2023 Homogeneous eigenvalue problems in Orlicz-Sobolev spaces
Julián Fernández Bonder, Ariel Salort, Hernán Vivas
Topol. Methods Nonlinear Anal. Advance Publication 1-25 (2023). DOI: 10.12775/TMNA.2023.008

Abstract

In this article we consider a homogeneous eigenvalue problem ruled by the fractional $g$-Laplacian operator whose Euler-Lagrange equation is obtained by minimization of a quotient involving Luxemburg norms. We prove existence of an infinite sequence of variational eigenvalues and study its behavior as the fractional parameter $s\uparrow 1$ among other stability results.

Citation

Download Citation

Julián Fernández Bonder. Ariel Salort. Hernán Vivas. "Homogeneous eigenvalue problems in Orlicz-Sobolev spaces." Topol. Methods Nonlinear Anal. Advance Publication 1 - 25, 2023. https://doi.org/10.12775/TMNA.2023.008

Information

Published: 2023
First available in Project Euclid: 2 January 2024

Digital Object Identifier: 10.12775/TMNA.2023.008

Keywords: asymptotic behavior , nonlinear eigenvalues , Orlicz spaces

Rights: Copyright © 2023 Juliusz P. Schauder Centre for Nonlinear Studies

JOURNAL ARTICLE
25 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Back to Top