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HETEROCLINICS FOR NON AUTONOMOUS
THIRD ORDER DIFFERENTIAL EQUATIONS

Denis Bonheure — José Ángel Cid

Colette De Coster — Luis Sanchez

Abstract. We study the existence of heteroclinics connecting the two
equilibria ±1 of the third order differential equation

u′′′ = f(u) + p(t)u′

where f is a continuous function such that f(u)(u2 − 1) > 0 if u 6= ±1 and

p is a bounded non negative function. Uniqueness is also addressed.

1. Introduction

The existence of kink solutions or heteroclinic orbits for the third order prob-
lem

(1.1) u′′′ = f(u), u(−∞) = u−, u(+∞) = u+,
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arises for instance in the study of regularization of the Cauchy problem for one-
dimensional hyperbolic conservation laws

(1.2) ut + g(u)x = 0, u(0, x) = u(x).

It is known that the single shock wave joining the two states u− (on the left)
and u+ (on the right)

(1.3) u(t, x) :=

{
u− for x < λ t,

u+ for x > λ t,

is a weak solution of (1.2) if and only if its speed λ satisfies the Rankine–Hugoniot
equation (see [1, Lemma 4.2])

g(u+)− g(u−) = λ (u+ − u−).

However weak solutions of (1.2) are in general not unique. A way to regularize
problem (1.2) is to search for weak solutions which are limits as ε → 0+ of
solutions of

(1.4) uε
t + g(uε)x = εA(uε), uε(0, x) = u(x),

where A is a differential operator of higher order in x (the viscosity). A choice of
A is admissible, in the sense of Gelfand [4], if shock wave solutions given by (1.3)
can be obtained as limits of solutions of (1.4). When A is a perfect derivative the
admissibility is equivalent to the existence of a heteroclinic connection between
u− and u+ for an autonomous equation. In particular, the question of the ad-
missibility of operator A(u) = −uxxxx leads to problem (1.1) (see [8], [9]).

In this work we are mainly motivated by the non autonomous version of a re-
lated problem studied in [6], [12]

(1.5) u′′′ = f(u) + p(t)u′, u(−∞) = −1, u(+∞) = 1,

where f : R → R and p : R → R satisfy the following assumptions:

(f1) f : R → R is continuous and such that f(−1) = f(1) = 0;
(p) p is continuous and there exists M > 0 such that, for all t ∈ R, 0 ≤

p(t) ≤ M .

Clearly, under these assumptions, u = −1 and u = 1 are constant solutions of
the equation (1.5), so that we are looking for a heteroclinic connection between
these equilibria.

Our main example is f(u) = u2− 1 and p constant, which satisfies the above
conditions as well as

(s) f is even,
(s’) p is even,
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and f is increasing on [0,+∞[. This last assumption is too strong for most of
our aims. In our results we shall consider the following assumptions on f and

F (s) =
∫ s

0

f(r) dr.

(h1) There exists N0 > 1 such that

∀u ∈ [0, N0] \ {1}, f(u)(u− 1) > 0 and F (N0) ≥ 0;

(h2) There exist α < −1 and β > 1 such that,

∀u ∈ [α, β] \ {−1, 1}, f(u)(u2 − 1) > 0,

F (β) = F (−1) and F (α) = F (1);

(h3) f satisfies (h2), is nondecreasing on [0, β] and nonincreasing on [α, 0];
(h4) f satisfies (h2) together with∫ 0

α

F (s) ds > 0 and
∫ β

0

F (s) ds < 0.

Remark 1.1. Note that (h2) implies (h1) with N0 = β. On the other hand
(h1) is more general than (h2). Indeed, if f satisfies (f1), f(u)(u2 − 1) > 0 for
all u 6= ±1, and

0 < −
∫ 1

0

f(u) du <

∫ ∞

1

f(u) du ≤ −
∫ 1

−1

f(u) du,

then f satisfies (h1) but not (h2).
Observe also that in case f is continuous on R, nondecreasing on R+, non-

increasing on R− and such that, for all u 6= ±1, f(u)(u2 − 1) > 0, we have that
F (+∞) = +∞ and F (−∞) = −∞ and hence (h2) is satisfied.

In comparison with second order (and fourth order) equations with monos-
table or bistable nonlinearities which have been extensively studied through vari-
ational or topological arguments, see for instance [2], third order equations have
been much less considered. Problem (1.5) however already received attention in
the literature. Solvability of (1.5) with f(u) = u2 − 1 and p ≡ 0 was given inde-
pendently by Kopell and Howard [5] and by Conley [3] (see also [11, p. 456]). For
general f there are several results due to Mock for p ≡ 0 [8], [9] and Manukian
and Schecter [6, Theorem 5.2] for p ≡ β > 0. Uniqueness of the connecting orbit
for f(u) = u2−1 was proved by McCord [7] and later by Toland [12]. Our results
will complement and improve some of the previous ones.

This paper is organized as follows: in Section 2 we prove that, under as-
sumptions (f1), (p) and f(u)(u2 − 1) > 0 in a suitable interval except ±1, the
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existence of a solution of (1.5) is equivalent to the existence of a bounded non
constant solution of

(1.6) u′′′ = f(u) + p(t)u′.

In Section 3, we prove the existence of such a solution in case f and p satisfy (f1),
(h1), (p), (s) and (s’) and hence also the existence of a solution of (1.5), while
in Section 4, we obtain the existence of a solution of (1.5) under assumptions
(f1), (p) and (h2). We do not need a Lipschitz condition as in the above quoted
references since we use a different approach based on degree theory combined
with an approximation procedure.

In Section 5 we prove, among other things, that, in addition to (f1), (h3),
(h4), it is sufficient to assume f is locally Lipschitz on R and p is a non negative
constant in order to get uniqueness for the solution of (1.5).

2. Bounded solutions versus heteroclinics

We start with an analysis of the behaviour of bounded solutions at infinity.

Proposition 2.1. Assume the conditions (f1), (p) and f has only isolated
zeros.

(a) If u is a solution of (1.6) in R, bounded together with pu′, then, for
i ∈ {1, 2, 3}, u(i)(±∞) = 0, u(+∞) = a+ and u(−∞) = a− with
f(a±) = 0.

(b) If in addition u is non constant and for all x ∈ [−‖u‖∞, ‖u‖∞] \ {±1},
f(x)(x2 − 1) > 0, then u(−∞) = −1 and u(+∞) = 1.

Proof. First observe that, as u and pu′ are bounded, by the equation sat-
isfied by u, we have u′′′ bounded on R and hence, by interpolation, u′′ and u′

are bounded too.
Claim 1. u′′(+∞) = 0. Multiplying the equation u′′′ = f(u) + p(t)u′ by u′

and integrating on [0, t] we obtain

(2.1) u′(t)u′′(t)− u′(0)u′′(0)− F (u(t)) + F (u(0))

=
∫ t

0

u′′2(s) ds +
∫ t

0

p(s)u′2(s) ds.

By hypothesis, the left hand side is bounded in R and therefore

(2.2)
∫ ∞

0

p(s)u′2(s) ds +
∫ ∞

0

u′′2(s) ds < ∞.

Since p is nonnegative, we infer from the square integrability of u′′ and the
boundedness of u′′′ that u′′(+∞) = 0.

Claim 2. u′(+∞) = 0. First it is clear that u′ cannot accumulate to a
positive or negative value. If u′ has more than a cluster value, then |u′(x) −
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u′(y)| ≥ ε > 0 implies |x − y| → ∞ because u′′(+∞) = 0. Then it is easy to
reach a contradiction using the boundedness of u.

Claim 3. u′′′(+∞) = 0 and u(+∞) = a+ with f(a+) = 0. Equation (2.1)
together with (2.2), Claims 1 and 2 imply that F (u(+∞)) exists. As F is not
constant in any interval, it follows that u(+∞) = a+ exists. Going back to the
equation (1.6) we conclude that u′′′(+∞) = f(a+). Since u′′ is bounded we
obtain f(a+) = 0.

Claim 4. For i ∈ {1, 2, 3}, u(i)(−∞) = 0 and u(−∞) = a− with f(a−) = 0.
The proof is the same as in the previous Claims.

Claim 5. In case u is not constant and, for all x ∈ [−‖u‖∞, ‖u‖∞] \ {±1},
f(x)(x2 − 1) > 0, then u(−∞) = −1 and u(+∞) = 1. Observe that, by
assumption, {a+, a−} ⊂ {−1, 1}. Moreover, along the solutions of (1.6), we
have (F (u(t)) − u′′(t)u′(t))′ = −p(t)u′2(t) − u′′2(t) from which we deduce that
F (u(t)) − u′′(t)u′(t) is nonincreasing and in fact decreasing in case u′′(t) 6= 0.
Hence, as u is not constant, we have

F (u(+∞)) = lim
t→+∞

(F (u(t))− u′′(t)u′(t))

< lim
t→−∞

(F (u(t))− u′′(t)u′(t)) = F (u(−∞)).

The result follows from {u(+∞), u(−∞)} ⊂ {−1, 1} and F (1) < F (−1). �

Remark 2.2. Observe that Proposition 2.1 implies that, under the assump-
tions (f1), (p) and if, for all x 6= ±1, f(x)(x2 − 1) > 0, the problem

u′′′ = f(u) + p(t)u′, u(−∞) = 1, u(+∞) = −1,

has no C1-bounded solution.

Define the space CB3(R) = {u ∈ C3(R) | u, u′, u′′, u′′′ ∈ L∞(R)}.

Proposition 2.3. Under the assumptions (f1), (p) and (h2), any solution
u ∈ CB3(R) of (1.5) takes values in [α, β].

Proof. Recall first that F (u(t))− u′′(t)u′(t) is nonincreasing along the so-
lutions of (1.5). Using Proposition 2.1, we have for all t ∈ R,

F (1) = lim
t→+∞

(F (u(t))− u′′(t)u′(t))

≤F (u(t))− u′′(t)u′(t) ≤ lim
t→−∞

(F (u(t))− u′′(t)u′(t)) = F (−1).

Hence, for every critical value t̄ of u we have

F (1) ≤ F (u(t̄)) ≤ F (−1).

The result then follows from the fact that u(+∞) = 1 and u(−∞) = −1. �
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Remark 2.4. Suppose that in addition to (f1), there exists c > 0 such that
f(u)(u−1) ≥ c(u−1)2 for all u > 0 (this is in particular true for f(u) = u2−1).
Then it is easy to see that any bounded solution of u′′′ = f(u) belongs to an
affine translate of the space H2(R) (or we can write u ∓ 1 ∈ H2(R±)). In fact
multiplying the equation by u−1 and integrating in [0, T ] we see that the integral∫ T

0
f(u(s))(u(s) − 1) ds is bounded independently of T > 0. This implies that∫∞

0
f(u(s))(u(s)− 1) ds exists and by the above condition∫ ∞

0

(u(s)− 1)2 ds < ∞.

As
∫∞
0

u′′2(s) ds < ∞ the conclusion follows from standard interpolation.

3. A boundary value problem in the half-line:
bounded solutions yielding odd heteroclinics under symmetry

To solve (1.5) in case f and p are even it is enough to find a solution of the
boundary value problem

(3.1) u′′′ = f(u) + p(t)u′, u(0) = u′′(0) = 0, u(+∞) = 1.

Indeed, if u is a solution of (3.1) then the odd extension of u solves (1.5).
To solve (3.1), using Proposition 2.1, we consider the approximated problem

in a finite interval [0, n], n ∈ N,

(3.2) u′′′ = f(u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.

Lemma 3.1. Suppose that f : R → R and p: R → R satisfy conditions (f1),
(p), (h1). Then for each n ∈ N, there exists a solution un of (3.2) with 0 ≤ un ≤
N0 on [0, n], where N0 is given by (h1).

Proof. We divide the proof into several steps.

Step 1. The modified problem. We define the function f∗: R → R as

f∗(u) =


f(N0), if u > N0,

f(u), if u ∈ [0, N0],

f(0), if u < 0,

and consider the modified problem

(3.3) u′′′ = f∗(u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.

Step 2. Reduction to a fixed point problem.

Claim 1. For each h ∈ C([0, n]), the linear problem

(3.4) u′′′ − p(t)u′ = h(t), u(0) = u′′(0) = 0, u′(n) = 0,

has a unique solution.
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As is well known, it is sufficient to prove that the problem

(3.5) u′′′ − p(t)u′ = 0, u(0) = u′′(0) = 0, u′(n) = 0,

has only the trivial solution. In fact, if (3.5) has a nontrivial solution, let v = u′.
Then v satisfies

v′′ − p(t)v = 0, v′(0) = 0, v(n) = 0.

Multiplying the equation by v and integrating, we have∫ n

0

(v′2(t) + p(t)v2(t)) dt = 0.

This implies that v′ ≡ 0 and as v(n) = 0 we obtain v ≡ 0, i.e. u′ ≡ 0. Since
u(0) = 0, it follows that u ≡ 0.

By the above claim, we can define the solution operator K: C([0, n]) →
C([0, n]) corresponding to (3.4). Then let S: C([0, n]) → C([0, n]) be given by

Su = K(f∗(u)).

It is clear that S is a completely continuous operator and that u is a solution
of (3.3) if and only if u is a fixed point of S. In order to obtain a fixed point we
consider the homotopy

(3.6) u = K(λf∗(u)), λ ∈ [0, 1],

which is equivalent to the problem

(3.7) u′′′ = λf∗(u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.

Step 3. A priori estimates.

Claim 2. For all λ ∈ [0, 1], any solution of (3.7) is nonnegative on [0, n].

Let u be a solution of (3.7).
Case 1. λ = 0. As in Step 2 above, we know that the solution of

u′′′ = p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.

is u ≡ 0.

Case 2. λ ∈ ]0, 1]. Assume by contradiction that u takes negative values.
Then the boundary conditions imply that for some t1 < t2 we have u(t1) = 0,
and u(t) < 0 for all t ∈ ]t1, t2[, u′(t2) = 0 and for all t ∈ ]t1, t2[, u′(t) < 0.
Otherwise t1 would be an accumulation point of critical points of u, implying
0 = u′′′(t1) − p(t1)u′(t1) = λf(0) < 0, a contradiction. Now we have, for some
t ∈ ]t1, t2[,

0 = u′(t2) = u′(t1) + u′′(t1)(t2 − t1) + [λf∗(u(t)) + p(t)u′(t)]
(t2 − t1)2

2
.
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Since λf∗(u(t))+p(t)u′(t) ≤ λf(0) < 0 and u′(t1) ≤ 0 then u′′(t1) > 0 and hence
t1 > 0. Multiplying the equation (3.7) by u′ and integrating by parts between 0
and t1 we obtain the contradiction

0 >u′(t1)u′′(t1)−
∫ t1

0

u′′2(s) ds

=
∫ t1

0

λf∗(u(s))u′(s) ds +
∫ t1

0

p(s)u′2(s) ds =
∫ t1

0

p(s)u′2(s) ds ≥ 0.

Claim 3. For any n ∈ N, λ ∈ [0, 1] and any solution u of (3.7) we have,

|u(t)| ≤ N0, for all t ∈ [0, n], .

By Claim 2 we have that u(t) ≥ 0 for all t ∈ [0, n]. Let a solution u of (3.7)
attain a positive maximum at some point t0 ∈ ]0, n]. This implies in particular
that λ 6= 0. Now, multiplying (3.7) by u′ and integrating in [0, t0], we have

0 ≥ −
∫ t0

0

u′′2(s) ds−
∫ t0

0

p(s)u′2(s) ds = λF ∗(u(t0)),

with F ∗(u) =
∫ u

0
f∗(s) ds. Hence by assumption (h1) and construction, we

obtain that 0 ≤ u(t) ≤ N0.

Step 4. Conclusion. By standard results of Leray–Schauder degree theory the
equation (3.6) has a solution u for λ = 1 which is a solution of (3.3). Moreover
by Claims 2 and 3 we have that 0 ≤ u ≤ N0 and hence it is also a solution
of (3.2). �

Remark 3.2. We do not use the all strength of (h1). We just used the fact
that f(0) < 0 and there exists N0 > 0 such that F (N0) ≥ 0. In that case,
without loss of generality, we can assume f(N0) ≥ 0.

Lemma 3.3. Under the assumptions of Lemma 3.1, there exists a number
K > 0 with the property that, for all n ∈ N,

‖un‖C3([0,n]) ≤ K.

Proof. We first show that ‖u′′n‖L2(0,n) is bounded independently of n. In-
deed, multiplying the equation in (3.2) by u′n and integrating by parts between
0 and n, using the boundary conditions we obtain∫ n

0

u′′n
2(s) ds = −

∫ n

0

f(un(s))u′n(s) ds−
∫ n

0

p(s)u′n
2(s) ds ≤ − min

[0,N0]
F.

Let us extend un to [0,+∞[ with the constant value un(n) in [n, +∞[, and define
vn as the odd extension of un to R. Then vn ∈ C1(R) and by the Gagliardo–
Nirenberg’s interpolation inequality [10], there is a constant C such that

‖v′n‖C(R) ≤ C‖v′′n‖
2/3
L2(R)‖vn‖1/3

C(R).
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Since

‖v′n‖C(R) = ‖u′n‖C([0,n]), ‖v′′n‖L2(R) = 2‖u′′n‖L2(0,n), ‖vn‖C(R) = ‖un‖C([0,n]),

we infer

sup
n
‖u′n‖C([0,n]) < ∞

and the differential equation yields

sup
n
‖u′′′n ‖C([0,n]) < ∞.

The conclusion now follows from standard interpolation. �

Proposition 3.4. Assume hypotheses (f1), (p), (h1). Then the boundary
value problem (3.1) has a solution u ∈ C3([0,+∞[) which is nonnegative on
[0,+∞[ and such that u′, u′′ and u′′′ are bounded in R+.

Proof. By Lemmas 3.1 and 3.3 we have that, for each n ∈ N, the equation
u′′′ = f(u) + p(t)u′ has a solution un defined in [0, n], un(0) = u′′n(0) = 0,
0 ≤ un ≤ N0 and u′n, u′′n and u′′′n are bounded by a constant M > 0 which is
independent of n ∈ N. Then using Ascoli’s theorem and the Cantor diagonal
process we can select a sequence of values of nk → ∞ and u ∈ C3([0,+∞[) so
that for any a > 0 we have that unk

converges to u in C3([0, a]) and u solves
u′′′ = f(u) + p(t)u′ and satisfies the boundary conditions at t = 0. As u(0) = 0,
u is not a constant solution and by the arguments in the proof of Proposition 2.1,
u satisfies the boundary condition at infinity as well. �

Extending any solution of (3.1) by oddness, the last proposition implies:

Theorem 3.5. Assume that hypotheses (f1), (p), (h1), (s) and (s’) hold.
Then (1.5) has an odd solution u ∈ CB3(R) which nonnegative in ]0,+∞[ and
satisfies

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.

Remark 3.6. The function F (u)−u′u′′ plays the role of a Liapunov function
for the equation u′′′ = f(u)+p(t)u′. In fact in the case where p is constant and we
have uniqueness of the Cauchy problem, for instance when f is locally Lipschitz-
continuous, we can obtain a proof of the Theorem 3.5 using that the Liapunov
function is strictly decreasing along the nonconstant solutions and the La Salle
invariance principle [13].

Moreover, the existence of the Liapunov function may be used to see that
the problem

u′′′ = f(u), u(−∞) = −1, u(+∞) = 1,

has no solution if f is a continuous odd function with f(1) = 0.
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4. The non-symmetric problem

If we drop the assumptions of symmetry (s) and (s’) the existence of hetero-
clinics of (1.5) becomes considerably more complicated.

Theorem 4.1. Assume that hypotheses (f1), (p) and (h2) hold. Then (1.5)
has a solution u ∈ CB3(R) which satisfies

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.

Proof. As in the symmetric case, to solve (1.5) we start with an approxi-
mated problem in a finite interval [−n, n], n ∈ N,

(4.1) u′′′ = f(u) + p(t)u′, u′(−n) = 0, u(0) = 0, u′(n) = 0.

and we prove the equivalent of Lemma 3.1 for this problem, i.e. for all n ∈ N,
there exists a solution un of (4.1) with, for all t ∈ [−n, n], α < u(t) < β where α

and β are given by (h2).
We divide the proof into several steps.

Step 1. The modified problem. We define the functions f+, f−: [−n, n] × R
→ R by

f+(u) =


f(β) if u > β,

f(u) if u ∈ [−1, β],

0 if u < −1,

f−(u) =


0 if u > 1,

f(u) if u ∈ [α, 1],

f(α) if u < α.

and we set

f∗(t, u) =

{
f+(u) if t ≥ 0,

f−(u) if t < 0.

Consider then the modified problem

(4.2) u′′′ = f∗(t, u) + p(t)u′, u′(−n) = 0, u(0) = 0, u′(n) = 0.

Step 2. Reduction to a fixed point problem.
Claim 1. For each h ∈ C([−n, n]), the linear problem

(4.3) u′′′ − p(t)u′ = h(t), u′(−n) = 0, u(0) = 0, u′(n) = 0,

has a unique solution.
The proof follows as in Lemma 3.1.
By the above claim, we can define the solution operator K: C([−n, n]) →

C([−n, n]) corresponding to (4.3). Let

Ω = {u ∈ C([−n, n]) | u(−n) < 1 and u(n) > −1

and, for all t ∈ [−n, n], α < u(t) < β}.
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Then let S: Ω → C([−n, n]) be given by

Su = K(f∗(t, u)).

It is clear that S is a completely continuous operator and that u is a solution
of (4.2) if and only if u is a fixed point of S. In order to obtain a fixed point we
consider the homotopy

(4.4) u = K(λf∗(t, u)), λ ∈ [0, 1],

which is equivalent to the problem

(4.5) u′′′ = λf∗(t, u) + p(t)u′, u′(−n) = 0, u(0) = 0, u′(n) = 0.

Step 3. A priori estimates. Let us prove that, for all λ ∈ [0, 1], there is no
solution of (4.5) on ∂Ω.

Claim 2. For λ = 0, the solution u of (4.5) is in Ω.

In fact it is easy to observe that u ≡ 0 and hence u ∈ Ω.

Claim 3. For λ ∈ ]0, 1] and u a solution of (4.5) with u(−n) < 1 and
u(n) > −1, we have, ∀t ∈ [0, n], −1 < u(t) < β and, for all t ∈ [−n, 0],
α < u(t) < 1.

In case u is constant, the result is trivial, so we can assume that u is not
constant. Let

F+(u) =
∫ u

0

f+(s) ds and F−(u) =
∫ u

0

f−(s) ds.

Observe that, if u is a solution of (4.5), then f∗( · , u( · )) is continuous in [−n, n]
and therefore u ∈ C3([−n, n]). Then

d

dt
[λF+(u(t))− u′(t)u′′(t)] = − u′′

2(t)− p(t)u′2(t), for t ∈ [0, n],

d

dt
[λF−(u(t))− u′(t)u′′(t)] = − u′′

2(t)− p(t)u′2(t), for t ∈ [−n, 0].

Since the solution is not constant and F+(u(0)) = 0 = F−(u(0)), these inequali-
ties yield

(4.6) F+(u(n)) < F−(u(−n)).

Now the behaviour of F+ and F− immediately implies u(n) ∈ ]−1, β[ and
u(−n) ∈ ]α, 1[. Hence for all t ∈ [0, n], −1 < u(t) < β: otherwise suppose
min

0≤t≤n
u(t) = u(t0) ≤ −1. Then t0 ∈ ]0, n[, u′(t0) = 0 and by the same argu-

ment F+(u(t0)) < F−(u(−n)), a contradiction. A similar argument proves that
max

0≤t≤n
u(t) ≥ β cannot hold. We proceed in the same way to show that for all

t ∈ [−n, 0], α < u(t) < 1.
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Claim 4. For λ ∈ ]0, 1], there is no solution of (4.5) on ∂Ω.

Otherwise, by Claim 3, we have a solution u with either u(−n) = 1 or
u(n) = −1. If we have a solution u with u(−n) = 1, then, by (4.6) again, we
have F+(u(n)) < F−(1) which contradicts the fact that minF+ = F−(1). In the
same way, if we have a solution u with u(n) = −1, we find a similar contradiction.

Step 4. Conclusion of the proof. By standard results of Leray–Schauder
degree theory, the equation (4.4) has a solution u ∈ Ω for λ = 1 which is
a solution of (4.2) and hence also a solution of (4.1) by Claim 3.

We have seen that, for all n, ‖un‖C([−n,n]) ≤ max{|α|, β}. As in the proof of
Lemma 3.3, we deduce

‖u′′‖2L2(−n,n) ≤‖u
′′‖2L2(−n,n) +

∫ n

−n

p(t)u′2(t) dt

=F (u(−n))− F (u(n)) ≤ 2 max
[α,β]

|F (u)|.

Define vn as the extension of un to R such that, for all t ≤ −n, vn(t) = un(−n)
and, for all t ≥ n, vn(t) = un(n). Then vn ∈ C1(R) and, as in Lemma 3.3, the
Gagliardo–Nirenberg inequality yields the boundedness of

‖v′n‖C(R) = ‖u′n‖C([−n,n]).

The proof then concludes as in Section 3. �

Remark 4.2. Theorem 4.1 extends to the non autonomous case [9, Theo-
rem 0], [8] and [6, Theorem 5.2]. Even for the autonomous case our theorem
improves the previous ones since we do not impose to the function f to be C1 or
Lipschitz continuous.

5. Uniqueness of the kink solution

In the following result we prove that, under condition (h4), the solutions of
(1.5) have a unique zero.

Proposition 5.1. Suppose that f and p satisfy conditions (f1), (p) and (h4).
Then every solution u ∈ CB3(R) of (1.5) has a unique zero t0 and for all t ∈
R \ {t0}, u(t)(t− t0) > 0.

Proof. Observe that, by Proposition 2.1, every solution u ∈ CB3(R) of (1.5)
satisfies u′(+∞) = u′′(+∞) = 0 and, by Proposition 2.3, for all t ∈ R, u(t) ∈
[α, β]. Moreover, by assumptions, for all x ∈ [α, 0[,

∫ 0

x
F (r) dr > 0 and, for all

x ∈ ]0, β],
∫ x

0
F (r) dr < 0.

Let us prove that, if u is a solution of (1.5) such that u(t0) = 0, it satisfies
u′(t0) > 0 and hence a solution of (1.5) has a single zero. Assume by contradic-
tion that u′(t0) ≤ 0.
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Case 1. u′′(t0) ≤ 0. As u(t0) = 0, u′(t0) ≤ 0, u′′(t0) ≤ 0 and u′′′(t0) =
f(0) + p(t0)u′(t0) < 0, we have that u′(t) is negative for values of t close to t0.
Define t1 = sup{t > t0 | for all s ∈ ]t0, t[, u′(s) < 0}. As u(+∞) = 1, we have
t1 < +∞, u′(t1) = 0 and u′(t) < 0 on ]t0, t1[.

As F (u(t))−u′(t)u′′(t) is nonincreasing along the solutions of (1.5), for t ≥ t0,

F (u(t))− u′(t)u′′(t) ≤ −u′(t0)u′′(t0) ≤ 0.

Hence, we have

0 ≤
∫ t1

t0

[F (u(t))u′(t)− u′2(t)u′′(t)] dt = −
∫ 0

u(t1)

F (r) dr +
u′3(t0)

3
.

It follows that ∫ 0

u(t1)

F (r) dr ≤ u′3(t0)
3

≤ 0,

which contradicts u(t1) ∈ [α, 0[ and
∫ 0

u(t1)
F (r) dr > 0.

Case 2. u′′(t0) > 0. This case is similar to the previous one considering u(t)
for t < t0.

Conclusion. We deduce from the two previous cases that u′(t0) > 0 and
hence u has a unique zero. �

In the following theorem we prove the uniqueness of solution for (1.5) under
slightly stronger assumptions than in previous sections.

Theorem 5.2. Suppose that f and p satisfy conditions (f1), (p), (h3) and
(h4). Then, for every t0 ∈ R, there exist A > 0 and B ∈ R such that, for
every solution u ∈ CB3(R) of (1.5) such that u(t0) = 0, we have u′(t0) = A

and u′′(t0) = B. Moreover the solution of (1.5) has a single zero. If moreover,
f is locally Lipschitz on [α, β], then, for every t0 ∈ R, there exists at most one
solution u ∈ CB3(R) of (1.5) such that u(t0) = 0. Moreover, u is positive in
]t0,∞[, negative on ]−∞, t0[ and

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.

Proof. Let t0 ∈ R.

Step 1. There exists A ∈ R such that every solution u of (1.5) such that
u(t0) = 0 satisfies u′(t0) = A.

Otherwise, let u1 and u2 be two solutions with u1(t0) = u2(t0) = 0 and
u′1(t0) > u′2(t0). Recall that, by Proposition 5.1, for every t 6= t0, for i = 1, 2 we
have ui(t)(t− t0) > 0.

Let w = u1 − u2 and observe that

w′′′ = f(u1)− f(u2) + p(t)w′,

w(t0) = 0, w′(t0) > 0, w(−∞) = 0, w(+∞) = 0.
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It follows that for t close to t0, w′(t) > 0 and since w(t0) = w(−∞) = w(+∞) =
0, there exists t1 < t0 < t2 such that w′(t) > 0 on ]t1, t2[ and w′(t1) = w′(t2) = 0.
Next as f is nondecreasing on R+ and nonincreasing on R− and, for every t 6= t0,
for i = 1, 2 we have ui(t)(t− t0) > 0, we have that z = w′ satisfies

z′′ = f(u1)− f(u2) + p(t)z > 0, on ]t1, t2[,

z(t1) = z(t2) = 0, z(t0) > 0,

which contradicts the maximum principle.

Step 2. There exists B ∈ R such that every solution u of (1.5) such that
u(t0) = 0 satisfies u′′(t0) = B.

Otherwise, let u1 and u2 be two solutions with u1(t0) = u2(t0) = 0 and
u′′1(t0) > u′′2(t0). By Step 1, we have u′1(t0) = u′2(t0). As in Step 1, we observe
that there exists t2 > t0 such that w = u1 − u2 satisfies

w′′′ = f(u1)− f(u2) + p(t)w′, on ]t0, t2[,

w(t0) = 0, w′(t0) = 0, w′′(t0) > 0, w′(t2) = 0,

and hence z = w′ satisfies

z′′ = f(u1)− f(u2) + p(t)z > 0, on ]t0, t2[,

z(t0) = z(t2) = 0, z′(t0) > 0,

which contradicts the Hopf maximum principle. �

Combining Theorems 4.1 and 5.2 we obtain the following result in the par-
ticular case where p is a constant.

Theorem 5.2. Suppose that f : R → R is locally Lipschitz on [α, β] and
satisfies (f1), (h3) and (h4). In addition assume p is a nonnegative constant.
Then (1.5) has a unique (up to translations) solution u ∈ CB3(R). Moreover, u

has a unique simple zero and

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.

In the symmetric case, we obtain the following result.

Theorem 5.4. Suppose that f : R → R is locally Lipschitz on [α, β] and
satisfies conditions (f1), (p), (h3) and (s). Then there exists at most one solution
u ∈ CB3(R) of (1.5) such that u(0) = 0.

If (s′) is satisfied too, then the problem (1.5) has a unique solution u such
that u(0) = 0. Moreover, u is odd, positive on [0,+∞[ and satisfies

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.
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Proof. We just have to prove that (h4) is satisfied. In that case, we con-
clude by Theorems 4.1 and 5.2. Let u1 be the positive zero of F and assume∫ β

0
F (s) ds ≥ 0. As F is convex on [0, β] and −F (1) = F (β) > 0, we have

1 < (1 + β)/2 < u1 < β. Hence, we obtain the contradiction∫ β

u1

F (r) dr ≥
∣∣∣∣ ∫ u1

0

F (r) dr

∣∣∣∣ >

∣∣∣∣ ∫ u1

1

F (r) dr

∣∣∣∣ > |F (1)| β − 1
4

>

∫ β

u1

F (r) dr,

which proves that
∫ β

0
F (s) ds > 0. The proof that

∫ 0

α
F (s) ds < 0 is similar. �

Remark 5.5. Theorem 5.4 extends the uniqueness result in [12, Theo-
rem 3.8] to the nonautonomous case.

As an immediate consequence of the previous results we have the following
one for the model problem.

Corollary 5.6. Consider the problem

(5.1) λu′′′ = u2 − 1, u(−∞) = −1, u(+∞) = 1.

Then we have:

(a) For λ > 0 there exists a unique solution u ∈ C3(R) of (5.1) (up to
translations). Moreover, u has a unique simple zero, is odd around it,
and

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.

(b) For λ < 0 problem (5.1) has no solution.
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68 D. Bonheure — J.Á. Cid — C. De Coster — L. Sanchez

[9] , The half-line boundary value problem for uxxx = f(u), J. Differential Equations

32 (1979), 258–273.

[10] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa

13 (1959), 115–162.

[11] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer–Verlag, New

York, 1983.

[12] J.F. Toland, Existence and uniqueness of heteroclinic orbits for the equation λu′′′ +

u′ = f(u), Proc. Royal Soc. Edinburgh 109A (1988), 23–36.

[13] W. Walter, Ordinary Differential Equations, Springer–Verlag, New York, 1998.

Manuscript received December 29, 2011

Denis Bonheure

Département de Mathématique
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