimal transportation problem associated with f+ and

f− where f = f+− f− and the cost function is given by c(x, y) = |x− y|. Here,

| · | denotes the Euclidean norm of RN . Problem (1.1) is called the dual Monge–

Kantorovich problem in the literature. Formally, by the standard convex duality

argument, the dual formulation associated with (1.1) is given by

(1.2) min

{∫
RN

d|λ| : λ ∈ (Mb(RN ))N : −div(λ) = f

}
,

where |λ| denotes the total variation of λ and (Mb(RN ))N the space of RN -

valued Radon measures of RN with bounded total variation (see the following

section). Under some additional regularity conditions on f+ and f−, Evans and

Gangbo in [11] showed that the Euler–Lagrange equation associated with (1.1)

is given by

(1.3)

−∇.(m∇u) = f+ − f−,
m ≥ 0, |∇u| ≤ 1 and m(|∇u| − 1) = 0.

In connection with the optimal mass transport problem, the unknown function

m is the transport density, −∇u is the given direction of the optimal transport,

m∇u represents the flux transportation and u is the Kantorovich potential. In

connection with the granular matter and the deformation of polymer plastic

during compression molding, this equation appears in the definition of the main

differential operator governing the dynamics. In this case, the parameter m is

connected to the Lagrange multiplayer associated with the gradient constraint

connected to the subgradient flux phenomena. In general, m is not a Lebesgue

function but is a nonegative Radon measure. In this case, problem (1.3) may be

written as

(1.4)

−div(m∇mu) = f,

|∇mu| = 1 m-a.e.

where ∇m denotes the tangential gradient with respect to m (see the follow-

ing section for preliminaries and references). This is the so called Monge–

Kantorovich equation (cf. [4]). In connection with the optimal mass transport

problem, (1.4) is well studied in RN which is equivalent to homogenous Neumann

boundary conditions (cf. [5]). It is clear that the case of non-homogeneous Neu-

mann boundary condition falls into the scope of the homogenous one with the

Radon measure source term f and maybe handled by the results of [5]. In the

case of the Dirichlet boundary condition, the problem was studied in [12]. Our



Mixed Boundary Condition for the Monge–Kantorovich Equation 111

aim here is to study the case of mixed boundary condition; Dirichlet and nonho-

mogeneous Neumann boundary conditions. In particular, this kind of boundary

conditions appears in the study of the movement of the sand dunes. Roughly

speaking, the dynamic in this case can be split into a free boundary problem

with two regions. The first region facing the wind that could be handled by

a transport equation and a second region sheltered from the wind and governed

by the gravity. This last region maybe handled by an evolution equation with

a differential operator of type (1.4) subject to Dirichlet and nonhomegeneous

boundary condition, modeling the transfer of sand across the crest. The associ-

ated evolution problem as well as the application to the modelization of traveling

sand dunes will be treated in forthcoming papers.

Let Ω be a bounded open Lipschitz domain of RN with C1 smooth bound-

ary Γ. We assume that Γ is divided into two parts ΓN ,ΓD such that ΓD∩ΓN = ∅
and the measure of ΓD is nonzero. We set

W 1,∞
D (Ω) = {z ∈W 1,∞(Ω); z = 0 on ΓD},

K = {z ∈W 1,∞
D (Ω); |∇z(x)| ≤ 1 a.e. x ∈ Ω}.

In our situation, problem (1.1) reads

(1.5) max

{∫
Ω

ξ dµ+

∫
ΓN

ξ dν ξ ∈ K
}
,

where µ and ν are bounded Radon measures concentrated respectively in Ω and

on ΓN .

Our aim here is to study the equivalence between (1.5) and the following

problems:

• Find φ ∈ (Mb(Ω))N and v ∈ K, solution of the PDE

(1.6)


−div(φ) = µ, φ = |φ|∇|φ|v in Ω,

φ · η = ν on ΓN ,

u = 0 on ΓD,

where η is the outward normal to Γ.

• Find φ ∈ (Mb(Ω))N and v ∈ K such that

(1.7) |φ|(Ω) = min{|Φ|(Ω) : Φ satisfies PDE (1.6)} =

∫
Ω

v dµ+

∫
ΓN

v dν.

Theorem 1.1. Let µ ∈Mb(Ω), ν ∈Mb(Γ) and v ∈ K. Then, problem (1.5)

has a solution. Moreover, we have:

(a) v is a solution of (1.5), i.e.∫
Ω

(v − ξ) dµ+

∫
ΓN

(v − ξ) dν ≥ 0 for any ξ ∈ K,
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if and only if there exists φ ∈ (Mb(Ω))N such that (v, φ) satisfies (1.6)

in the following equivalent sense:

(a1) φ ∈ (Mb(Ω))N , v ∈ K and satisfies

(1.8)


∫

Ω

∇ξ dφ =

∫
Ω

ξ dµ+

∫
ΓN

ξ dν for any ξ ∈ K,

|φ|(Ω) =

∫
Ω

v dµ+

∫
ΓN

v dν.

(a2) φ ∈ (Mb(Ω))N , v ∈ K and satisfies

(1.9)


∫

Ω

∇ξ dφ =

∫
Ω

ξ dµ+

∫
ΓN

ξ dν for any ξ ∈ K,

φ = |φ|∇|φ|v.

(b) v is a solution of (1.5) if and only if there exists φ ∈ (Mb(Ω))N such

that the couple (φ, v) satisfies (1.7).

The rest of paper is organized as follows: in the next section we give some

preliminaries and recall some technical lemmas. Section 3 is devoted to the proof

of the main theorem.

2. Preliminaries

In this section we introduce some notations and lemmas that will be useful

later on. Let Ω be a bounded open subset of RN (N ≥ 2) equipped with the

N -dimensional Lebesgue measure. The space of Radon measure and the set of

continuous functions with compact support in Ω will be denoted by M(Ω) and

Cc(Ω), respectively. We recall that each Radon measure µ can be interpreted as

an element of the dual of the space Cc(Ω). This result can be extended to the

space C(Ω), i.e. M(Ω) = (C(Ω))
∗
, in the sense that, for every µ ∈ M(Ω) there

exists µ̃ ∈ (C(Ω))∗ such that 〈µ̃, ξ〉 =
∫

Ω
ξ dµ, for all ξ ∈ C(Ω).

For µ ∈M(Ω), we denote by µ+, µ−, and |µ| the positive part, negative part

and the total variation measure associated with µ, respectively. Then we denote

by Mb(Ω) the space of Radon measures with bounded total variation |µ|(Ω).

Recall that Mb(Ω) equipped with the norm |µ|(Ω) is a Banach space.

We denote by (M(Ω))N the space of RN -valued Radon measures of Ω, i.e.

µ ∈ (M(Ω))N if and only if µ = (µ1, . . . , µn) with µi ∈ M(Ω). We recall that

the total variation measure associated with µ ∈ (M(Ω))N , denoted again by |µ|,
is defined by

|µ|(B) = sup

{ ∞∑
i=1

|µ(Bi)|; B =

∞⋃
i=1

Bi, Bi a Borelean set

}
and belongs to M+(Ω), the set of nonnegative Radon measure. The subspace

(Mb(Ω))N equipped with the norm ‖µ‖ = |µ|(Ω) is a Banach space. The space
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(M(Ω))N endowed with the norm ‖·‖ is isometric to the dual space of (Cc(Ω))N .

The duality is given by

〈µ, ξ〉 =

N∑
i=1

∫
Ω

ξi dµi,

for any µ = (µ1, . . . , µN ) ∈ (M(Ω))N and ξ = (ξ1, . . . , ξN ) ∈ (Cc(Ω))N .

For any µ ∈ (Mb(Ω))N and ν ∈ Mb(Ω)
+

, µ is absolutely continuous with

respect to ν and denoted by µ � ν, provided ν(A) = 0 implies |µ|(A) = 0, for

any A ⊂ Ω. Thanks to the Radon–Nikodym Decomposition Theorem, we know

that for any µ ∈ (Mb(Ω))N and ν ∈ Mb(Ω), such that µ � ν, there exists

a unique bounded RN -valued measure denoted by Dνµ, such that

µ(A) =

∫
A

Dνµdν for any A ⊆ Ω;

Dνµ ∈ (Mb(Ω))N is the density of µ with respect to ν which can be computed

by differentiating. Since |µ(A)| ≤ |µ|(A), for all µ ∈ (M(Ω))N , we have µ� |µ|,
D|µ|µ ∈ (L1

|µ|(Ω))N and |D|µ|µ| = 1, |µ|-almost everywhere in Ω. In the literature

D|µ|µ is denoted by µ/|µ|. So, for any µ ∈ (Mb(Ω))N , we have

µ(A) =

∫
A

µ

|µ|
d|µ| for any Borel set A ⊆ Ω.

Hence, every µ ∈ (Mb(Ω))N can be identified with the linear application

ξ ∈ (Cc(Ω))N 7→
∫

Ω

µ

|µ|
ξ d|µ|.

In what follows, we will denote the integral
∫

Ω
∇ξ dµ by

∫
Ω

(µ/|µ|)ξ d|µ|.
We recall the following sets used in the definition of tangential gradient with

respect to ν̃ ∈Mb(Ω)+ (see [4]).

Nν̃ := {ξ ∈ (L∞ν̃ (Ω))N ; ∃un ∈ C∞(Ω), un → 0 in C(Ω)

and Dun → ξ in σ((L∞ν̃ (Ω))N , (L1
ν̃(Ω))N )}

and

N⊥ν̃ :=

{
η ∈ (L1

ν̃(Ω))N ;

∫
Ω

η · ξ dν̃ = 0, for all ξ ∈ N ν̃

}
.

For ν̃-almost every x ∈ Ω, we define the tangent space Tν̃(x) to the measure ν̃,

as the subspace of RN :

Tν̃(x) = {A ∈ RN ;∃ ξ ∈ N⊥ν̃ , A = ξ(x)}.

Then (cf. Proposition 3.2 of [6]) the operator ∇ν̃ : Lip(Ω) → (L∞ν̃ (Ω))N is the

continuous operator such that for any u ∈ C1(Ω),

∇ν̃u(x) = PTν̃(x)
∇u(x) ν̃-p.p. x ∈ Ω,
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where PTν̃(x)
is the orthogonal projection on Tν̃(x), Lip(Ω) the set of Lipschitz

continuous functions equipped with the uniform convergence and L∞ν̃ (Ω) is equip-

ped with the weak star topology. An RN -valued Radon measure φ is said to be

a tangential measure on Ω provided there exist ν̃ ∈Mb(Ω)+ and σ ∈ (L1
ν̃(Ω))N ,

such that σ(x) ∈ Tν̃(x), ν̃-almost every x ∈ Ω and φ = σν̃. Thanks to Proposi-

tion 3.5 of [6], we know that for any tangential measure φ = σν̃ on Ω, such that

−∇ · φ = µ̃ ∈Mb(Ω), we have the following integration by parts:∫
Ω

u dµ̃ =

∫
Ω

σ · ∇ν̃u dν̃,

for any u ∈ Lip(Ω) null on the boundary of Ω.

In the sequel, we need the following two lemmas.

Lemma 2.1. For any z ∈ K, there exists (zε)ε>0, a sequence in C1(Ω) ∩K,

such that

zε → z uniformly in Ω.

Proof. For a given ε > 0, we consider the application Iε : R→ R, defined by

Iε(r) =

0 if |r| ≤ ε,
r − sign(r)ε if |r| > ε.

Then, for a given z ∈ K, we take dε = Iε(z). One sees that support(dε) ⊆ Ωε,

where Ωε := {x ∈ Ω : d(x,ΓD) ≥ rε} with rε > 0 depending on ε and dε ∈ K.

Now we introduce the sequences (z̃ε)ε>0 by

(2.1) z̃ε(x) =

dε(x) if x ∈ Ωε,

0 if x ∈ RN \ Ωε.

It is not difficult to see that, z̃ε ∈ K and z̃ε is supported in Ωε. Let (ρε)ε>0 be

the standard sequence of mollifiers, then there exists 0 < α < 1, such that

zε = z̃ε ∗ ραε ∈ K ∩ C∞(Ω), for any ε > 0.

Moreover, for any p ≥ 1, zε is bounded in W 1,p(Ω) and the results of the lemma

follows. �

Then, similarly as in [12], the following result can be proved.

Lemma 2.2. For any v ∈ K and λ ∈Mb(Ω)+, we have |∇λv| ≤ 1, λ-almost

everywhere in Ω.

3. Proof of Theorem 1.1

First we introduce a set of lemmas.

Lemma 3.1. Let φ ∈ (Mb(Ω))N and v ∈ K. If (v, φ) satisfies (1.8), then v

is a solution of (1.5).
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Proof. Let ξ ∈ K, thanks to Lemma 2.1, there exists ξε ∈ C1(Ω) ∩K such

that ξε → ξ, uniformly in Ω. Taking ξε as a test function in (1.8), we have∫
Ω

∇ξε ·
φ

|φ|
d|φ| =

∫
Ω

ξε dµ+

∫
ΓN

ξε dν.

Using the fact that ξε ∈ K, we get∫
Ω

∇ξε ·
φ

|φ|
d|φ| ≤ |φ|(Ω).

Thus,∫
Ω

ξ dµ+

∫
ΓN

ξ dν = lim
ε→0

∫
Ω

ξε dµ+

∫
ΓN

ξε dν = lim
ε→0

∫
Ω

∇ξε ·
φ

|φ|
d|φ| ≤ |φ|(Ω),

i.e.

(3.1)

∫
Ω

ξ dµ+

∫
ΓN

ξ dν ≤ |φ|(Ω).

Since

(3.2) |φ|(Ω) =

∫
Ω

v dµ+

∫
ΓN

v dν,

then ∫
Ω

v dµ+

∫
ΓN

v dν ≥
∫

Ω

ξ dµ+

∫
ΓN

ξ dν for all ξ ∈ K. �

Lemma 3.2. Let φ ∈ (Mb(Ω))N and v ∈ K. Then (v, φ) satisfies (1.8) if

and only if (v, φ) satisfies (1.9) and (1.7).

Proof. Assume that (v, φ) satisfies (1.8) and taking vε ∈ C1(Ω) ∩ K, the

approximation of v given by Lemma 2.1, we have

|φ|(Ω) =

∫
Ω

v dµ+

∫
ΓN

v dν = lim
ε→0

(∫
Ω

vε dµ+

∫
ΓN

vε dν

)
= lim

ε→0

∫
Ω

∇|φ|vε ·
φ

|φ|
d|φ| =

∫
Ω

∇|φ|v ·
φ

|φ|
d|φ|.

So

(3.3)

∫
Ω

(
1−∇|φ|v ·

φ

|φ|

)
d|φ| = 0.

Since by Lemma 2.2, we have∣∣∣∣∇|φ|v · φ|φ|
∣∣∣∣ ≤ |∇|φ|v| ≤ 1 |φ|-a.e. in Ω,

then, by (3.3), we deduce that

∇|φ|v ·
φ

|φ|
= 1 |φ|-a.e. in Ω.

This implies that

∇|φ|v =
φ

|φ|
|φ|-a.e. in Ω.
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Therefore,

(3.4) φ = |φ| φ
|φ|

= |φ|∇|φ|v |φ|-a.e. in Ω.

Moreover, if Φ ∈ (Mb(Ω))N is such that Φ satisfies the first equality of (1.8), we

have

|φ|(Ω) =

∫
Ω

v dµ+

∫
ΓN

v dν = lim
ε→0

∫
Ω

vε dµ+

∫
ΓN

vε dν

= lim
ε→0

∫
Ω

∇vε ·
Φ

|Φ|
d|Φ| ≤

∫
Ω

d|Φ|.

Hence (1.8) implies (1.7) and (1.9). It is clear that (1.7) implies (1.8); now

suppose that (v, φ) satisfies (1.9), then ∇|φ|v · φ/|φ| = 1 |φ|-almost everywhere

in Ω and we have

|φ|(Ω) =

∫
Ω

∇|φ|v ·
φ

|φ|
d|φ| = lim

ε→0

∫
Ω

∇vε ·
φ

|φ|
d|φ|

= lim
ε→0

∫
Ω

vε dµ+

∫
ΓN

vε dν =

∫
Ω

v dµ+

∫
ΓN

v dν.

Thus,

|φ|(Ω) =

∫
Ω

v dµ+

∫
ΓN

v dν. �

As a consequence of Lemmas 3.1 and 3.2, we have (1.8)⇒ (1.5) and (1.8)⇔
(1.9)⇔ (1.7). To prove that (1.5)⇒ (1.8), we consider the following system:

(Sε)


−∇ · φε(∇vε) = µ in Ω,

vε = 0 on ΓD,

φε(∇vε) · η = ν on ΓN ,

where η is the outward normal to ∂Ω, for any ε > 0 and x ∈ Ω, φε : RN → RN

is given by

φε(r) =
1

ε
((|r| − 1)+)(p−1) r

|r|
for all r ∈ RN and x ∈ Ω,

with p > N fixed. It is not difficult to see that φε satisfies the following proper-

ties:

(i) For any r1, r2 ∈ RN and x ∈ Ω, (φε(r1)− φε(r2)) · (r1 − r2) ≥ 0.

(ii) There exist ε0 > 0 and C0 > 1 such that φε(r) · r ≥ |r|p for any |r| ≥ C0

and ε < ε0.

(iii) For any ε > 0, r ∈ RN and x ∈ Ω, |φε(r)| ≤ φε(r) · r.
We define the following separable and reflexive Banach space for W 1,p(Ω)-

norm:

W 1,p
ΓD

(Ω) = {z ∈W 1,p(Ω); z|ΓD = 0}.
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Lemma 3.3. For any 0 < ε < ε0, problem (Sε) has a unique solution vε in

the sense that vε ∈W 1,p
ΓD

(Ω) and

(3.5)

∫
Ω

φε(∇vε) · ∇z dx =

∫
Ω

z dµ+

∫
ΓN

z dν,

for all z ∈W 1,p
ΓD

(Ω).

Proof. We define the operator Aε : W 1,p
ΓD

(Ω)→ (W 1,p
ΓD

(Ω))′ by

(3.6) 〈Aεv, z〉 =

∫
Ω

φε(∇v) · ∇z dx.

Aε is monotone, coercive, hemi-continuous and bounded. Indeed, property (i) of

φε gives the monotonicity.

For any v, z ∈W 1,p
ΓD

(Ω), we have

|〈Aε(v), z〉| ≤ 1

ε

∫
Ω

|(|∇v| − 1)+|p−1|∇z| dx(3.7)

≤ 1

ε

∫
Ω

|(|∇v| − 1)+|p−1|∇z| dx ≤ 1

ε

∫
Ω

|∇v|p−1|∇z| dx

≤ 1

ε

(∫
Ω

|∇v|p dx
)1/p′(∫

Ω

|∇z|p dx
)1/p

≤ 1

ε
‖v‖p/p

′

W 1,p(Ω)‖z‖W 1,p(Ω),

which implies that

(3.8) ‖Aε(v)‖(W 1,p
ΓD

(Ω))′ ≤
1

ε
‖v‖p/p

′

W 1,p(Ω).

Let B be a bounded set of W 1,p
ΓD

(Ω), there exists M > 0 such that

(3.9) ‖Aε(v)‖(W 1,p
ΓD

(Ω))′ ≤
1

ε
Mp/p′ , for all v ∈ B.

Hence, Aε is a bounded operator. Moreover, using properties (ii) and (iii) of φε,

we obtain

〈Aε(v), v〉 =

∫
Ω

φε(∇v) · ∇v dx(3.10)

=

∫
[|∇v|<C0]

φε(∇v) · ∇v dx+

∫
[|∇v|≥C0]

φε(∇v) · ∇v dx

≥
∫

[|∇v|<C0]

|φε(∇v)| dx+

∫
[|∇v|≥C0]

|∇v|p dx

≥
∫

[|∇v|≥C0]

|∇v|p dx.

Consequently,

(3.11) 〈Aε(v), v〉+

∫
[|∇v|<C0]

|∇v|p dx ≥
∫

Ω

|∇v|p dx.
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Thus,

〈Aε(v), v〉 ≥ −
∫

[|∇v|<C0]

|∇v|pdx+

∫
Ω

|∇v|p dx(3.12)

≥ −
∫

[|∇v|<C0]

Cp0 dx+

∫
Ω

|∇v|p dx

≥ − Cp0 meas([|∇v| < C0]) +

∫
Ω

|∇v|p dx

≥ − Cp0 meas(Ω) + ‖v‖pW 1,p(Ω).

Hence,

(3.13)
〈Aε(v), v〉
‖v‖W 1,p(Ω)

≥ −C
p
0 meas(Ω)

‖v‖W 1,p(Ω)
+ ‖v‖p−1

W 1,p(Ω).

Since p > 1, letting ‖v‖W 1,p(Ω) → +∞ in (3.13), it follows that Aε is coercive.

Now, consider the map F : R→ R defined by

(3.14) F (λ) = 〈A(u+ λv), w〉 =

∫
Ω

φε(∇u+ λ∇v) · ∇w dx,

with u, v, w in W 1,p
ΓD

(Ω). We will prove that F is continuous. The functions

x 7→ φε(∇u + λ∇v) · ∇w, λ 7→ φε(∇u + λ∇v) · ∇w are measurable almost

everywhere in Ω and continuous in R, respectively. Let (λn)n∈N be such that

λn → λ, so that there exists a constant c > 0 with |λn| ≤ c. Therefore,

|φε(∇u+ λn∇v) · ∇w| ≤ |φε(∇u+ λn∇v)||∇w|(3.15)

≤ 1

ε
(|∇u|+ |λn||∇v|+ 1)p−1|∇w|

≤ 1

ε
(|∇u|+ c|∇v|+ 1)p−1|∇w|.

Letting n → +∞ in (3.15) and using the fact that the function λ 7→ |φε(∇u +

λ∇v) · ∇w| is continuous, we obtain

(3.16) |φε(∇u+ λ∇v) · ∇w| ≤ 1

ε
(|∇u|+ c|∇v|+ 1)p−1|∇w| ∈ L1(Ω).

Therefore, thanks to the Lebesgue theorem, we can say that F is continuous.

Hence, the operator A is hemi-continuous.

Since p > N , we have W 1,p
ΓD

(Ω) ⊂ C(Ω) and the linear form G : W 1,p
ΓD

(Ω)→ R
defined by

(3.17) 〈G, v〉 =

∫
Ω

v dµ+

∫
ΓN

v dν

belongs to the dual space of W 1,p
ΓD

(Ω). So (see for instance [14]), for any 0 < ε <

ε0 and p > N , there exists vε ∈W 1,p
ΓD

(Ω) such that A(vε) = G, i.e.

(3.18)

∫
Ω

φε(∇vε) · ∇z dx =

∫
Ω

z dµ+

∫
ΓN

z dν for all z ∈W 1,p
ΓD

(Ω).



Mixed Boundary Condition for the Monge–Kantorovich Equation 119

Now, suppose that vε and ṽε are two solutions of (Sε). For vε and ṽε, we take

z = vε − ṽε in (3.18) to get

(3.19)

∫
Ω

(φε(∇vε)− φε(∇ṽε)) · (∇vε −∇ṽε) dx = 0.

It follows that there exists a constant c̃ such that vε− ṽε = c̃ almost everywhere

in Ω. Using the fact that vε = ṽε = 0 on ΓD, we get c̃ = 0. Thus vε = ṽε almost

everywhere in Ω. �

Lemma 3.4. Let (vε)0<ε<ε0 be the sequence of solutions of (Sε). Then:

(a) (vε)0<ε<ε0 is bounded in W 1,p
ΓD

(Ω).

(b) (φε(∇vε))0<ε<ε0 is bounded in (L1(Ω))N .

(c) For any Borel set B ⊆ Ω,

lim inf
ε→0

(∫
B

|∇vε|p−1 dx

)1/(p−1)

≤ |B|1/(p−1).

Proof. (a) Taking vε as a test function in (3.19) and using the fact that

W 1,p(Ω) ⊂ C(Ω), we get the following estimate:

1

ε

∫
Ω

(|∇vε| − 1)+(p−1)|∇vε| dx(3.20)

=

∫
Ω

φε(∇vε) · ∇vε dx =

∫
Ω

vε dµ+

∫
ΓN

vε dν

≤ (|µ|(Ω) + |ν|(ΓN ))‖vε‖∞ ≤ C(|µ|(Ω) + |ν|(ΓN ))‖vε‖W 1,p(Ω).

Combining (3.20) and property (ii) of φε, for any 0 < ε < ε0, we get∫
Ω

|∇vε|p dx ≤
∫

[|∇vε|≤C0]

|∇vε|p dx+

∫
[|∇vε|>C0]

|∇vε|p dx(3.21)

≤
∫

[|∇vε|≤C0]

|∇vε|p dx+
1

ε

∫
Ω

(|∇vε| − 1)+(p−1)|∇vε| dx

≤
∫

[|∇vε|≤C0]

|∇vε|p dx+ C(|µ|(Ω) + |ν|(ΓN ))‖∇vε‖Lp(Ω)

≤Cp0 |Ω|+ C(|µ|(Ω) + |ν|(ΓN ))‖∇vε‖Lp(Ω).

Thus, according to the Young inequality, we deduce that

(3.22) ‖∇vε‖pLp(Ω) ≤ p
′Cp0 |Ω|+ [C(|µ|(Ω) + |ν|(ΓN ))]p

′
,

which implies that (∇vε)0<ε<ε0 is bounded in (Lp(Ω))N . Hence, (vε)0<ε<ε0 is

bounded in W 1,p
ΓD

(Ω).

(b) Using (3.20) and property (iii) of φε, we deduce that

(3.23)

∫
Ω

|φε(∇vε)| dx ≤
∫

Ω

φε(∇vε) · ∇vε dx

≤ 1

ε

∫
Ω

(|∇vε| − 1)(p−1)|∇vε| dx ≤ C(|µ|(Ω) + |ν|(ΓN ))‖∇vε‖Lp(Ω).



120 N. Igbida — S. Ouaro — U. Traore

So, by (3.22) we deduce that φε(∇vε) is bounded in (L1(Ω))N .

(c) Now, let B ⊆ Ω be a fixed Borel set. We have

‖∇vε‖Lp−1(B) ≤‖(∇vε − 1)+ + 1‖Lp−1(B)(3.24)

≤‖(∇vε − 1)+‖Lp−1(B) + |B|1/(p−1)

≤
(∫

B

(∇vε − 1)+(p−1)|∇vε| dx
)1/(p−1)

+ |B|1/(p−1)

≤ [εC(|µ|(Ω) + |ν|(ΓN ))‖∇vε‖Lp(Ω)]
1/(p−1) + |B|1/(p−1).

Letting ε→ 0 and using the fact that vε is bounded in W 1,p(Ω), we obtain

(3.25) lim inf
ε→0

(∫
Ω

|∇vε|p−1 dx

)1/(p−1)

≤ |B|1/(p−1). �

Lemma 3.5. Under the assumptions of Lemma 3.4, there exists a subsequence

denoted again by vε, such that, as ε→ 0,

vε → ṽ uniformly in Ω and in W 1,∞(Ω)-weak,(3.26)

φε(∇vε) → φ in (Mb(Ω))N -weak∗(3.27)

and

(3.28)

∫
Ω

|φε(∇vε)| dx→ |φ|(Ω).

Moreover, ṽ ∈ K and (ṽ, φ) satisfies (1.8).

Proof. Thanks to Lemma 3.4, there exist ṽ ∈ W 1,p
ΓD

(Ω), φ ∈ Mb(Ω) and a

subsequence denoted again by vε, such that (3.26) and (3.27) are fulfilled.

For any ξ ∈ C1(Ω) ∩W 1,∞
D (Ω), we have∫

Ω

φε(∇vε) · ∇ξ dx =

∫
Ω

ξ dµ+

∫
ΓN

ξ dν.

Thus, letting ε→ 0, we deduce that

(3.29)

∫
Ω

∇ξ · φ
|φ|

d|φ| =
∫

Ω

ξ dµ+

∫
ΓN

ξ dν.

To prove that ṽ ∈ K, let us consider Aδ = [|∇ṽ| ≥ 1 + δ], with arbitrary δ > 0.

Since as ε→ 0, ∇vε → ∇ṽ in (L1(Ω))N -weak,

(1 + δ)|Aδ| ≤
∫
Aδ

|∇ṽ| dx ≤ lim inf
ε→0

∫
Aδ

|∇vε| dx(3.30)

≤ lim inf
ε→0

(∫
Aδ

|∇vε|p−1 dx

)1/(p−1)

|Aδ|(p−2)/(p−1).

So that, by using the third part of Lemma 3.4, we deduce that (1+δ)|Aδ| ≤ |Aδ|,
which implies that |Aδ| = 0. Since δ is arbitrary, we deduce that |∇ṽ| ≤ 1 almost

everywhere in Ω. Therefore, ṽ ∈ K.
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To prove (3.28), we see that according to property (iii) of φε and (3.26), we

have

(3.31) lim sup
ε→0

∫
Ω

|φε(∇vε)| dx ≤ lim sup
ε→0

∫
Ω

φε(∇vε) · ∇vε dx

≤ lim sup
ε→0

(∫
Ω

vε dµ+

∫
ΓN

vε dν

)
≤
∫

Ω

ṽ dµ+

∫
ΓN

ṽ dν.

In addition, we have∫
Ω

ṽ dµ+

∫
ΓN

ṽ dν = lim
ε→0

∫
Ω

φε(∇vε) · ∇ṽ dx ≤ lim
ε→0

∫
Ω

|φε(∇vε)| dx.(3.32)

So, (3.31) and (3.32) imply that

(3.33) lim
ε→0

∫
Ω

|φε(∇vε)| dx =

∫
Ω

ṽ dµ+

∫
ΓN

ṽ dν

and by (3.27), we get

(3.34) |φ|(Ω) =

∫
Ω

d|φ| ≤ lim inf
ε→0

∫
Ω

|φε(∇vε)| dx =

∫
Ω

ṽ dµ+

∫
ΓN

ṽ dν.

Using ṽε, the approximation of ṽ given by Lemma 2.1, we see that

(3.35)

∫
Ω

ṽ dµ+

∫
ΓN

ṽ dν = lim
ε→0

∫
Ω

∇ṽε ·
φ

|φ|
d|φ| ≤

∫
Ω

d|φ| = |φ|(Ω).

Combining the above inequality with (3.34), we obtain

|φ|(Ω) =

∫
Ω

ṽ dµ+

∫
ΓN

ṽ dν and lim
ε→0

∫
Ω

|φ(∇vε)| dx = |φ|(Ω). �

Lemma 3.6. Let v ∈ K be a solution of (1.5). Then, there exists φ ∈
(Mb(Ω))N such that (v, φ) satisfies (1.8).

Proof. Let ṽ = lim
ε→0

ṽε, where ṽε is a solution of (Sε). According to

Lemma 3.5, there exists φ in (Mb(Ω))N such that

(3.36)

∫
Ω

∇ξ · φ
|φ|

d|φ| =
∫

Ω

ξdµ+

∫
ΓN

ξ dν for all ξ ∈ C1(Ω) ∩W 1,∞
D (Ω)

and

(3.37) |φ|(Ω) =

∫
Ω

ṽ dµ+

∫
ΓN

ṽ dν.

Let vε ∈ C1(Ω) ∩K be the approximation of v given by Lemma 2.1, we have∫
Ω

v dµ+

∫
ΓN

v dν = lim
ε→0

∫
Ω

vε dµ+

∫
ΓN

vε dν(3.38)

= lim
ε→0

∫
Ω

∇vε ·
φ

|φ|
d|φ| ≤

∫
Ω

d|φ| = |φ|(Ω).
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Since v is a solution of (1.5), we have

(3.39)

∫
Ω

v dµ+

∫
ΓN

v dν ≥
∫

Ω

z dµ+

∫
ΓN

z dν for all z ∈ K.

In particular, taking z = ṽ, we deduce that

(3.40)

∫
Ω

v dµ+

∫
ΓN

v dν ≥
∫

Ω

ṽ dµ+

∫
ΓN

ṽ dν = |φ|(Ω).

Consequently, (3.38) and (3.40) imply that

|φ|(Ω) =

∫
Ω

v dµ+

∫
ΓN

v dν. �

Proof of Theorem 1.1. Since K is bounded, problem (1.5) admits at

least one solution. Thanks to Lemma 3.1, we have that (1.8) implies (1.5). As

a consequence of Lemma 3.6, we have that (1.5) implies (1.8). The equivalence

between (1.8), (1.9) and (1.7) is given by Lemma 3.2. �
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