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Introduction

The purpose of this paper is to study the structure of uniserial
rings and to generalize the results of E.-A. Behrens [1]. A left and
right Artinian ring $R$ is called uniserial if it is primary decomposable
and for each primitive idempotent $e\in R,$ $Re$ as well as $eR$ has a unique
composition series. Every uniserial ring is Morita equivalent to a finite
direct product of local uniserial rings. A local uniserial ring $R$ will be
called of split type (or cleft) if there exists a subring $S$ of $R$ such that
$R=S+Rad(R)$ and $ S\cap$ Rad $(R)=0$ . Let $D$ be a division ring and $\tau\in$

$Aut(D)$ . A factor ring $D[X;\tau]/(X^{t})$ of a skew polynomial ring $D[X;\tau]$

is a local uniserial ring of split type, but the converse does not hold in
general (cf. Example in \S 2). In [1], E.-A. Behrens has given a sufficient
condition for a local uniserial ring of split type to be a factor ring of
an ordinary polynomial ring. Our main theorem states a necessary and
sufficient condition for a local uniserial ring to be isomorphic to a factor
ring of a skew polynomial ring over a division ring, and the result of
Behrens mentioned above is obtained from our theorem as a corollary.

\S 1. Preliminaries.

Throughout this paper, all rings have identity elements and all
subrings have the same identity elements. Let $A$ be a ring. We will
denote the Jacobson radical of $A$ , the center of $A$ , and the unit group
of $A$ by Rad$(A),$ $Z(A)$ and $U(A)$ , respectively. For a right A-module
$M_{A},$ $c(M_{A})$ denotes the composition length of $M_{A}$ .

In the latter part of this section, $R$ denotes a local uniserial ring.
Let $J=Rad(R)$ and $c=c(R_{R})$ . Then
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$R\supset J\supset J^{2}\supset\cdots\supset J^{c-1}\supset J^{0}=0$

is the unique composition series of $R_{R}$ . We assume that $R$ is of split
type. Then there exists a subring $D$ of $R$ such that $R=D+J$ and $ D\cap$

$J=0$ . Since $D\cong R/J,$ $D$ is a division ring. In the case that $J=0$ , we
will regard $R$ as a ring of split type.

LEMMA 1. Let $w\in J\backslash J^{2}$ . Then
(i) $\{1, w, w^{2}, \cdots, w^{\iota-1}\}$ is a right and left linearly independent set

over $D$ .
(ii) For any $k$ , we have

$J_{D}^{k}=w^{k}D\oplus w^{k+1}D\oplus\cdots\oplus w^{0-1}D$ ,
$DJ^{k}=Dw^{k}\oplus Dw^{k+1}\oplus\cdots\oplus Dw^{0-1}$ .

PROOF. (i) Let $a_{0},$ $\cdots,$ $a_{o-1}\in D$ and assume that $\sum_{i=0}^{\epsilon-1}w^{i}a_{i}=0$ . If
there exists a non-zero coefficient $a_{i}$ , then there exists an integer $k$ such
that $a_{0}=\cdots=a_{k-1}=0,$ $a_{k}\neq 0$ and $k<c-1$ . Then we have $w^{k}(a_{k}+wa_{k+1}+$

$+w^{c-k-1}a_{0-1})=0$ . Since $R$ is local uniserial and $a_{k}\neq 0$ , we have $w^{k}=0$ .
This contradicts to $k<c-1$ .

(ii) We shall prove (ii) by the induction on $k$ . In the case that
$k=c-1$ , we have $J^{o-1}=w^{c-1}R=w^{o-1}(D+J)=w^{0-1}D$. Let $k<c-1$ and as-
sume that $J^{k+1}=w^{k+1}D\oplus\cdots\oplus w^{c-1}D$. Then

$J^{k}=w^{k}R=w^{k}(D+J)=w^{k}D+J^{k+1}$

$=w^{k}D+w^{k+1}D+\cdots+w^{0-1}D$

$=w^{k}D\oplus w^{k+1}D\oplus\cdots\oplus w^{0-1}D$

from (i). $\square $

\S 2. The Main Theorem.

Let $A$ be a ring and $\tau\in$ Aut(A). By $A[X;\tau]$ , we shall denote the
skew polynomial ring over $A$ , i.e., $A[X;\tau]$ is the set of all polynomials
$\sum X^{i}a_{i}$ and the multiplication is defined by the formula $aX=X\tau(a)$ for
$a\in A$ . For $u\in U(A),$ $c_{u}$ denotes the inner automorphism of $A$ by $u;C_{u}(a)=$

$uau^{-1}$ for all $a\in A$ .
Throughout this section, the following notation will be fixed. Let

$R$ be a local uniserial ring with the radical $J$. Let $c=c(R_{R})$ and $ w\in$

$J\backslash J^{2}$ . Then we have $J=wR=Rw$ . Hence for each $r\in R$ , there exists
$\sigma(\gamma)\in R$ such that

(1) $\gamma w=w\sigma(r)$ .
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$\sigma(r)$ is not uniquely determined by $r$ , but we shall fix one element of
$R$ satisfying (1). Let $\pi:R\rightarrow R/J^{c-1}$ be the natural ring homomorphism.

Since $J\cdot J^{\epsilon-1}=J^{c\neg 1}\cdot J=0$ , it is easy to prove that the function $\pi\circ\sigma:R\rightarrow$

$R/J^{c-1}$ is an onto ring homomorphism with the kernel $J^{c-1}$ . Hence $\sigma$

defines the automorphism $\overline{\sigma}$ of $R/J^{c-1}$ . For each $reR$, we shall denote
$\overline{r}=\pi(r)\in R/J^{\epsilon-1}$ .

The following theorem is the main result of this paper.

THEOREM 2. The following conditions for a local uniserial ring $R$

are equivalent:
(a) There exists $\tau\in Aut(R/J)$ such that

$R\cong(R/J)[X;\tau]/(X^{c})$ .
(b) There exist a subring $D$ of $R$ and $u\in U(R)$ satisfying the

following conditions;

(i) $R=D+J$ and $D\cap J=0$ ,

(ii) $\overline{u}^{-1}\overline{D}\overline{u}=\overline{\sigma}(\overline{D})$ .
PROOF. We have only to prove $(b)\Rightarrow(a)$ . Assume (b). Let us put

$w_{1}=wu^{-1}$ and $\tau_{1}=c_{u}\circ\sigma:R\rightarrow R$ . Then

$\gamma w_{1}=\gamma wu^{-1}=w\sigma(r)u^{-1}=w_{1}\tau_{1}(r)$ for all $\gamma\in R$

and $\overline{\tau_{1}(D}$) $=\overline{D}$ . Since $\pi\circ\tau_{1}=c_{\overline{u}}\circ\pi\circ\sigma,$
$\pi\circ\tau_{1}:R\rightarrow R/J^{c-1}$ is an onto ring homo-

morphism. Hence it induces the ring automorphism $\overline{\tau}_{1}$ of $ R/J^{0-1}-\cdot$ Put
$\tau=\overline{\tau}_{1}|_{\overline{D}}$ . Then $\tau$ is a ring automorphism of $\overline{D}$ . Put $S=D[X;\tau]/(X^{c})$ .
Since

$R_{D}=D\oplus w_{1}D\oplus w_{1}^{2}D\oplus\cdots\oplus w_{1}^{c-1}D$

by Lemma 1 and
$S_{\overline{D}}=\overline{D}\oplus x\overline{D}\oplus x^{2}\overline{D}\oplus\cdots\oplus x^{0-1}\overline{D}$

where $x=X+(X^{C})eS$ , we can define a map $\Phi:R\rightarrow S$ by

$\Phi:R\ni\sum_{i=0}^{c-1}w_{1}^{i}a_{i}\mapsto\sum_{i=0}^{c-1}x^{i}\overline{a}_{i}\in S$ .

Since $\pi|_{D}:D\rightarrow\overline{D}$ is a ring isomorphism, it is easy to prove that $\Phi$ is an
additive isomorphism. Let $w_{1}^{i}a,$ $w_{1}^{j}b\in R$ . Since $\overline{\tau_{1}^{\dot{f}}(a}$) $\in\overline{D}$ , there uniquely

exists $a^{\prime}\in D$ such that Z7 $=\overline{\tau_{1}^{\dot{f}}(a)}$ . Then we have
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$\Phi(w_{1}^{i}aw_{1}^{\dot{f}}b)=\Phi(w_{1}^{i+j}\tau_{1}^{\dot{f}}(a)b)=\Phi(w_{1}^{i+j}a^{\prime}b)=x^{i+\dot{g}}\overline{a’ b}$

$=x^{+j}\overline{\tau_{1}^{\dot{f}}(a)b}=x^{i+j}\tau^{j}(\overline{a})\overline{b}=\Phi(w_{1}^{i}a)\cdot\Phi(w_{1}^{\dot{f}}b)$ .
Thus $\Phi$ is a ring isomorphism.

Let us proceed the applications of Theorem 2. Several known results
will be obtained as the corollaries of Theorem 2 (cf. Corollaries 4, 5 and
6). The notations and the assumptions are as above. Furthermore, we
shall assume that $R$ is of split type. Then there exists a division
subring $D$ of $R$ such that $R=D+J$ and $D\cap J=0$ . Let us put $ Z=D\cap$

$Z(R)$ .
COROLLARY 3. If $D$ is a separable Z-algebra, then $R\cong(R/J)[X;\tau]/(X^{\iota})$

for some $\tau\in Aut(R/J)$ . (As for separable algebras, cf. [3, \S 71].)

PROOF. From Wedderburn-Malcev Theorem (cf. [3, Theorem 72.19]),
the condition (b) in Theorem 2 is satisfied. Thus Corollary 3 holds. $\square $

The following Corollary 4 is immediately obtained from Corollary 3
since a skew polynomial ring $A[X;\tau]$ is an ordinary polynomial ring
$A[Y]$ if $\tau$ is an inner automorphism.

COROLLARY 4 (E.-A. Behrens [1]). If $D$ is a separable Z-algebra
and if any Z-automorphism of $D$ is inner, then $R\cong(R/J)[X]/(X^{c})$ .

COROLLARY 5 (I. S. Cohen). If $R$ is commutative, then $R=D[X]/(X^{e})$ .
PROOF. It is obvious since $\sigma$ is taken to be the identity map on $R$ .

$\square $

COROLLARY 6 (W. A. Clark and D. A. Drake [2]). If $R$ is a finite
ring, then $R\cong F_{q}[X;\tau]/(X^{c})$ for some $\tau\in Aut(F_{q})$ , where $q=\#(R/J)$ and
$F_{q}$ is the finite field with $q$ elements.

PROOF. Since $R/J\cong F_{q}$ and $F_{q}$ is a separable algebra over its prime
subfield, the assertion is directly proved from Corollary 3. $\square $

The following result is a generalization of a result of E.-A. Behrens
[1].

COROLLARY 7. If $J^{2}=0$ , then $R\cong(R/J)[X;\tau]/(X^{\iota})$ for some $\tau\in Aut(R/J)$ .
PROOF. Assume $J\neq 0$ . Since $c-1=1$ , we have $\overline{\sigma}\in Aut(R/J)$ . Moreover

$\overline{D}=\overline{\sigma}(\overline{D})$ . Thus the assertion is directly proved from Theorem 2.

In the case that $J^{3}=0$ , the following example which is given by
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E.-A. Behrens [1] shows that there exists a local uniserial ring of split
type which is not isomorphic to a factor ring of any skew polynomial
ring over a division ring.

EXAMPLE. Let $D$ be a division ring with a derivation $\alpha:D\rightarrow D$

which is not inner. Put $R=D\oplus D\oplus D$ . Then $R$ is an additive group.
For $(a_{0}, a_{1}, a_{2}),$ $(b_{0}, b_{1}, b_{2})\in R$ , define

$(a_{0}, a_{1}, a_{2})\cdot(b_{0}, b_{1}, b_{2})$

$=(a_{0}b_{0}, a_{1}b_{0}+a_{0}b_{1}, a_{2}b_{0}+a_{1}b_{1}+a_{0}b_{2}+\alpha(a_{0})b_{1})$ .
Then $R$ is a local uniserial ring of split type. Moreover, it is not difficult
to prove that $R$ does not satisfy the condition (b) in Theorem 2. Thus
$R$ is not isomorphic to a factor ring of a skew polynomial ring over a
division ring.
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