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PERIODIC SOLUTIONS OF PERTURBED
HAMILTONIAN SYSTEMS

IN THE PLANE BY THE USE
OF THE POINCARÉ–BIRKHOFF THEOREM

Alessandro Fonda — Marco Sabatini — Fabio Zanolin

In the 100th anniversary of Poincaré’s last geometric theorem

Abstract. We prove the existence of periodic solutions for a planar non-

autonomous Hamiltonian system which is a small perturbation of an au-
tonomous system, in the presence of a non-isochronous period annulus.

To this aim we use the Poincaré–Birkhoff fixed point theorem, even if

the boundaries of the annulus are neither assumed to be invariant for the
Poincaré map, nor to be star-shaped. As a consequence, we show how to

deal with the problem of bifurcation of subharmonic solutions near a given

nondegenerate periodic solution. In this framework, we only need little reg-
ularity assumptions, and we do not need to introduce any Melnikov type

functions.

1. Introduction

The Poincaré–Birkhoff fixed point theorem, named also the “twist theorem”
or the “Poincaré’s last geometric theorem”, in the original formulation [62], as-
serts the existence of at least two fixed points for an area-preserving homeomor-
phism Ψ of a planar circular annulus A = B(0, R2) \ B(0, R1) onto itself, such
that the points of the inner boundary Γ1 are advanced along Γ1 in the clockwise
sense and the points of the outer boundary Γ2 are advanced along Γ2 in the
counter-clockwise sense.
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This remarkable result, conjectured by Henri Poincaré, was published by him
with some reluctance in 1912, the year of his death. As Poincaré says:

Je n’ai jamais presenté au public un travail aussi inachevé; je crois

donc nécessaire d’expliquer en quelques mots les raisons qui m’ont

déterminé à le publier, et d’abord celles qui m’avaient engagé à l’en-

treprendre. [ . . . ] J’ai donc été amené à rechercher si ce théorème

est vrai ou faux, mais j’ai rencontré des difficultés auxquelles je ne

m’attendais pas. [ . . . ] Il semble que dans ces conditions, je de-

vrais m’abstenir de toute publication tant que je n’aurai pas résolu

la question; mais après les inutiles efforts que j’ai faits pendant

de longs mois, il m’a paru que le plus sage était de laisser le problème

mûrir, en m’en reposant durant quelques années; cela serait très

bien si j’étais sûr de pouvoir le reprendre un jour; mais à mon âge

je ne puis en répondre. D’un autre côté, l’importance du sujet est

trop grande et l’ensemble des résultats obtenus trop considérable

déjà, pour que je me résigne à les laisser définitivement infructueux.

[ . . . ] Je pense que ces considérations suffisent à me justifier. (1)

Poincaré also checked the validity of his conjecture in various special cases,
but a complete proof was only provided by George D. Birkhoff [5], in 1913, with
respect to the existence of at least one fixed point. For the existence of a second
fixed point, Birkhoff refers to a remark by Poincaré, according to which [62,
p. 377]

Il y en aura au moins deux puisque l’Analysis situs (et en particulier

le théorème de Kronecker) nous montre immédiatement qu’elle doit

en avoir un nombre pair. (2)

In modern terms, since the homeomorphism Ψ is homotopic to the identity,
its fixed point index on A is equal to zero (which is the Euler characteristic of
the annulus). So, the existence of a fixed point with nonzero index implies the
existence of a second fixed point. It was not so clear, however, how to prevent
the existence of only one fixed point with zero index.

(1) I have never presented such an incomplete work to the public; therefore, I think it
necessary to briefly explain the reasons which convinced me to publish it, and, above all, those
which drove me to start it. [ . . . ] So, I was led to research the veracity of this theorem, but

I met some unexpected difficulties. [ . . . ] It seems that, in such a situation, I should refrain
from any publication until I have solved the problem; but, after all the pointless efforts made

over many months, I thought that the wiser choice was to leave the problem to mature, while

resting for some years; this would have been fine if I had been sure to be able to take it up
again one day; but at my age I cannot be so sure. On the other hand, the importance of
the subject is too great and the quantity of results so far obtained too considerable, to resign

myself to let them definitively unfruitful. [ . . . ] I think that these considerations are sufficient
to justify me. [Our translation.]

(2) There will be at least two of them, since the Analysis situs (and in particular Kronecker

theorem) shows us immediately that their number must be even. [Our translation.]
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Hence, as observed by Birkhoff himself [7, p. 299], the proof for a second fixed
point needed to be made more precise. Therefore, in 1926, Birkhoff provided
a proof of the existence of a second fixed point in any case, and also replaced the
condition about the preservation of the areas with a more general assumption
of topological nature. In 1977, due to the skepticism of some mathematicians
on the validity of Birkhoff’s original proof, M. Brown and W.D. Neumann [14]
were led to a very careful and detailed checking of Birkhoff’s proof, showing
in a very reasonable manner its correctedness, up to the present standards of
rigorousness (see also [17], [39], [58], [69] for different approaches to the proof of
the existence of the second fixed point). A modern approach to the proof of the
twist theorem also uses a suggestion of de Kérékjartó [47], showing a connection
with the Brouwer plane translation theorem [13], see e.g. [38], [40], [71], and the
references therein.

Applications of the twist theorem to dynamical systems problems coming
from nonlinear mechanics and geometry were already suggested by Poincaré
in [62] and studied by Birkhoff in [6], [8].

In the case of planar non-autonomous ordinary differential equations, when
one looks for the existence of periodic solutions or subharmonic solutions via the
search of the fixed points of the Poincaré map or of its iterates, respectively,
a major difficulty in the application of the Poincaré–Birkhoff theorem in the
version stated above is the construction of annular regions which are invariant
under these transformations. Hence, a modification of this fixed point theorem
in which the invariance conditions for the annulus and its inner and outer bound-
aries are not assumed became necessary for the applications. Birkhoff himself,
motivated by different dynamical applications, was interested in proving some
extensions of the theorem along these directions. In particular, in [6], [7], he
showed that his proof worked also when the annulus is not necessarily invariant
under Ψ but its inner boundary is still rotated onto itself.

In 1976, H. Jacobowitz [45], [46], following a suggestion of J. Moser [56],
proposed a modified version of the Poincaré–Birkhoff theorem for a topological
pointed disc, showing how to apply it to the search of periodic solutions to some
superlinear second order differential equations. Applications in this direction
were also given by P. Hartman [42] and G.J. Butler [15]. In view of these results,
W.-Y. Ding [24], [25], J. Franks [34], [35], and C. Rebelo [63] offered new versions
of the Poincaré–Birkhoff theorem where the boundary invariance assumption is
removed. See e.g. [19] for a review on this subject.

Let us now state a modern version of the Poincaré–Birkhoff theorem (see [63,
Corollary 2 and Remark 2]). For a simple closed curve Γ in R2, we denote by
I(Γ) the open domain bounded by Γ, and by I(Γ) its closure.
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Theorem 1.1. Let A = I(Γ2) \ I(Γ1), with 0 ∈ I(Γ1), be an annular region
bounded by two curves Γ1 and Γ2, which are strictly star-shaped with respect to
the origin. Let Ψ: I(Γ2) → Ψ(I(Γ2)) be an area-preserving homeomorphism such
that 0 ∈ Ψ(I(Γ1)). On the universal covering space {(θ, ρ) : θ ∈ R, ρ > 0}, with
the standard covering projection Π: (θ, ρ) 7→ (ρ cos θ, ρ sin θ), consider a lifting of
Ψ|A of the form

h(θ, ρ) = (θ + γ(θ, ρ), η(θ, ρ)),

where γ(θ, ρ) and η(θ, ρ) are continuous, and 2π-periodic in their first variable.
Correspondingly, for Γ̃1 = Π−1(Γ1) and Γ̃2 = Π−1(Γ2), assume the twist condi-
tion

γ(θ, ρ) > 0 on Γ̃1, γ(θ, ρ) < 0 on Γ̃2.

Then, Ψ has two fixed points z1, z2 in the interior of A, such that

γ(Π−1(z1)) = γ(Π−1(z2)) = 0.

The star-shapedness assumption on the boundaries of the annulus is a del-
icate hypothesis. In [25], Ding assumed only Γ1 to be star-shaped. He con-
sidered this as a technical assumption, although crucial for his proof, based on
the Jacobowitz version of the twist theorem, but probably unnecessary. How-
ever, it has been shown by R. Martins and A.J. Ureña in [54] that the star-
shapedness assumption on the inner boundary is not eliminable. And, more
recently, P. Le Calvez and J. Wang in [51] provided an example showing that
a star-shapedness assumption on the outer boundary is also needed. In the same
paper, corrections to some previous proofs were also provided.

For the proof of Theorem 1.1 we refer to [63], where a direct reduction to the
classical Poincaré–Birkhoff theorem for the standard annulus, already settled
in [14], is done. In our opinion, this seems to be a safer approach, without
invoking the Jacobowitz result, which probably hides some difficulty, in view of
the counter-examples given in [54], [51].

The above theorem has been used by many authors to prove existence and
multiplicity of periodic solutions of some non-autonomous Hamiltonian systems
in a variety of situations, see, e.g. [10]–[12], [15], [16], [19], [20], [22], [23], [27]–
[33], [43], [45], [53], [63]–[66], [72]–[74]. Most of these papers rely on Ding’s
version of the Poincaré–Birkhoff theorem, safely applying it to annuli for which
both boundaries are star-shaped. For related results, see also [49] and [50]. It can
be noticed how, in recent years, this powerful tool has been attracting a rapidly
growing interest in the applications.

An interesting feature of Theorem 1.1 and some of its variants, when applied
to the Poincaré map associated to a planar system, is that we can take

γ(θ, ρ) = Θ(θ, ρ)− 2πj,
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where Θ(θ, ρ) is the angular displacement of a solution in the phase-plane, and j

is an integer. In this case, the fixed points correspond to periodic solutions mak-
ing exactly j rotations around the origin (in the sense of the winding number).
This additional information has often been used to distinguish among different
type of solutions, thus providing multiplicity results in a variety of different sit-
uations. It also represents a crucial argument in some proofs of the minimality
of the period, when trying to detect subharmonic solutions.

In this paper, we focus our attention on periodic solutions of non-autonomous
planar Hamiltonian systems

(1.1) Ju̇ = ∇H(t, u; ε),

which are small T -periodic perturbations of an autonomous system

(1.2) Ju̇ = ∇H(u),

in the sense that H(t, u; 0) = H(u). Such periodic solutions are obtained as
fixed points of the Poincaré map Pε associated to (1.1), or of some of its iterates,
which in turn is a small perturbation of the Poincaré map P0 associated to (1.2),
or the corresponding iterates, respectively.

We assume the existence of a non-isochronous period annulus A for (1.2),
whose boundaries are not necessarily star-shaped. Notice that, even if A is in-
variant for P0, in general it will not be invariant for Pε. We then prove that,
for ε sufficiently small, there are a large number of periodic solutions for the
non-autonomous system (1.1), lying in A.

In this setting, Theorem 1.1 cannot be applied directly. We will need to
transform our problem to an equivalent one, in some suitable new coordinates,
by the use of a canonical transformation for system (1.2). In this new setting,
A becomes a classical annular region, and Pε is modified accordingly. The non-
isochronicity of the annulus will then guarantee a twist condition for the Poincaré
map in the new coordinates, and Theorem 1.1 will provide the fixed points we
need.

The existence of subharmonic solutions for Hamiltonian systems like (1.1)
is often claimed as one of the by-products of KAM theory, which provides the
existence of a whole family of invariant curves for the Poincaré map in a given
annulus. For this subject, we refer to the classical book of Moser [57], since a re-
view of the manyfold recent developments of the theory is beyond the aim of this
paper. However, notice that, in order to apply KAM theory, one needs rather
severe differentiability conditions, together with a strong twist monotonicity as-
sumption. On the contrary, our aim is to reduce to the minimum the regularity
assumptions on the Poincaré map, and we do not need any monotonicity on the
twist.
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As a corollary of our main theorem, we directly obtain a bifurcation type
result, both for harmonic and subharmonic solutions, by only assuming the ex-
istence of a nondegenerate periodic orbit for the autonomous system (1.2). Such
kind of results have been obtained in the literature by the use of different tech-
niques. For instance, using variational methods combined with bifurcation type
arguments, M. Willem [70] proved a general existence theorem for harmonic so-
lutions of perturbed Hamiltonian systems in R2M , following some earlier results
by A. Ambrosetti, V. Coti Zelati and I. Ekeland [2] (see also [26]). The ex-
istence of subharmonic solutions near an equilibrium, in the spirit of Birkhoff
and Lewis [9], was also studied by many authors, see e.g. [1] and the references
therein. Our corollary deals only with the case M = 1, but provides the existence
of subharmonic solutions with precise information on their periods, as well.

Another approach used to deal with (not necessarily Hamiltonian) pertur-
bations of Hamiltonian systems is based on the so-called subharmonic Melnikov
function, for which we refer to [37]. Let us only quote the pioneering work of
Loud [52] and Lazer [48], without entering in the details of the large literature
dealing with this topic. However, we emphasize that, in the case of Hamiltonian
perturbations, our approach does not need assumptions related to any type of
Melnikov functions.

2. The main result

We consider a period annulus A ⊆ R2 for an autonomous Hamiltonian system

(2.1) Ju̇ = ∇H(u).

The Hamiltonian function H is only defined on A, and we want it to be twice
continuously differentiable there. Needless to say, we denote by J the standard
2× 2 symplectic matrix, namely

J =
(

0 −1
1 0

)
.

The inner and the outer components of the boundary of A are the Jordan curves
γi and γe, respectively. We are therefore assuming that all the solutions with
initial point in A are periodic and their orbits are not contractible in A.

More precisely, we assume that A is not isochronous, i.e., the periods of
the solutions in A cover an interval [Tmin, Tmax], with Tmin < Tmax. Moreover,
without loss of generality, we assume that A surrounds the origin.

We then consider the Hamiltonian system

(2.2) Ju̇ = ∇H(t, u),
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with Hamiltonian function H: R × A → R, whose gradient with respect to its
second variable, denoted by ∇H(t, u), is continuous in (t, u), and also locally
Lipschitz continuous in u, and is T -periodic in its first variable, for some T > 0.

Theorem 2.1. Given two positive integers m and n such that

(2.3) Tmin <
mT

n
< Tmax,

there is an ε > 0 such that, if

|∇H(t, u)−∇H(u)| ≤ ε, for every t ∈ [0, T ] and u ∈ A,

then system (2.2) has at least two mT -periodic solutions, whose orbits are con-
tained in A, which make exactly n rotations around the origin in the period
time mT .

The above statement generalizes [16, Theorem 1], where the case of small
perturbations of planar systems generated by the second order equation x′′ +
g(x) = 0 was considered, assuming the energy level lines to be star-shaped.
A similar type of result can also be found in [44, Theorem 2] in the case of
non-Hamiltonian perturbations. However, in [44], a Melnikov type assumption
is required, while this is not needed in our Hamiltonian setting.

The proof of Theorem 2.1 will be given in Section 4. Let us state one of its
immediate consequences.

Corollary 2.2. For any positive integer N there is a εN > 0 such that, if

|∇H(t, u)−∇H(u)| ≤ εN , for every t ∈ [0, T ] and u ∈ A,

then system (2.2) has at least N periodic solutions, whose orbits are contained
in A.

Proof. It is sufficient to take N couples of positive relatively prime integers
m and n satisfying (2.3). Since, for each of them, there is a suitable εm,n > 0
for which the perturbed equation has two periodic solutions, taking as εN the
smallest of those εm,n we obtain 2N periodic solutions. To be sure that such
solutions are distinct it will be sufficient that the quotients m/n be pairwise
distinct. �

As a particular case, we will now show that such a situation arises when one
can find a nondegenerate periodic solution of (2.1).

Definition 2.3. We say that a T0-periodic solution u0 of (2.1) is nondegen-
erate if every T0-periodic solution of the linearized system

(2.4) Jv̇ = H′′(u0(t))v

is of the type v(t) = c u̇0(t), for some c ∈ R.
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Proposition 2.4. If u0 is a nondegenerate and nonconstant periodic solu-
tion of (2.1), with minimal period T0, then there is a period annulus, containing
the orbit of u0 in its interior, whose inner and outer boundaries are the orbits
of two solutions with periods T1 and T2, respectively, such that

either T1 < T0 < T2 or T2 < T0 < T1.

The proof of Proposition 2.4 is more or less known (see, e.g. [44], [50]), and
is provided, for the reader’s convenience, in the Appendix. As an immediate
consequence, we have the following.

Corollary 2.5. Assume that (2.1) has a nondegenerate and nonconstant
T0-periodic solution u0, and let U0 be a given neighbourhood of its orbit. Then,
there is a δ > 0 with the following property: given two integers m and n for
which

(2.5)
∣∣∣∣mT

n
− T0

∣∣∣∣ ≤ δ,

there is a ε > 0 such that, if

|∇H(t, u)−∇H(u)| ≤ ε, for every t ∈ [0, T ] and u ∈ U0,

then system (2.2) has at least two mT -periodic solutions, whose orbits are con-
tained in U0, which make exactly n rotations around the origin in the period
time mT .

Proof. Proposition 2.4 guarantees the existence of a period annulus A,
containing in its interior the orbit of u0, such that the periods of the solutions
in A cover an interval [α, β], with α < T0 < β. Taking δ = min{T0 − α, β − T0},
Theorem 2.1 directly applies. �

Using the same argument as for Corollary 2.2, we have the following direct
consequence of Corollary 2.5.

Corollary 2.6. Assume that (2.1) has a nondegenerate and nonconstant
T0-periodic solution u0, and let U0 be a given neighbourhood of its orbit. Then,
for any positive integer N there is a εN > 0 such that, if

|∇H(t, u)−∇H(u)| ≤ εN , for every t ∈ [0, T ] and u ∈ U0,

then system (2.2) has at least N periodic solutions, whose orbits are contained
in U0.

Notice that, in order to apply Theorem 2.1, one could also consider situations
where there is a “degenerate” and nonconstant periodic solution u0 of (2.1),
provided that some conditions on higher order derivatives of the time-map are
imposed in order to determine an annulus, near the orbit of u0, whose boundary
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is made by orbits with different periods. Conditions of this type have been
provided, e.g. by Hale and Táboas [41], and Rothe [67].

As a particular case, we can apply the above results to a system like

(2.6) Ju̇ = ∇H(t, u; ε),

with Hamiltonian function H: R×A× [−1, 1] → R, whose gradient with respect
to its second variable, denoted by ∇H(t, u; ε), is continuous in (t, u; ε), and also
locally Lipschitz continuous in u, and is T -periodic in its first variable, for some
T > 0. We assume that

H(t, u; 0) = H(u), for every t ∈ [0, T ] and u ∈ A,

where H is a twice continuously differentiable function on the period annulus A.
As above, we assume that the periods of the solutions of (2.1) in A cover an
interval [Tmin, Tmax], with Tmin < Tmax.

Recalling that A is a compact set, and therefore |∇H(t, u; ε)−∇H(u)| → 0
as ε → 0, uniformly for (t, u) ∈ [0, T ] × A, we immediately get the following
statements.

Theorem 2.7. Given two positive integers m and n satisfying (2.3), there
is an ε > 0 such that, if |ε| ≤ ε, then system (2.6) has at least two mT -periodic
solutions, whose orbits are contained in A, which make exactly n rotations around
the origin in the period time mT .

Corollary 2.8. For any positive integer N there is a εN > 0 such that, if
|ε| ≤ εN , then system (2.6) has at least N periodic solutions, whose orbits are
contained in A.

Analogous statements hold in the case when a nondegenerate periodic solu-
tion of (2.2) exists.

Corollary 2.9. Assume that (2.1) has a nondegenerate and nonconstant
T0-periodic solution u0, and let U0 be a given neighborhood of its orbit. Then,
there is a δ > 0 with the following property: given two integers m and n for
which (2.5) holds, there is a ε > 0 such that, if |ε| ≤ ε, then system (2.6) has at
least two mT -periodic solutions, whose orbits are contained in U0, which make
exactly n rotations around the origin in the period time mT .

Corollary 2.10. Assume that (2.1) has a nondegenerate and nonconstant
T0-periodic solution u0, and let U0 be a given neighborhood of its orbit. Then, for
any positive integer N there is a εN > 0 such that, if |ε| ≤ εN , then system (2.6)
has at least N periodic solutions, whose orbits are contained in U0.

These last two corollaries may also be interpreted as a bifurcation type result
from a nondegenerate periodic orbit, and should be compared with [70, Theo-
rem 1], where the case T = T0 is considered, for a system in R2M , with M ≥ 1,
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and the existence of two T0-periodic solutions is proved. See also [2], [26]. Anal-
ogous results are available in the non-Hamiltonian setting, with further assump-
tions on some Melnikov type functions. Notice also that Theorem 2.7 could
be used to provide an alternative proof to some multiplicity results concerning
T -periodic solutions, like, e.g. Theorems 6 and 8 in [28].

3. Some examples

In this section, we want to produce some examples of autonomous Hamilton-
ian systems in the plane whose orbits are not star-shaped. A direct inspection
of the geometry of such systems permits to detect several annuli over which our
results can be applied.

As a first example, we deal with a classical problem in constrained mechanics,
the “bead on a wire” system. Let us consider a rigid wire contained in a vertical
plane. We assume the wire to lie in a region where a constant force acts. Without
loss of generality, we may assume such a force to be represented by a vertical
vector (0,−κ), with κ > 0 (for instance, it could be the gravitational force,
which is approximatively constant in a small region of space). A ball of mass m

is constrained to move, without friction, along the wire. We describe the wire
with a C1-curve w: [s−, s+] → R2, with w(s) = (w1(s), w2(s)), parametrized by
its arc length. We may identify the ball’s position on the wire by means of the
function s(t), where t is the time and s denotes the arc length with respect to one
of the end points of the wire. According to the discussion in [3, Chapter 3], the
ball’s motion is described by the solution to the differential equation s̈ = f(s),
where f(s) = (1/m)F tan, F tan being the tangential component of the applied
force, i.e. F tan = (0,−κ) · (w′1(s), w′2(s)) = −κw′2(s). Hence, the ball’s motion is
described by the solutions of the differential equation

s̈ +
κ

m
w′2(s) = 0,

equivalent to the planar Hamiltonian system

ṡ = q, −q̇ =
κ

m
w′2(s),

with Hamiltonian function

H(s, q) =
q2

2
+

κ

m
w2(s).

Choosing appropriately the function w2(s), we can construct Hamiltonian sys-
tems with non-star-shaped orbits. For instance we may choose

H(s, q) =
q2

2
+ s2(1− s2)(4− s2),

which has three minima on the s-axis, surrounded by closed level sets. The
region covered by such level sets has a bounded boundary, the union of the
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homoclinic and the heteroclinic connections of the two saddle points. Outside
those separatrices, all level sets are closed. Infinitely many of them are non-star-
shaped, as shown in Figure 1.

Figure 1. The levels 0.5, 0.9 of H(s, q) = q2

2
+ s2(1− s2)(4− s2).

We can easily construct period annuli with star-shaped boundaries in the
regions around the three minima. Moreover, there is a large choice of period
annuli with non-star-shaped boundaries in the region outside the separatrices.

Using a different approach, we will now construct some other examples of
Hamiltonian functions, with an isolated minimum at the origin O, having no
star-shaped level sets in a neighbourhood of O.

Let ϕ: ]0,∞[ → ]0,∞[ be a twice continuously differentiable function and, for
every positive r =

√
x2 + y2, consider the linear map associated to the matrix

Aϕ(r) =
(

cos ϕ(r) sinϕ(r)
− sinϕ(r) cos ϕ(r)

)
which rotates clockwise the vector (x, y) of an angle ϕ(r). We call circular shear
the transformation Φ: R2 \ {O} → R2 \ {O}, defined by

Φ(x, y) = Aϕ(r)(x, y).

Such a map leaves invariant the circles centered at the origin, operating on each
one of them as a clockwise rotation of an angle ϕ(

√
x2 + y2). Its inverse is the

map A−ϕ(r)(x, y). We can extend Φ to the whole plane by setting Φ(O) = O.
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The function Φ(x, y) is an area-preserving transformation. In fact, denoting
by Γ the transformation from rectangular to polar coordinates,

Γ(x, y) = (r cos θ, r sin θ),

and T the “triangular”map

T(r, θ) = (r, θ + ϕ(r)),

we have that
Φ = Γ−1 ◦ T ◦ Γ.

Circles centered at the origin are invariant for the transformation Γ, hence the
Jacobian determinant JΦ of Φ can be computed as follows

JΦ = JΓ−1 · JT · JΓ =
1
r
· 1 · r = 1.

Even if ϕ is not even defined at r = 0, the map Φ(x, y) is area-preserving, since
a single point is not relevant in area’s measure.

Consider the function

G(X, Y ) =
X2

a2
+

Y 2

b2
,

with a, b ∈ R such that 0 < a < b. The level sets G = l2, with l > 0, are ellipses
centered at O, that meet the X- and Y -axis at the points (±la, 0) and (0,±lb),
respectively. We define the function

H(x, y) = G(Φ(x, y)).

The level sets of H are obtained from the ellipses by means of the transformation
A−ϕ(r)(x, y). Let us choose ϕ as follows:

ϕ(r) =
1

r(b− a)
.

It is easily seen that

ϕ(la)− ϕ(lb) >
1

lb2
.

As l goes to zero, the difference ϕ(la)−ϕ(lb) goes to ∞. This fact is responsible
for a distorsion in the orbits, so that, as shown in Figure 2, where we have chosen
a2 = 1/10, b2 = 1, the orbits cannot be star-shaped. Lower levels display higher
distortions.

In order to construct a Hamiltonian function of class C∞, we can apply
a smoothing procedure developed in [55] in order to prove the existence of smooth
first integrals of planar centers. First, we observe that the function H is C∞ on
B(O, ε) \ {O} and continuous on B(O, ε), for some ε > 0. Then, following [55,
Section 1], it is possible to find a scalar function F such that F ◦ H is C∞ on
B(O, ε), and such that the composed function F ◦H has the same level sets as H.
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Figure 2. The level sets H = 1, H = 0.2 and H = 0.1.

It is even possible to construct a function defined on all of R2, which reflects
the above properties. The transformation

ζ(x, y) =

(
x tan

π
√

x2 + y2

2ε
, y tan

π
√

x2 + y2

2ε

)
is a diffeomorphism taking the disk B(O, ε) onto all of R2. The map ζ leaves all
rays invariant, hence, taking H as above, the function K(x, y) = H(ζ−1(x, y)) is
defined on all of R2 and has non-star-shaped level sets.

4. The proof of Theorem 2.1

We begin by selecting from A two solutions with minimal periods Tmin and
Tmax, respectively. These solutions determine a smaller period annulus, over
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which the same assumptions of Theorem 2.1 hold. Therefore, we may assume
without loss of generality that the periods of the inner boundary orbit γi and of
the outer boundary orbit γe are the extremals of the interval [Tmin, Tmax]. Just
to fix the ideas, we assume that Tmin is the period of γi, and Tmax is the period
of γe. The other case is analogous.

Set hi = H(γi) and he = H(γe). Noticing that

∇H(u) 6= 0, for every u ∈ A,

we have that hi 6= he. We will assume, for instance, hi < he, the other case
being treated similarly. We thus have

hi = min{H(u) : u ∈ A}, he = max{H(u) : u ∈ A}.

Clearly, nothing will change by adding a constant to the Hamiltonian function
H. Since A is compact, we can then assume, without loss of generality, that
hi > 0. Notice that, under the above assumptions, all the solutions in A rotate
clockwise with respect to the origin.

We then see that the orbits of the gradient system

(4.1) u̇ = ∇H(u),

starting at a point of the inner boundary γi, meet exactly once all the cycles in A,
eventually leaving A at a point of the outer boundary γe. Let us fix a reference
orbit δ∗ of (4.1), such that δ∗(0) ∈ γi, and δ∗(σ∗) ∈ γe, for some σ∗ > 0.

In the following, we will denote by VH the vector field associated to the
differential system (2.1). For u ∈ A, let us denote by T (u) the minimal period
of the cycle passing through u. By the implicit function theorem, it can be
seen that the function T (u) is twice continuously differentiable (see, e.g. [59,
Theorem 3.4.1]).

Lemma 4.1. There is a twice continuously differentiable function

ν: [hi, he] → R such that T (u) = ν(H(u)),

for every u ∈ A.

Proof. Consider the reference curve δ∗(s), solution of (4.1). The function
h(s) = H(δ∗(s)) has positive derivative, hence it is invertible. Since h is C2, its
inverse is also C2, and, setting

ν(S) = T (δ∗(h−1(S))),

for all S = h(s), we have that ν(H(δ∗(s))) = T (δ∗(s)). Since both T and H are
constant along the solutions of (2.1), the proof is easily concluded. �
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We now consider the system

(4.2) Ju̇ =
T (u)
2π

∇H(u).

The period annulus A is isochronous for (4.2), with period 2π. Setting

K(u) =
1
2π

∫ H(u)

0

ν(s) ds,

we have that

∇K(u) =
1
2π

ν(H(u))∇H(u) =
T (u)
2π

∇H(u).

So, (4.2) is itself a Hamiltonian system, generated by K. Let us denote by VK
the vector field associated to the differential system (4.2), and by φK(t, u) the
flow defined by (4.2) on A. One has VK = T VH/2π.

For u ∈ A, let us denote by τ(u) ∈ [0, 2π[ the time for which φK(−τ(u), u) ∈
δ∗. The regularity of the map τ(u) comes from the following lemma.

Lemma 4.2. The function τ :A\ δ∗ → R is twice continuously differentiable.

Proof. In order to prove the regularity of τ at the point u0 ∈ A, let u∗

be the unique point of δ∗ such that φK(−τ(u0), u0) = u∗, or, equivalently,
φK(τ(u0), u∗) = u0. Since u∗ is a non-singular point of ∇H, there exists a neigh-
bourhood U∗ of u∗ such that U∗∩δ∗ is the graph of a C2 single-variable function
y = ζ(x) (or x = ζ(y); in this case the proof proceeds in a similar way). In other
words, U∗∩δ∗ is the zero-level set of the two-variables function Z(x, y) = ζ(x)−y,
whose gradient is ∇Z(x, y) = (ζ ′(x),−1) 6= (0, 0). Such a gradient is orthogonal
to δ∗, hence it is parallel to VH, and to VK = T VH/2π, at every point of U∗∩ δ∗.
Let us set U(u0) = φK(τ(u0), U∗). The map φK(τ(u0), · ) is a diffeomorphism,
hence U(u0) is a neighbourhood of u0. Let us consider the function Z(φK(t, u)),
defined on U(u0). Differentiating such a function with respect to t one has

∂

∂t
Z(φK(t, u)) = ∇Z(φK(t, u)) · ∂φK(t, u)

∂t
= ∇Z(φK(t, u)) · VK(φK(t, u)).

Such a scalar product does not vanish if φK(t, u) ∈ U∗ ∩ δ∗, since on U∗ ∩ δ∗ one
has ∇Z(u) 6= 0 and ∇Z(u) is parallel to VK(u). Hence, the partial derivative
of Z(φK(t, u)) with respect to t does not vanish at the point (−τ(u0), u0). By
the implicit function theorem, the relationship Z(φK(t, u)) = 0 defines locally, at
(−τ(u0), u0), a C2-function t(u). By construction, one has t(u) = −τ(u), which
gives the regularity of τ(u) at u0. �

Following [68], we define the function Λ : A → R2 as

Λ(u) =
(√

2K(u) cos(−τ(u)),
√

2K(u) sin(−τ(u))
)
.

Let us denote by ki, ke, the values of K(u) corresponding to the level sets H(u) =
hi, H(u) = he, respectively. The map Λ transforms each level set {u : K(u) = k}
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into the circle {v : |v|2 = 2k}. We denote by JΛ the Jacobian determinant of Λ.
For the sake of conciseness, we sometimes write c(u) for cos(τ(u)), and s(u) for
sin(τ(u)). Moreover, we set ri =

√
2ki and re =

√
2ke.

Lemma 4.3. The function Λ is an area-preserving diffeomorphism that takes
the set A onto the annulus B = {v ∈ R2 : ri ≤ |v| ≤ re}. The system (2.1) is
transformed by Λ into the system

(4.3) Jv̇ =
2π

T (Λ−1(v))
v.

Proof. The differentiability of the function Λ on A \ δ∗ follows from Lem-
ma 4.2. On the other hand, continuity (and differentiability) is preserved also
on δ∗, since the function τ behaves like an angle, so that the values 0 and 2π

can be identified there. The Jacobian matrix of Λ is

JΛ =


Kx√
2K

c−
√

2Ksτx
Ky√
2K

c−
√

2Ksτy

− Kx√
2K

s−
√

2Kcτx − Ky√
2K

s−
√

2Kcτy

 .

Hence, the Jacobian determinant of Λ is det JΛ = τxKy − τyKx.
Since Kxτy − τxKy is the derivative of τ(x, y) along the solutions of (4.2),

i.e. the derivative of the time of (4.2) with respect to itself, one has det JΛ = 1.
This shows that Λ is a local diffeomorphism.

Let us set v = Λ(u), with v = (w, z) ∈ R2. Then,

ẇ =
(
Kxc√
2K

−
√

2Ksτx

)
Ky −

(
Kyc√
2K

−
√

2Ksτy

)
Kx

= −
√

2Ks(τxKy − τyKx) = z,

and

ż = −
(
Kxs√
2K

+
√

2Kcτx

)
Ky +

(
Kys√
2K

+
√

2Kcτy

)
Kx

= −
√

2Kc(τxKy − τyKx) = −w.

Hence, Λ transforms (4.2) into

(4.4) Jv̇ = v.

Consequently, Λ transforms (2.1) into (4.3).
An orbit γ of (4.2) is taken into the circle of radius

√
2K(γ) centered at

the origin of the v-plane. Let us denote by θ = arg(v) the angle between by
the vector v = (w, z) and the positive w-semiaxis. A point of an orbit of (4.4)
is uniquely identified by the corresponding value of θ. Similarly, a point of an
orbit of (4.2) is uniquely identified by the corresponding value of τ(u) ∈ [0, 2π[.
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Since θ̇ = τ̇ = 1, we have that Λ is injective on every orbit, and the proof of the
lemma is thus completed. �

Since detΛ′(u) = 1 for every u ∈ A, the function Λ:A → B is symplectic
(cf. [36]), i.e.

(4.5) Λ′(u)T JΛ′(u) = J,

for every u ∈ A. (Here MT denotes the transposed of a matrix M.) Then,
using (4.5), one easily sees that the function Λ transforms the Hamiltonian sys-
tem (2.2) into

(4.6) Jv̇ = ∇L(t, v),

where L(t, v) = H(t,Λ−1(v)). (As usual, we denote by ∇L the gradient with
respect to the second variable.) Moreover, we can write equivalently (4.3) as

(4.7) Jv̇ = ∇L(v),

where L(v) = H(Λ−1(v)).
We now need to extend our Hamiltonian system (4.6) from B to the whole

plane R2. Let m, n be two positive integers verifying (2.3). Then, there is
a (mT/n)-periodic solution of (4.3), whose orbit lies in the interior of B. Its
orbit is indeed a circle, with radius r ∈ ]ri, re[ . Let δ > 0 be such that

2δ < min{r − ri, re − r},

and define the annuli

B′ = {v ∈ R2 : ri +δ ≤ |v| ≤ re−δ}, B′′ = {v ∈ R2 : ri +2δ ≤ |v| ≤ re−2δ}.

Let us denote by Ti,2δ and Te,2δ the periods of the circular orbits of (4.3) with
radius ri +2δ and re− 2δ, respectively. If δ is small enough, we can assume that

(4.8) Ti,2δ <
mT

n
< Te,2δ.

Consider now a C2-function χ: [0,+∞[ → [0,+∞[, such that

χ(r) =

{
1 if r ∈ [ri + δ, re − δ],

0 if r 6∈ [ri, re].

Let L̃: R× R2 → R be defined as

L̃(t, v) =

{
χ(|v|)L(t, v) if v ∈ B,

0 if v ∈ R2 \ B.
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This is a continuous function, T -periodic in its first variable, and twice continu-
ously differentiable in its second variable. We can then consider the Hamiltonian
system

(4.9) Jv̇ = ∇L̃(t, v),

which extends (4.6) to the whole plane R2. Notice that if v ∈ B′ then L̃(t, v) =
L(t, v). Moreover, all the points in R2 \ B are equilibria for (4.9).

Let P: R2 → R2 be the Poincaré map for the period T , associated to sys-
tem (4.9). It is well-known that this map is an area-preserving homeomorphism.
Notice that P(0) = 0. Let P0:B′′ → B′′ be the Poincaré map for the period T ,
associated to system (4.3) which, we recall, is also written as (4.7). By (4.8),
the twist condition is verified on B′′ by the map obtained as the composition
of the m-th iterate of P0, and a counter-clockwise rotation of angle 2πn. By
compactness and continuous dependence, there is a ε1 > 0 such that, if

(4.10) |∇L̃(t, v)−∇L(v)| < ε1, for every t ∈ [0, T ] and v ∈ B′′,

the same twist condition on B′′ is satisfied by the map obtained as the compo-
sition of the m-th iterate of P, and a counter-clockwise rotation of angle 2πn.

Hence, if (4.10) is satisfied, we can apply Theorem 1.1, and we get two
mT -periodic solutions v1(t), v2(t) of (4.9), with initial point in B′′, which make
exactly n rotations around the origin in the period time mT . Moreover, if ε1 is
small enough, all the solutions of (4.9) starting inside B′′ at the time t = 0 will
remain in B′ for all times t ∈ [0,mT ]. Therefore, vi(t) ∈ B′ for every t ∈ R, and
hence vi(t) is a mT -periodic solution of (4.6), for i = 1, 2.

Once ε1 > 0 has been found, there is a ε > 0 such that, if

|∇H(t, u)−∇H(u)| ≤ ε, for every t ∈ [0, T ] and u ∈ A,

then (4.10) holds, so that, by the above argument, there are two mT -periodic
solutions v1(t), v2(t) of (4.6) which lie in B′, and make exactly n rotations around
the origin in the period time mT . Setting ui(t) = Λ−1vi(t), for i = 1, 2, we have
found two mT -periodic solutions of (2.2), which lie in A, and make exactly n

rotations around the origin in the period time mT . The proof of Theorem 2.1 is
thus completed. �

5. Appendix: Proof of Proposition 2.4

For the reader’s convenience, we provide here a proof of Proposition 2.4. We
follow essentially the arguments in [50].

Assume that u0 is a nonconstant periodic solution of (2.1), with minimal
period T0. Let Ψ: R2 → R2 be the function defined by

Ψ(θ, r) = u0(θ) + rJu̇0(θ).
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Notice that Ψ(θ, r) is T0-periodic in its first variable. We denote by u(t; θ, r) the
solution of the Cauchy problem

(5.1)

{
Ju̇ = ∇H(u),

u(0) = Ψ(θ, r).

If |r| is small, such a solution is periodic in its first variable, with a minimal
period which will be denoted by T (θ, r). Notice that, since Ψ(θ, 0) = u0(θ), one
has that T (θ, 0) = T0.

By standard arguments (cf. [18]), it is possible to determine two functions
ϑ, ρ: R× R2 → R such that

u(t; θ, r) = Ψ(ϑ(t; θ, r), ρ(t; θ, r)).

These functions are continuously differentiable, at least as far as |r| is small.
Since u(0; θ, r) = Ψ(θ, r) and u(t; θ, 0) = u0(t + θ), we have that

ϑ(0; θ, r) = θ, ρ(0; θ, r) = r,(5.2)

ϑ(t; θ, 0) = t + θ, ρ(t; θ, 0) = 0.(5.3)

We can then see that

(5.4)
∂u

∂r
(t; θ, 0) =

∂ϑ

∂r
(t; θ, 0)u̇0(t + θ) +

∂ρ

∂r
(t; θ, 0)Ju̇0(t + θ).

Moreover, by the periodicity, if |r| is small enough,

ϑ(T (θ, r); θ, r) = θ + T0, ρ(T (θ, r); θ, r) = r;

so, since r 7→ ϑ(T (θ, r); θ, r) is constant, we have that

∂ϑ

∂t
(T (θ, r); θ, r)

∂T

∂r
(θ, r) +

∂ϑ

∂r
(T (θ, r); θ, r) = 0.

In particular, taking r = 0, and recalling (5.3),

(5.5)
∂T

∂r
(θ, 0) +

∂ϑ

∂r
(T0; θ, 0) = 0.

The following lemma immediately leads to the conclusion of the proof of Propo-
sition 2.4.

Lemma 5.1. The solution u0 of (2.1) is nondegenerate if and only if

(5.6)
∂T

∂r
(θ, 0) 6= 0, for every θ ∈ R.

Proof. First, assume that u0 is nondegenerate. By contradiction, recall-
ing (5.5), assume that there is a θ0 for which

(5.7)
∂ϑ

∂r
(T0; θ0, 0) = 0.
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Let us define
V (t) =

∂u

∂θ
(t; θ0, 0), W (t) =

∂u

∂r
(t; θ0, 0).

Notice that V (t) = u̇0(t + θ0), by (5.3). It is then easy to see that both these
functions V (t) and W (t) solve the linear differential equation

(5.8) Ju̇ = H′′(u0(t + θ0))u.

Since, recalling (5.2) and (5.3), the two vectors V (0) = u̇0(θ0) and W (0) =
Ju̇0(θ0) are orthogonal, these two solutions V (t) and W (t) are linearly indepen-
dent.

Since, V (t) = u̇0(t + θ0), we have that V (t) is T0-periodic, so that V (T0) =
V (0). On the other hand, by (5.4) and (5.7),

W (T0) =
∂ϑ

∂r
(T0; θ0, 0)u̇0(T0 + θ0) +

∂ρ

∂r
(T0; θ0, 0)Ju̇0(T0 + θ0)

=
∂ρ

∂r
(T0; θ0, 0)Ju̇0(θ0),

so that W (T0) = α0W (0), with α0 = ∂ρ
∂r (T0; θ0, 0). Let X(t) = (V (t),W (t))

be the 2 × 2 matrix whose columns coincide with V (t) and W (t). By Liouville
Theorem, the function t 7→ det X(t) is constant, hence detX(0) = detX(T0),
i.e.

det(u̇0(θ0), Ju̇0(θ0)) = det(u̇0(θ0), α0Ju̇0(θ0)).

We then have that α0 = 1, so that W (t) is T0-periodic, as well as V (t). Then,
all the solutions of (5.8) are T0-periodic. By a simple change of variable, we then
conclude that all the solutions of (2.4) are T0-periodic, in contradiction with the
assumption that u0 is nondegenerate.

Now, assume that (5.6) holds. Following the above construction for θ0 = 0,
we define V (t) = ∂u

∂θ (t; 0, 0) and W (t) = ∂u
∂r (t; 0, 0). Clearly, V (t) = u̇0(t) is T0-

periodic. On the other hand, since ∂ϑ
∂r (T0; 0, 0) 6= 0, we have that W (T0) 6= W (0),

so that W (t) is not T0-periodic. Therefore, the set of T0-periodic solutions
of (2.4) is only made of the multiples of V (t). Hence, u0 is nondegenerate, and
the lemma is thus proved. �

Remark 5.2. In the above proof, in order to define the local coordinates,
besides taking the position of the function u0(t), we have chosen to use the
direction of the normal vector to its orbit Ju̇0(t). An equivalent approach could
be made using the gradient lines of the Hamiltonian function, i.e. the orbits of
the gradient system (4.1).
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[19] F. Dalbono, C. Rebelo, Poincaré–Birkhoff fixed point theorem and periodic solutions
of asymptotically linear planar Hamiltonian systems, Turin Fortnight Lectures on Non-

linear Analysis (2001), Rend. Sem. Mat. Univ. Politec. Torino, vol. 60, 2002, pp. 233–263.
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[43] A.R. Hausrath and R.F. Manásevich, Periodic solutions of a periodically perturbed
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