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POINCARÉ–HOPF TYPE FORMULAS
ON CONVEX SETS OF BANACH SPACES

Thomas Bartsch — Norman Dancer

Abstract. We consider locally Lipschitz and completely continuous maps

A: C → C defined on a closed convex subset C ⊂ X of a Banach space X.
The main interest lies in the case when C has empty interior. We establish

Poincaré–Hopf type formulas relating fixed point index information about A

with homology Conley index information about the semiflow on C induced
by − id + A. If A is a gradient we also obtain results on the critical groups

of isolated fixed points of A in C.

1. Introduction

Let X be a Banach space, C ⊂ X a closed and convex subset. It is allowed
that C has empty interior as is the case for order intervals in Sobolev spaces,
for instance. We consider completely continuous maps A:C → C which are
locally Lipschitz continuous. Then the vector field −id + A induces a semiflow
ϕ:D(ϕ) ⊂ [0,∞) × C → C on C, see Section 2. For such kind of flow Conley
index theory as developed in [12] applies. The goal of this paper is to relate
homology Conley index information about ϕ with fixed point index information
about A in the spirit of the Poincaré–Hopf formula. In applications, C has empty
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interior so the classical Poincaré–Hopf formula on manifolds with boundary and
the generalizations we are aware of do not apply. If dimX < ∞ and intC 6= ∅
then our results can be deduced from [13]. In that situation we present however
a new and rather simple proof of the Poincaré–Hopf formula. Our results are
applicable to a variety of problems and save calculations in each individual case.

We use the following standard notation. Given a set N ⊂ C its invariant set
is defined by

inv(N) = inv(N,ϕ) := {x ∈ N : ϕ(t, x) ∈ N for all t ∈ R}.

Here we write ϕ(t, x) for t < 0, x ∈ C, if there exists y ∈ C with ϕ(−t, y) = x.
There exists at most one such y, so we may set ϕ(t, x) := y if it exists. Thus
inv(N) consists of all x ∈ N such that ϕ(t, x) exists for all t ∈ R and lies in N .
N is said to be an isolating neighbourhood of inv(N) if N is closed and bounded
and inv(N) ⊂ int (N). Here and in the sequel all topological notions refer to the
topology of C induced from X, in particular int (N) = int C(N). A set S ⊂ C

is then said to be isolated invariant if an isolating neighbourhood N exists with
S = inv(N). In that case S is compact and one can define the Conley index
CC(N,ϕ) = CC(S, ϕ); see Section 2. Moreover, since A cannot have any fixed
points on ∂N , its fixed point index indC(A,N) ∈ Z is defined. We refer to [1],
[6], [9] for its definition and properties.

For our first result letH∗ denote singular homology with coefficients in a com-
mutative ring R, e.g. Z or a field. For a pair (X,Y ) of topological spaces such
that H∗(X,Y ) is finitely generated,

χ(X,Y ) =
∞∑

i=0

(−1)irankHi(X,Y )

denotes its Euler characteristic.

Theorem 1.1. Given an isolating neighbourhood N ⊂ C then its Conley
index CC(N,ϕ) has the homotopy type of a finite pointed CW-complex, hence
the homology Conley index H∗(CC(N,ϕ)) is finitely generated. There holds the
Poincaré–Hopf formula: indC(A,N) = χ(CC(N,ϕ)).

We now specialize to the case where X is a Hilbert space and A = ∇g
is the gradient of a C1-function g:D → R defined on an open neighbourhood
D ⊂ X of C. Then −id + A is the negative gradient of the functional f(x) =
‖x‖2/2− g(x).

We say that a ∈ R is a regular value of f in C if f does not have any critical
points in C ∩ f−1(a), i.e. A does not have any fixed points in C ∩ f−1(a). In
this setting we use some standard notation. For a ∈ R we set fa := {x ∈ D :
f(x) ≤ a} and for a < b we set f b

a := {x ∈ D : a ≤ f(x) ≤ b}. f is said to satisfy
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the Palais–Smale condition (PS)c in a set M ⊂ D if every sequence (xn)n in M
with f(xn) → c and f ′(xn) → 0 has a convergent subsequence.

Theorem 1.2. Let a < b be regular values of f in C such that f satisfies
(PS)c in C ∩ f b

a for c ∈ [a, b]. Then

indC(A, f b
a ∩ C) = χ(f b ∩ C, fa ∩ C).

Observe that indC(A, f b
a∩C) ∈ Z is well defined because FixA∩f b

a is compact
as a consequence of the Palais–Smale condition in f b

a ∩ C, and

FixA ∩ f b
a ⊂ int (f b

a ∩ C).

Next we state a result relating the local fixed point index of an isolated fixed
point x0 ∈ C of A and its critical groups H∗(fc ∩ C, f c ∩ C \ {x0}) as a critical
point of f in C; here c = f(x0).

Theorem 1.3. If x0 ∈ C is an isolated fixed point of A in C and c = f(x0)
then

H∗(CC({x0}, ϕ)) ∼= H∗(fc ∩ C, fc ∩ C \ {x0})
and therefore

indC(A, x0) = χ(CC({x0}, ϕ)) = χ(fc ∩ C, fc ∩ C \ {x0}).

As a corollary of Theorem 1.3 we obtain that the critical groups H∗(fc ∩
C, fc ∩ C \ {x0}) are homotopy invariant.

Corollary 1.4. Let gλ:D → R, 0 ≤ λ ≤ 1, be a continuous family of C1-
functions, such that Aλ := ∇gλ induces a continuous family of locally Lipschitz
and completely continuous maps Aλ:C → C. Set fλ(x) = ‖x‖2/2 − gλ(x). If
Aλ has a continuous family of fixed points xλ ∈ C, λ ∈ [0, 1], which are isolated
in C then the critical groups H∗(fcλ

λ ∩ C, f cλ

λ ∩ C \ {xλ}), cλ := fλ(xλ), are
independent of λ ∈ [0, 1].

In our last result we compute the critical groups in Theorem 1.3 of an isolated
fixed point of A in C provided a nondegeneracy condition holds. We first need
to recall some concepts from [3], [5], [7]. The tangent wedge of a point x ∈ C is
defined by

Wx :=
⋃
t>0

t · (C − x) = {y ∈ X : x+ εy ∈ C for some ε > 0}.

Clearly Wx is a wedge, i.e. ty ∈Wx for every y ∈Wx and t > 0.
The tangent space

Tx := W x ∩ (−W x)

is a closed linear subspace of X. If A is differentiable at x with derivative
L = DA(x):X → X then L(Wx) ⊂Wx and L(Tx) ⊂ Tx.
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A fixed point x ∈ C of A is said to be a nondegenerate fixed point of A in C

if A is differentiable at x and Ly 6= y for all y ∈W x \ {0}.
We say that L repels y ∈W x \ Tx if there exists t > 1 with Ly − ty ∈ Tx.

Theorem 1.5. Let x0 ∈ C be a nondegenerate fixed point of A in C, c =
f(x0), m the sum of the multiplicities of the eigenvalues in (1,∞) of L = DA(x0)
restricted to Tx0 . Then

Hk(fc ∩ C, fc ∩ C \ {x0})

∼=

{
0 if L repels at least one point in W x0 \ Tx0 ,

δkmR else.

Remark 1.6. (a) An important special case is when W x0 = Tx0 = X. Then
Theorem 1.5 says that the critical groups of f in C are isomorphic to the full
critical groups of f in X:

Hk(fc ∩ C, f c ∩ C \ {x0}) ∼= Hk(fc, f c \ {x0}).

This happens for instance if X = H1
0 (Ω), C = {x ∈ X : x ≥ 0 a.e.}, and x0 > 0

in Ω. Observe that intC = ∅.
(b) Theorem 1.5 can frequently be used to compute critical groups even if

x0 is a degenerate fixed point of A in C by looking at perturbations and using
homotopy invariance.

We conclude this section by mentioning one application where Theorem 1.5
simplifies arguments and leads to a conceptually more satisfying proof.

Remark 1.7. In [2] we were interested in positive solutions u, v > 0 of the
system

(1.1)

{
−∆u+ u = µ1u

3 + βv2u in Ω,

−∆v + v = µ2v
3 + βu2v in Ω,

of nonlinear Schrödinger (or Gross–Pitaevskĭı) type equations on a bounded (or
radially symmetric unbounded) domain Ω ⊂ RN , N ≤ 3. Here µ1, µ2 > 0
are fixed and β is taken as bifurcation parameter. For each positive solution
w ∈ H1

0 (Ω) of the equation −∆w + w = w3 there exists a trivial branch

Tw = {(β, uβ , vβ) : −√µ1µ2 < β < min{µ1, µ2}}

of positive solutions of (1.1). Theorem 2.1 in [2] states the existence of a sequence
of bifurcation points (βk, uβk

, vβk
) on Tw for positive solutions of (1.1). Solutions

of (1.1) are obtained as critical points of an associated functional

Jβ : X = H1
0 (Ω)×H1

0 (Ω) → R.
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In the proof we showed that the critical groups Hk(Jc
β , J

c
β \ {(uβ , vβ)}) of

the trivial solutions in Tw change infinitely often along the trivial branch at
parameter values βk. The homotopy invariance of the critical groups of isolated
critical points (see [8, Theorem 8.8], for instance) implies the bifurcation of
critical points of Jβ near (βk, uβk

, vβk
). In order to show that these bifurcating

critical points are actually positive solutions we considered a modified functional
J+

β whose critical points are positive solutions of (1.1). Since J+
β is only of class

C2−0 the computation of the critical groups Hk((J+
β )c, (J+

β )c \ {(uβ , vβ)}) ∼=
Hk(Jc

β , J
c
β \ {(uβ , vβ)}) required an ad-hoc argument based on some nontrivial

results.
Using Theorem 1.5 one can instead directly compute the critical groups

Hk(Jc
β ∩C, Jc

β ∩C \{(uβ , vβ)}) of Jβ in the cone C = {(u, v) ∈ X : u, v ≥ 0 a.e.}.
Since these change infinitely often (at βk) Corollary 1.4 yields the existence of
the bifurcation points with bifurcation into the cone.

Theorem 1.5 can also be applied to compute the critical groups of Jβ in C

at isolated “semitrivial” solutions (u, 0) or (0, v) of (1.1). This can be used to
prove bifurcation of positive solutions from the set of semitrivial solutions. One
can then deduce information on the critical groups of the bifurcating solutions
except when the bifurcation is vertical. See [3] where the fixed point index in C
has been applied.

2. Some Conley index theory

As in the introduction X is a Banach space, C ⊂ X a closed convex subset,
and A:C → C is locally Lipschitz and completely continuous. The vector field
−id +A then induces a semiflow

ϕ:D(ϕ) = {(t, x) ∈ [0,∞)× C : 0 ≤ t < T (x)} → C.

To see this one rewrites the initial value problem

(2.1)

{
ẋ = −x+A(x),

x(0) = x0,

as integral equation using the variation-of-constant formula

(2.2) x(t) = e−tx0 +
∫ t

0

es−tA(x(s)) ds.

Observe that given a continuous function x: [0, T ] → C then∫ t

0

es−tA(x(s)) ds ∈ (1− e−t)C for t ∈ [0, T ]
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because
∫ t

0
es−t ds = 1− e−t. Therefore

e−tx0 +
∫ t

0

es−tA(x(s)) ds ∈ C for t ∈ [0, T ],

so that one can apply a standard iteration method to construct ϕ(t, x0) as unique
solution of (2.1). In general the solution of (2.1) cannot be extended to t < 0.
However, if for some x0 ∈ C and some t < 0 there exists y0 ∈ C with ϕ(−t, y0) =
x0 then this y0 is uniquely determined and we define ϕ(t, x0) := y0. In fact,
suppose x, y: [−δ, δ] → C are solutions of (2.1). Then (2.2) holds for t ∈ [−δ, δ],
and also with y instead of x. This implies for t ∈ [−δ, δ]:

‖x(t)− y(t)‖ =
∥∥∥∥∫ t

0

es−t(A(x(s))−A(y(s))) ds
∥∥∥∥

≤ |t|e|t|Kmax{‖x(s)− y(s)‖ : |s| ≤ t}

where K is a Lipschitz constant for A. We deduce x(t) = y(t) for all t with
|t|e|t|K < 1.

For the semiflow ϕ we recall a few basic concepts from Conley index theory
on metric spaces (which are not necessarily locally compact) due to Rybakowski
[12]. A closed subset N ⊂ C is said to be strongly admissible, if the following
two conditions hold:

(A1) if x ∈ N is such that ϕ(t, x) ∈ N for all 0 ≤ t < T (x) then T (x) = ∞;
(A2) given sequences xn ∈ N , tn → ∞, such that ϕ([0, tn], xn) ⊂ N for all

n ∈ N, then ϕ(tn, xn), n ∈ N, has a convergent subsequence.

In our situation we have the following simple result concerning admissibility.

Lemma 2.1. Every bounded set is strongly admissible.

Proof. Let N ⊂ C be bounded and recall the variation-of-constant formula:

ϕ(t, x) = e−tx+
∫ t

0

es−tA(ϕ(s, x)) ds.

Given x ∈ N with ϕ(t, x) ∈ N for all 0 ≤ t < T (x), there holds:∫ t

0

es−tA(ϕ(s, x)) ds ∈ clos conv(A(N) ∪ {0}) =: M for every 0 ≤ t < T+(x).

M is compact because N is bounded and A is completely continuous. Conse-
quently T+(x) = ∞, and (A1) follows.

Similarly, if xn ∈ N , tn →∞, are as in (A2) then e−tnxn → 0, and ϕ(tn, xn)−
e−tnxn ∈M has a convergent subsequence. Therefore ϕ(tn, xn) has a convergent
subsequence, and (A2) follows. �

Given a strongly admissible isolating neighbourhood N ⊂ C there exist
(quasi-)index pairs (N1, N2) in N , and the pointed homotopy type of the quo-
tient space N1/N2 is independent of the choice of the (quasi-)index pair. This
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homotopy type is the Conley index of N which we denote by C(N,ϕ); see [12,
Chapter 1] for details.

We need the following weak version of the continuation invariance. It is
a consequence of the more general continuation invariance [12, Chapter 1, The-
orem 12.2].

Theorem 2.2. Let Aλ:C → C, 0 ≤ λ ≤ 1, be a continuous family of locally
Lipschitz and completely continuous maps. Let ϕλ be the associated family of
semiflows on C satisfying

d

dt
ϕλ(t, x) = Aλ(ϕ(t, x)).

Suppose N ⊂ C is an isolating neighbourhood for every ϕλ. Then the Conley
indices C(N,ϕλ) are independent of λ ∈ [0, 1].

In the proof of Theorem 1.5 we also need the following reduction property of
the homology Conley index.

Theorem 2.3. Let C0 ⊂ C be closed convex, and suppose A(C) ⊂ C0, so C0

is positively invariant under ϕ and there is an induced semiflow ϕ|C0 . If N ⊂ C

is an isolating neighbourhood for ϕ then N ∩C0 is an isolating neighbourhood for
ϕ|C0 and the homology Conley indices H∗(CC(N,ϕ)) and H∗(CC0(N ∩C0, ϕ|C0))
are isomorphic.

One might expect that not only the homology Conley indices are isomorphic
but that even the Conley indices are the same: CC(N,ϕ) = CC0(N ∩ C0, ϕ|C0).
This does not seem to be easy to prove, though.

Proof. Consider x ∈ C such that ϕ(t, x) exists for all t < 0 and remains
bounded. For t < 0 the variation-of-constant formula yields

x− etϕ(t, x) =
∫ 0

t

esA(ϕ(s, x)) ds ∈ (1− et)C0

because A(C) ⊂ C0 and
∫ 0

t
es ds = 1 − et. Letting t → −∞ we deduce that

x ∈ C0. It follows that

(2.3) Nu := {x ∈ N : ϕ(t, x) ∈ N for all t < 0} ⊂ C0,

that inv(N,ϕ) = inv(N∩C0, ϕ|C0), and thatN∩C0 is an isolating neighbourhood
for ϕ|C0 . Given an index pair (N1, N2) for ϕ in N , [11, Theorem 4.6] implies
that the inclusion

(N1 ∩Nu, N2 ∩Nu) ↪→ (N1, N2)

induces an isomorphism in Alexander–Spanier cohomology:

H∗(N1/N2, {N2}) ∼= H∗(N1, N2) ∼= H∗(N1 ∩Nu, N2 ∩Nu).
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One easily checks that (N1 ∩ C0, N2 ∩ C0) is an index pair for ϕ|C0 in N ∩ C0.
Hence, using (2.3) and [11, Theorem 4.6] once more we also have an isomorphism

H∗(N1∩C0/N2∩C0, {N2∩C0}) ∼= H∗(N1∩C0, N2∩C0) ∼= H∗(N1∩Nu, N2∩Nu).

It follows that the Conley indices CC(N,ϕ) and CC0(N ∩C0, ϕ|C0) have isomor-
phic Alexander–Spanier cohomology groups with arbitrary coefficients. Then
also the (co-)homology groups are isomorphic because the Conley indices have
the homotopy type of finite CW-complexes by Theorem 1.1. (The proof of The-
orem 1.1 in the next section does not require Theorem 2.3.) �

3. Proof of Theorem 1.1

The closure A(N) is compact because N is bounded and A is completely
continuous. Hence, for fixed ε > 0 there exist points x1, . . . , xn ∈ C such that
closA(N) ⊂

⋃n
i=1 Uε(xi). We consider the partition of unity subordinated to

this covering given by

πi: closA(N) → [0, 1], πi(x) :=
dist(x,N \ Uε(xi))∑n

j=1 dist(x,N \ Uε(xj))
.

Now we define

Y :=
{ n∑

i=1

αixi : αi ∈ R,
n∑

i=1

αi = 1
}

and approximate A by the finite-dimensional map

Aε : C → C ∩ Y, Aε(x) :=
n∑

i=1

πi(A(x))xi.

We may assume that 0 ∈ C and x1 = 0, so that Y is a finite-dimensional linear
subspace of X. Observe that int Y (C ∩Y ) 6= ∅. Clearly we have ‖Aε−A‖∞ ≤ ε.
Since the maps π1, . . . , πn, hence Aε, are locally Lipschitz continuous the vector
field −id + λAε + (1 − λ)A, with λ ∈ [0, 1], induces a semiflow ϕε,λ on C. For
0 < ε� 1, N is an isolating neighbourhood for ϕε,λ for every λ ∈ [0, 1]. We fix
such an ε from now on. The continuation property of the Conley index yields

CC(N,ϕ) = CC(N,ϕε,0) = CC(N,ϕε,1).

We choose y0 ∈ int Y (C ∩ Y ) and define

Bδ(x) := (1− δ)Aε(x) + δy0.

Let ψδ be the semiflow on C induced by −id +Bδ. As before, for 0 < δ � 1, N
is an isolating neighbourhood for ψδ, hence

CC(N,ϕε,1) = CC(N,ψ0) = CC(N,ψδ).
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We fix such a δ now and set ψ = ψδ. We claim that

(3.1) CC(N,ψ) = CY (N ∩ Y, ψ).

In order to see (3.1) we first observe that inv(N ∩ Y, ψ) ⊂ int Y (C ∩ Y ) because
Bδ(C) ⊂ int Y (C ∩ Y ) by our choice of y0. In fact, C ∩ Y is strongly positive
invariant for ψδ, i.e. ψδ(t, x) ∈ int Y (C ∩ Y ) for every y ∈ C, t > 0. It follows
that ψ induces a flow in the open subset int Y (C ∩ Y ) of the finite-dimensional
space Y . According to [14, Theorem 2.4] there exists a C∞ isolating block with
corners (M,M−) for the isolated invariant set

S := inv(N ∩ Y, ψ) ⊂M ⊂ N ∩ Y.

This means that M ⊂ N ∩ Y is a compact isolating neighbourhood of S with
exit set M−, ∂M = M− ∪M+ is a union of C∞-manifolds M± with boundaries
∂M− = ∂M+ = M− ∩M+, so M is a ∂-manifold with corners. This implies
that the Conley index CY (N ∩Y, ψ) = M/M− has the homotopy type of a finite
pointed CW-complex and that

H∗(C(N,ϕ)) ∼= H∗(M/M−, {M−}) ∼= H∗(M,M−)

is finitely generated. Moreover, ψ is transverse toM±\(M−∩M+), i.e. at a point
y ∈M± \ (M− ∩M+) the vector −y+Bδ(y) is transverse to M± \ (M− ∩M+).
It follows that for such y there exists ρy > 0 so that the vector −y + Bδ(x) is
transverse to M± \ (M− ∩M+) at y for every x ∈ C with ‖x− y‖ ≤ ρy.

We choose a closed complement Z of Y in X, and write the elements of
X ∼= Y ×Z as x = (y, z) ∈ Y ×Z. Using the compactness of ∂M it follows that
there exists ρ > 0 such that for y = (y, 0) ∈ M± \ (M− ∩M+) and ‖z‖ ≤ ρ,
the vector −(y, z) + (Bδ(y, z), 0) is transverse to (M± \ (M− ∩M+))×Nρ(0, Z)
at (y, z); here Nρ(0, Z) = {z ∈ Z : ‖z‖ ≤ ρ}. Consequently, ((M ×Nρ(0, Z)) ∩
C, (M− ×Nρ(0, Z)) ∩ C) is an isolating block for the invariant set inv(N,ψ) of
the semiflow ψ in C. Now (3.1) follows because

CC(N,ψ) = ((M ×Nρ(0, Z)) ∩ C)/((M− ×Nρ(0, Z)) ∩ C)

'M/M− = CY (N ∩ Y, ψ).

Now we make the same reduction process for the fixed point index. The homo-
topy invariance and the commutativity property of the fixed point index imply

indC(A,N) = indC(Aε, N) = indC(Bδ, N)(3.2)

= indC∩Y (Bδ, N ∩ Y ) = indY (Bδ, N ∩ Y ).

Here we use the same choices of ε and δ as above. In fact, it suffices that
ε < dist(S,C \N). By (3.1) and (3.2) it remains to prove

(3.3) indY (Bδ, N ∩ Y ) = χ(CY (N ∩ Y, ψ)).
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This is the Poincaré–Hopf formula in the finite-dimensional setting essentially
going back to Morse [10]. A version which applies here can be found in [12,
Chapter 3, Theorem 3.8].

In our setting the Poincaré–Hopf formula (3.3) is actually very easy to prove.
Since this formula is the core of our paper and since the following proof seems
to be new we present it here. Recall the isolating block with corners (M,M−)
from above. The homotopy

h: [0, 1]× (N ∩ Y ) → Y, h(t, x) :=

{
Bδ(x) if t = 0,
1
t
(−ψ(t, x)− x) + x if t > 0,

is continuous and there exists t0 > 0 such that

h(t, x) = x, 0 ≤ t ≤ t0 ⇒ x ∈ S ⊂ intM.

It follows that

(3.4) ind(Bδ, N ∩ Y ) = ind(Bδ,M) = ind(h(0, · ),M) = ind(h(t0, · ),M).

Next the homotopy

[0, 1]× (N ∩ Y ) → Y, (s, x) 7→
(

1− s

t0
+ s

)
(ψ(t0, x)− x) + x

shows that ind(h(t0, · ),M) = ind(ψ(t0, · ),M).
Now consider the map τ :M → [0,∞) defined by

τ(x) := min{t0, sup{t ≥ 0 : ψ(s, x) ∈M \M− for all s ∈ [0, t]}}

which is continuous because (M,M−) is an isolating block. If x ∈ M− then
τ(x) = sup ∅ = 0. Consequently the map f :M → M , f(x) := ψ(τ(x), x) is
well defined and continuous. Clearly Fix(f) = Fix(ψt0) ∪ M− and there are
disjoint closed neighbourhoods V , W of Fix(ψt0) and M−, respectively, such
that f(x) = ψ(t0, x) = ψt0(x) for x ∈ V , and f(x) ∈ M− for x ∈ W . It follows
that

χ(M) = ind(id,M) = ind(f,M) = ind(f, V ) + ind(f,W )(3.5)

= ind(ψt0 , V ) + ind(f,W ) = ind(ψt0 , V ) + ind(f,M−)

= ind(ψt0 , V ) + ind(id,M−) = ind(ψt0 , V ) + χ(M−)

= ind(ψt0 ,M) + χ(M−).

Here the first and the second to last equalities are consequences of the Lefschetz
index formula, which applies because M and M− are compact ENR’s. The
second holds because f is homotopic to the identity using the homotopy

H: [0, 1]×M →M, H(t, x) = ψ(tτ(x), x).
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The third equality is a consequence of the additivity property of the fixed point
index, the fourth is obvious by our choice of V . The fifth follows from the
commutativity property of the fixed point index because f retracts W onto M−,
the sixth is trivial because f is the identity on M−, and finally, the last one uses
the excision property of the fixed point index. The Poincaré–Hopf formula (3.3)
follows from (3.4) and (3.5) immediately:

indY (Bδ, N ∩ Y ) = ind(ψt0 ,M) = χ(M)− χ(M−)

= χ(M,M−) = χ(M/M−, [M−]) = χ(CY (N ∩ Y, ψ)).

Here the fourth equality holds because the inclusion M− ⊂ M is a cofibration
(M− is a deformation retract of a neighbourhood in M).

4. Proof of Theorems 1.2, 1.3 and Corollary 1.4

Proof of Theorem 1.2. We set F := Fix(A) ∩ f b
a ∩ C ⊂ int (f b

a ∩ C) and
S := inv(ϕ, f b

a ∩ C). The proof consists of several steps.

Step 1. S is bounded.
Suppose to the contrary that there exist xn ∈ S, n ∈ N, with ‖xn‖ → ∞.

Then we define

tn := inf{t ≥ 0 : dist(ϕ(s, xn), F ) ≥ 1 for all s ∈ [0, t]}.

Clearly tn <∞ if dist(xn, F ) > 1 because dist(ϕ(s, xn), F ) → 0 as t→∞. Since
f satisfies the Palais–Smale condition in C ∩ f b

a we have

δ := inf{‖∇f(x)‖ : x ∈ C ∩ f b
a, dist(x, F ) ≥ 1} > 0.

We obtain a contradiction as follows:

b− a ≥ f(xn)− f(ϕ(tn, xn)) = −
∫ tn

0

d

dt
f(ϕ(t, xn)) dt

=
∫ tn

0

‖∇f(ϕ(t, xn))‖2 dt ≥ δ

∫ tn

0

‖∇f(ϕ(t, xn))‖ dt

= δ

∫ tn

0

∥∥∥∥ ddtϕ(t, xn)
∥∥∥∥ dt ≥ δ‖xn − ϕ(tn, xn)‖

≥ δ(‖xn‖ − ‖ϕ(tn, xn)‖) ≥ δ(‖xn‖ − 1− sup{‖x‖ : x ∈ F}) →∞.

Step 2. S is compact.
Since S is closed it suffices to prove that S is precompact. This follows from

the fact that S = ϕt(S) for t ≥ 0 and the variation-of-constant formula:

ϕt(x) = e−tx+
∫ t

0

es−tA(ϕs(x)) ds.
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The first summand e−tx ∈ e−tS lies in an arbitrarily small ball for t → ∞
because S is bounded. Concerning the second summand, A(ϕs(x)) ∈ A(S) for
x ∈ S, s ≥ 0, and A(S) is precompact. Then M := {λy : y ∈ A(S), 0 ≤ λ ≤ 1}
is precompact and

∫ t

0
es−tA(ϕs(x)) ds ∈ t · convM where convM denotes the

closed convex hull of M , which is compact. Thus the integral lies in a compact
set and Step 2 follows easily.

Now we choose a closed bounded neighbourhood U ⊂ {x ∈ C : a < f(x) < b}
of S and set

N := {ϕt(x) : x ∈ U, t ≥ 0, f(ϕt(x)) ≥ a}, N− := N ∩ f−1(a).

Step 3. (N,N−) is an index pair for S and

indC(A,C ∩ f b
a) = χ(N/N−, [N−]) = χ(CC(S, ϕ)).

That N is bounded can be proved in the same way as the boundedness
of S in Step 1. The Palais–Smale condition implies that N is closed. Clearly
S ⊂ int (N \N−). That N− is an exit set is also obvious.

We fix some T > 0 and define

τ = τT : C ∩ f b → [0,∞), τ(x) = min{T, sup{t ≥ 0 : f(ϕt(x)) ≥ a}},

where τ(x) := T if f(ϕt(x)) > a for all t ≥ 0. We also consider the deformation

(4.1) h = hT : [0, 1]× (C ∩ f b) → C ∩ f b, h(t, x) := ϕ(tτ(x), x).

Step 4. τ , h are continuous and h(1, C ∩ f b) ⊂ int (N)∪ (C ∩ fa) for T large.
The continuity of τ , hence of h, is easy to prove. In order to see the in-

clusion suppose to the contrary that there exists Tn → ∞ and xn ∈ C ∩ f b

with ϕ(Tn, xn) /∈ int (N) ∪ fa. Since int (N) ∪ fa is positive invariant by the
construction of N , it follows that ϕ(t, xn) /∈ int (N) ∪ fa for 0 ≤ t ≤ Tn, hence,

‖∇f(ϕ(t, xn))‖ ≥ δ := inf{‖∇f(x)‖ : x ∈ C ∩ f b
a \ int (N)} > 0

for every t ∈ [0, Tn]. This yields the contradiction

b− a ≥ f(x)− f(ϕ(Tn, xn)) =
∫ Tn

0

‖∇f(ϕ(t, xn))‖2 dt ≥ Tnδ
2 →∞.

Step 5. χ(CC(S, ϕ)) = χ(C ∩ f b, C ∩ fa).
Choose T as in Step 4 and consider h = hT as in (4.1). Then we have:

χ(C ∩ f b, C ∩ fa) = χ(h(1, C ∩ f b), C ∩ fa)

= χ(h(1, C ∩ f b) ∩N,C ∩ fa ∩N) = χ(CC(S, ϕ)).

The first equality is clear because the two pairs of topological spaces are homo-
topy equivalent. The second equality is a consequence of the excision property
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of homology. The pair (h(1, C ∩ f b) ∩N,C ∩ fa ∩N) is a regular index pair for
S which implies the third equality.

Theorem 1.2 is a consequence of Steps 3 and 5. �

Proof of Theorem 1.3. Let W± := {x ∈ C : ϕt(x) → x0 as t→ ±∞} be
the positive (negative) invariant set of x0 with respect to ϕ. For ε > 0 we define

Nε := {ϕ(t, x) : x ∈ C ∩ fc+ε, dist(x,W+) ≤ ε, t ≥ 0, f(ϕ(t, x)) ≥ c− ε}
∪ {x ∈W− : f(x) ≥ c− ε}.

and N−
ε := Nε ∩ f−1(c− ε).

It is easy to check that (Nε, N
−
ε ) is an index pair for S = {x0} in C provided

0 < ε � 1. Since ∇f = id − A and A is completely continuous, f satisfies the
Palais–Smale condition in bounded sets, in particular in Nε. It follows easily
that N−

ε is a deformation retract of Nε ∩ fc \ {x0}. Therefore N−
ε ⊂ Nε is

a cofibration and

(4.2) H∗(CC({x0}, ϕ)) ∼= H∗(CC(Nε, ϕ)) ∼= H∗(Nε, N
−
ε ).

The excision property of homology yields

(4.3) H∗(C ∩ fc, C ∩ fc \ {x0}) ∼= H∗(Nε ∩ fc, Nε ∩ fc \ {x0}).

Again by the Palais–Smale condition the map

τ :Nε \W+ → [0,∞), τ(x) := sup{t ≥ 0 : f(ϕ(t, x)) < c},

is well defined and continuous, and it satisfies τ(x) → ∞ as dist(x,W+) → 0.
Therefore the map h: [0, 1]×Nε → Nε,

h(t, x) :=


ϕ(t/(1− t), x) if x ∈W+, t < 1,

x0 if x ∈W+, t = 1,

ϕ(tτ(x)/((1− t)τ(x) + 1), x) if x ∈ Nε \W+,

is well definied and continuous. h shows that Nε ∩ fc is a deformation retract of
Nε, hence

(4.4) H∗(Nε ∩ fc, Nε ∩ fc \ {x0}) ∼= H∗(Nε, Nε ∩ fc \ {x0}).

Since N−
ε is a deformation retract of Nε ∩ fc \ {x0}, we have

(4.5) H∗(Nε, Nε ∩ fc \ {x0}) ∼= H∗(Nε, N
−
ε ).

Theorem 1.3 follows from (4.2)–(4.5). �

Proof of Corollary 1.4. This follows immediately from Theorem 1.3
and the homotopy invariance of the Conley index as stated in Theorem 2.2. �
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Proof of Theorem 1.5

The proof owes a lot to the proof of [7, Theorem 1]. We may assume without
loss of generality that x0 = 0 and f(x0) = 0. We consider first the case where L
repels a point y ∈ W 0 \ T0. In that case, by [7, Lemma 1] there exists y0 ∈ C

such that x − Lx 6= y0 for all x ∈ W 0. This implies in particular y0 6= 0. Now
we define

ft(x) :=
1
2
‖x‖2 − (1− t)g(x)− t〈y0, x〉.

Since ∇ft(x) = x − ((1 − t)A(x) + ty0) and (1 − t)A(x) + ty0 ∈ C for x ∈ C,
0 ≤ t ≤ 1, it follows that C is positively invariant with respect to the negative
gradient flow of ft for 0 ≤ t ≤ 1. The proof of [7, Theorem 1(a)] shows that 0 is
an isolated critical point of ft for 0 ≤ t ≤ 1. Moreover, ∇f1(x) = x− y0 6= 0 for
x close to 0. Consequently,

C∗(f |C , 0) ∼= C∗(f1|C , 0) ∼= 0.

It remains to consider the case where L does not repel a point in W 0\T0. Let
E0 ⊂ X be the finite-dimensional eigenspace of L associated to σ(L) ∩ (1,∞),
so that m = dim(E0 ∩ T0).

Let P :X → E0 ∩ T0 denote the orthogonal projection and set

L0 := P ◦ L:X → E0 ∩ T0.

According to [7, Lemma 2] there exist ε0, δ > 0 such that

(5.1) ‖x− (1− λ)A(x)− λL0(x)‖ ≥ δ‖x‖

for all λ ∈ [0, 1], x ∈ C, 0 < ‖x‖ ≤ ε0. It is here that the condition “L does not
repel a point in W 0 \ T0” enters. Since the set

M := {L0x : x ∈W 0, ‖x‖ = 1} ⊂ E0 ∩ T0 ⊂W 0

is precompact as a bounded subset of the finite-dimensional space E0 ∩ T0 there
exist y1, . . . , yj ∈W0 =

⋃
t>0 tC such that M ⊂

⋃j
i=1 Uδ/3(yi). Setting µi(y) :=

max{0, δ/3− ‖y − yi‖} we consider the finite-dimensional map

Qδ:M → conv{y1, . . . , yj}, Qδ(y) :=
1∑j

i=1 µi(y)

j∑
i=1

µi(y)yi.

This is a δ/3-approximation of the identity on M :

‖Qδ(y)− y‖ ≤ 1∑j
i=1 µi(y)

j∑
i=1

µi(y)‖yi − y‖ ≤ δ

3
for all y ∈M .

We choose ti > 0 and xi ∈ C with yi = tixi. Observe that for s ≤ 1/ti we have
syi = stixi + (1− sti) · 0 ∈ C. Therefore, setting s0 := min{1/ti : i = 1, . . . , j}
we have sQδ(y) ∈ C for all y ∈M , 0 ≤ s ≤ s0.
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Now we we define Aδ:W 0 → C by

Aδ(x) :=


0 if x = 0,

‖x‖Qδ(L0(x/‖x‖)) if x ∈W 0, 0 < ‖x‖ ≤ s0,

s0Qδ(L0(x/‖x‖)) if x ∈W 0, ‖x‖ ≥ s0.

Aδ is completely continuous and satisfies:

(5.2) ‖Aδ(x)− L0x‖ = ‖x‖ · ‖Qδ(L0(x/‖x‖))− L0(x/‖x‖)‖ ≤
δ

3
‖x‖

for all x ∈W 0 with ‖x‖ ≤ s0. ClearlyQδ and Aδ are locally Lipschitz continuous.
Consequently, for 0 ≤ λ ≤ 1, the map

gλ := −id + (1− λ)A + λAδ:C → C

is locally Lipschitz continuous and induces a semiflow ϕλ:Dλ ⊂ [0,∞)×C → C

defined by { d

dt
ϕλ(t, x) = gλ(ϕλ(t, x)),

ϕλ(0, x) = x.

Lemma 5.1. {0} is an isolated invariant set for ϕλ, 0 ≤ λ ≤ 1; here δ is
from (5.1).

Proof. Recall δ, ε0 from (5.1) and choose ε ≤ ε0 such that

(5.3) ‖A(x)− L0x‖ ≤
δ

3
‖x‖ for all x ∈ C with ‖x‖ ≤ ε.

We consider the family of functions

fλ(x) :=
1
2
‖x‖2 − (1− λ)g(x)− λ

2
〈L0x, x〉.

and show that fλ(ϕλ(t, x)) is strictly decreasing in t for every x ∈ C with 0 <
‖x‖ ≤ ε. Observe that (5.1) says that

‖∇fλ(x)‖ ≥ δ‖x‖ for all λ ∈ [0, 1], x ∈ C, 0 < ‖x‖ ≤ ε0,

so using this and (5.3) we have for λ ∈ [0, 1], x ∈ C, 0 < ‖x‖ ≤ ε0:

〈∇fλ(x), gλ(x)〉 = −〈x− (1− λ)A(x)− λL0x, x− (1− λ)A(x)− λAδ(x)〉
= −‖∇fλ(x)‖2 + λ〈∇fλ(x), Aδ(x)− L0x〉
≤ −δ2‖x‖2 + δ‖x‖ · ‖Aδ(x)− L0x‖

≤ −δ2‖x‖2 + δ‖x‖ · δ
3
‖x‖ < 0.

The lemma follows immediately. �

Lemma 5.1 and Theorem 2.2 imply

Hk(fc ∩ C, fc ∩ C \ {0}) ∼= Hk(CC({0}, ϕδ,0)) ∼= Hk(CC({0}, ϕδ,1)).
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Since Aδ is defined on W 0, the vector field −id + Aδ induces a semiflow ψ on
W 0 which satisfies ψ|C = ϕδ,1. And since Aδ(W 0) ⊂ C, Theorem 2.3 implies

Hk(CC({0}, ϕδ,1)) ∼= Hk(CW 0
({0}, ψ)).

Now we consider the homotopy

hλ := −id + (1− λ)Aδ + λL0:W 0 →W 0, 0 ≤ λ ≤ 1,

which induces semiflows ψλ on W 0 satisfying

d

dt
ψλ(t, x) = hλ(ψλ(t, x)).

Clearly we have ψ0 = ψ. Observe that (5.1) implies

‖x− L0x‖ ≥ δ‖x‖

for all c ∈ C close to 0, hence for all x ∈ W 0. Using this and (5.2) we see that
the function f(x) = 〈x− L0x, x〉 satisfies

〈∇f(x), hλ(x)〉 < 0 for x ∈W 0 with 0 < ‖x‖ ≤ ε0,

hence f serves as a strict Lyapunov function for ψλ near 0. It follows that {0}
is an isolated invariant set for ψλ, and the continuation invariance Theorem 2.2
yields

Hk(CW 0
({0}, ψ)) ∼= Hk(CW 0

({0}, ψ1)).

Moreover, since L0(W 0) ⊂ E0 ∩ T0 Theorem 2.3 implies

Hk(CW 0
({0}, ψ1)) ∼= Hk(CE0∩T0({0}, ψ1|E0∩T0)) ∼= δkmR.

The last isomorphism is obvious because 0 is a repeller for ψ1 in E0 ∩ T0 and
m = dim(E0 ∩ T0).
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94 (1985), 1–145.

[10] M. Morse, Singular points of vector fields under general boundary conditions, Amer. J.

Math. 51 (1929), 165–178.

[11] K. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans.

Amer. Math. Soc. 269, 351–382.

[12] , The Homotopy Index and Partial Differential Equations, Springer–Verlag, Ber-

lin, 1987.

[13] R. Srzednicki, Generalized Lefschetz theorem and a fixed point index formula, Topology
Appl. 81 (1997), 207–224.

[14] F. W. Wilson and J. A. Yorke, Lyapunov functions and isolating blocks, J. Funct.
Anal. 13 (1973), 106–123.

Manuscript received April 7, 2009

Thomas Bartsch

Mathematisches Institut

University of Giessen
Arndtstr. 2

35392 Giessen, GERMANY

E-mail address: Thomas.Bartsch@math.uni-giessen.de

Norman Dancer

School of Mathematics and Statistics
University of Sydney

Sydney, AUSTRALIA

E-mail address: normd@maths.usyd.edu.au

TMNA : Volume 34 – 2009 – No 2


