Open Access
2003 Conley index continuation for singularly perturbed hyperbolic equations
Krzysztof P. Rybakowski
Topol. Methods Nonlinear Anal. 22(2): 203-244 (2003).

Abstract

Let $\Omega\subset \mathbb R^N$, $N\le 3$, be a bounded domain with smooth boundary, $\gamma\in L^2(\Omega)$ be arbitrary and $\phi\colon \mathbb R\to \mathbb R$ be a $C^1$-function satisfying a subcritical growth condition. For every $\varepsilon\in]0,\infty[$ consider the semiflow $\pi_\varepsilon$ on $H^1_0(\Omega)\times L^2(\Omega)$ generated by the damped wave equation $$ \begin{alignedat}{3} \varepsilon \partial_{tt}u+\partial_t u&=\Delta u+\phi(u)+\gamma(x) &\quad& x\in\Omega,&\ &t> 0,\\ u(x,t)&=0&\quad& x\in \partial \Omega,&\ &t> 0. \end{alignedat} $$ Moreover, let $\pi'$ be the semiflow on $H^1_0(\Omega)$ generated by the parabolic equation $$ \begin{alignedat}{3} \partial_t u&=\Delta u+\phi(u)+\gamma(x) &\quad& x\in\Omega,&\ &t> 0,\\ u(x,t)&=0&\quad& x\in \partial \Omega,&\ &t> 0. \end{alignedat} $$ Let $\Gamma\colon H^2(\Omega)\to H^1_0(\Omega)\times L^2(\Omega)$ be the imbedding $u\mapsto (u,\Delta u+\phi(u)+\gamma)$. We prove in this paper that every compact isolated $\pi'$-invariant set $K'$ lies in $H^2(\Omega)$ and the imbedded set $K_0=\Gamma(K')$ continues to a family $K_\varepsilon$, $\varepsilon\ge0$ small, of isolated $\pi_\varepsilon$-invariant sets having the same Conley index as $K'$. This family is upper-semicontinuous at $\varepsilon=0$. Moreover, any (partially ordered) Morse-decomposition of $K'$, imbedded into $H^1_0(\Omega)\times L^2(\Omega)$ via $\Gamma$, continues to a family of Morse decompositions of $K_\varepsilon$, for $\varepsilon\ge 0$ small. This family is again upper-semicontinuous at $\varepsilon=0$.

These results extend and refine some upper semicontinuity results for attractors obtained previously by Hale and Raugel.

Citation

Download Citation

Krzysztof P. Rybakowski. "Conley index continuation for singularly perturbed hyperbolic equations." Topol. Methods Nonlinear Anal. 22 (2) 203 - 244, 2003.

Information

Published: 2003
First available in Project Euclid: 30 September 2016

zbMATH: 1083.37011
MathSciNet: MR2036374

Rights: Copyright © 2003 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.22 • No. 2 • 2003
Back to Top