A Criterion for Dualizing Modules

Kamran DIVAANI-AAZAR, Massoumeh NIKKHAH BABAEI and Massoud TOUSI*

Alzahra University and *Shahid Beheshti University

(Communicated by K. Onishi)

Abstract

We establish a characterization of dualizing modules among semidualizing modules. Let R be a finite dimensional commutative Noetherian ring with identity and C a semidualizing R-module. We show that C is a dualizing R-module if and only if $\operatorname{Tor}_{i}^{R}\left(E, E^{\prime}\right)$ is C-injective for all C-injective R-modules E and E^{\prime} and all $i \geq 0$.

1. Introduction

Throughout this paper, R will denote a commutative Noetherian ring with non-zero identity. The injective envelope of an R-module M is denoted by $\mathrm{E}_{R}(M)$.

A finitely generated R-module C is called semidualizing if the homothety map $R \longrightarrow$ $\operatorname{Hom}_{R}(C, C)$ is an isomorphism and $\operatorname{Ext}_{R}^{i}(C, C)=0$ for all $i>0$. Immediate examples of such modules are free R-modules of rank one. A semidualizing R-module C with finite injective dimension is called dualizing. Although R always possesses a semidualizing module, it does not possess a dualizing module in general. Keeping [BH, Theorem 3.3.6] in mind, it is straightforward to see that the ring R possesses a dualizing module if and only if it is Cohen-Macaulay and it is homomorphic image of a finite dimensional Gorenstein ring.

Let (R, \mathfrak{m}, k) be a local ring. There are several characterizations in the literature for a semidualizing R-module C to be dualizing. For instance, Christensen [C, Proposition 8.4] has shown that a semidualizing R-module C is dualizing if and only if the Gorenstein dimension of k with respect to C is finite. Also, Takahashi et al. [TYY, Theorem 1.3] proved that a semidualizing R-module C is dualizing if and only if every finitely generated R-module can be embedded in an R-module of finite C-dimension. Our aim in this paper is to give a new characterization for a semidualizing R-module C to be dualizing.

Let C be a semidualizing R-module. An R-module M is said to be C-projective (respectively C-flat) if it has the form $C \otimes_{R} U$ for some projective (respectively flat) R-module U. Also, a C-free R-module is defined as a direct sum of copies of C. We can see that every

[^0]C-projective R-module is a direct summand of a C-free R-module and over a local ring every finitely generated C-flat R-module is C-free. Also, an R-module M is said to be C-injective if it has the form $\operatorname{Hom}_{R}(C, I)$ for some injective R-module I.

Yoneda raised a question of whether the tensor product of injective modules is injective. Ishikawa in [I, Theorem 2.4] showed that if $\mathrm{E}_{R}(R)$ is flat, then $E \otimes_{R} E^{\prime}$ is injective for all injective R-modules E and E^{\prime}. Further, Enochs and Jenda [EJ, Theorem 4.1] proved that R is Gorenstein if and only if for every injective R-modules E and E^{\prime} and any $i \geq 0, \operatorname{Tor}_{i}^{R}\left(E, E^{\prime}\right)$ is injective. We extend this result in terms of a semidualizing R-module. More precisely, for a semidualizing R-module C, we show that the following are equivalent (see Theorem 2.7):
(i) $\quad C_{\mathfrak{p}}$ is a dualizing $R_{\mathfrak{p}}$-module for all $\mathfrak{p} \in \operatorname{Spec} R$.
(ii) For any prime ideal \mathfrak{p} of R and any $i \geq 0$,

$$
\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(R / \mathfrak{p}), \mathrm{E}_{C}(R / \mathfrak{p})\right)= \begin{cases}0 & \text { if } i \neq \operatorname{dim}_{R_{\mathfrak{p}}} C_{\mathfrak{p}} \\ \mathrm{E}_{C}(R / \mathfrak{p}) & \text { if } i=\operatorname{dim}_{R_{\mathfrak{p}}} C_{\mathfrak{p}}\end{cases}
$$

where $\mathrm{E}_{C}(R / \mathfrak{p}):=\operatorname{Hom}_{R}\left(C, \mathrm{E}_{R}(R / \mathfrak{p})\right)$.
(iii) For any C-injective R-modules E and E^{\prime} and any $i \geq 0, \operatorname{Tor}_{i}^{R}\left(E, E^{\prime}\right)$ is C injective.

2. The Results

Let \mathfrak{p} be a prime ideal of R. Recall that an R-module M is said to have property $t(\mathfrak{p})$ if for each $r \in R-\mathfrak{p}$, the map $M \xrightarrow{r} M$ is an isomorphism and if for each $x \in M$ we have $\mathfrak{p}^{m} x=0$ for some $m \geq 1$. If an R-module M has $t(\mathfrak{p})$-property, then it has the structure as an $R_{\mathfrak{p}}$-module. It is known that $\mathrm{E}_{R}(R / \mathfrak{p})$ has $t(\mathfrak{p})$-property.

To prove Theorem 2.7, which is our main result, we shall need the following five preliminary lemmas.

Lemma 2.1. Let C be a semidualizing R-module. Then the following statements hold true.
(i) $\mathrm{E}_{C}(R / \mathfrak{p}):=\operatorname{Hom}_{R}\left(C, \mathrm{E}_{R}(R / \mathfrak{p})\right)$ has $t(\mathfrak{p})$-property for each $\mathfrak{p} \in \operatorname{Spec} R$.
(ii) If \mathfrak{p} and \mathfrak{q} are two distinct prime ideals of R, then $\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(R / \mathfrak{p}), \mathrm{E}_{C}(R / \mathfrak{q})\right)=0$ for all $i \geq 0$.

Proof. (i) As $\mathrm{E}_{R}(R / \mathfrak{p})$ has $\mathrm{t}(\mathfrak{p})$-property, one can easily check that for any finitely generated R-module M, the R-module $\operatorname{Hom}_{R}\left(M, \mathrm{E}_{R}(R / \mathfrak{p})\right)$ has $t(\mathfrak{p})$-property.
(ii) By (i) $\mathrm{E}_{C}(R / \mathfrak{p})$ has $t(\mathfrak{p})$-property and $\mathrm{E}_{C}(R / \mathfrak{q})$ has $t(\mathfrak{q})$-property. So, [EH, 5] implies that

$$
\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(R / \mathfrak{p}), \mathrm{E}_{C}(R / \mathfrak{q})\right)=0
$$

for all $i \geq 0$.

Lemma 2.2. Let (R, \mathfrak{m}, k) be a local ring, C a semidualizing R-module and I an $A r$ tinian C-injective R-module. Then $\operatorname{Hom}_{R}\left(I, \mathrm{E}_{R}(k)\right)$ is a finitely generated \widehat{C}-free \widehat{R}-module.

Proof. Denote the functor $\operatorname{Hom}_{R}\left(-, \mathrm{E}_{R}(k)\right)$ by $(-)^{\vee}$. We have $I=\operatorname{Hom}_{R}\left(C, I^{\prime}\right)$ for some injective R-module I^{\prime}. Clearly, $C \otimes_{R} I$ is also an Artinian R-module. Since

$$
C \otimes_{R} I \cong C \otimes_{R} \operatorname{Hom}_{R}\left(C, I^{\prime}\right) \cong \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(C, C), I^{\prime}\right) \cong I^{\prime},
$$

we deduce that I^{\prime} is also Artinian. So, $I^{\prime} \cong \stackrel{n}{\oplus} \mathrm{E}_{R}(k)$ for some nonnegative integer n.
Now, one has

$$
I^{\vee}=\operatorname{Hom}_{R}\left(C, I^{\prime}\right)^{\vee} \cong C \otimes_{R} I^{\wedge} \cong \stackrel{n}{\oplus} \widehat{C},
$$

and so I^{\vee} is a finitely generated \widehat{C}-free \widehat{R}-module.
In the next result, we collect some useful known properties of semidualizing modules. We may use them without any further comments.

LEMMA 2.3. Let C be a semidualizing R-module and $\underline{r}:=r_{1}, \ldots, r_{n}$ a sequence of elements of R. The following statements hold.
(i) $\operatorname{Supp}_{R} C=\operatorname{Spec} R$, and so $\operatorname{dim}_{R} C=\operatorname{dim} R$.
(ii) If R is local, then \widehat{C} is a semidualizing \widehat{R}-module.
(iii) \underline{r} is a regular R-sequence if and only if \underline{r} is a regular C-sequence.
(iv) If \underline{r} is a regular R-sequence, then $C /(\underline{r}) C$ is a semidualizing $R /(\underline{r})$-module.
(v) If R is local and \underline{r} is a regular R-sequence, then C is a dualizing R-module if and only if $C /(\underline{r}) C$ is a dualizing $R /(\underline{r})$-module.

Proof. (i) and (ii) follow easily by the definition of a semidualizing module.
(iii) and (iv) are hold by [S, Corollary 3.3.3].
(v) Assume that R is local and \underline{r} is a regular R-sequence. Then by (iv), $C /(\underline{r}) C$ is a semidualizing $R /(\underline{r})$-module. On the other hand, [BH, Corollary 3.1 .15] yields that

$$
\operatorname{id}_{\left.\frac{R}{(D}\right)} \frac{C}{(\underline{r}) C}=\operatorname{id}_{R} C-n .
$$

This implies the conclusion.
In the proof of the following result, $R \ltimes C$ will denote the trivial extension of R by C. For any $R \ltimes C$-module X, its Gorenstein injective dimension will be denoted by $\operatorname{Gid}_{R \ltimes C} X$. Also, we recall that for a module M over a local ring (R, \mathfrak{m}, k), the width of M is defined by $\operatorname{width}_{R} M:=\inf \left\{i \in \mathbf{N}_{0} \mid \operatorname{Tor}_{i}^{R}(k, M) \neq 0\right\}$.

Lemma 2.4. Let (R, \mathfrak{m}, k) be a local ring and C a semidualizing R-module. Then $\mathrm{E}_{C}(k) \otimes_{R} \mathrm{E}_{C}(k)$ is a non-zero C-injective R-module if and only if C is a dualizing R-module of dimension 0 .

Proof. Suppose that $\mathrm{E}_{C}(k) \otimes_{R} \mathrm{E}_{C}(k)$ is a non-zero C-injective R-module. As $\mathrm{E}_{C}(k)$ is Artinian, by [KLS, Corollary 3.9] the length of $\mathrm{E}_{C}(k) \otimes_{R} \mathrm{E}_{C}(k)$ is finite. So, also, $\left(\mathrm{E}_{C}(k) \otimes_{R} \mathrm{E}_{C}(k)\right)^{\vee}$ has finite length. Since

$$
\operatorname{Hom}_{R}\left(\mathrm{E}_{C}(k), \widehat{C}\right) \cong\left(\mathrm{E}_{C}(k) \otimes_{R} \mathrm{E}_{C}(k)\right)^{\vee},
$$

by Lemma 2.2, we deduce that $\operatorname{Hom}_{R}\left(\mathrm{E}_{C}(k), \widehat{C}\right)$ is isomorphic to a direct sum of finitely many copies of \widehat{C}. This, in particular, implies that \widehat{C} has finite length. Thus Lemma 2.3 yields that

$$
\operatorname{dim} R=\operatorname{dim}_{R} C=\operatorname{dim}_{\widehat{R}} \widehat{C}=0
$$

and so, in particular, R is complete. Next, one has

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(\mathrm{E}_{C}(k), R\right) & \cong \operatorname{Hom}_{R}\left(\mathrm{E}_{C}(k), \operatorname{Hom}_{R}(C, C)\right) \\
& \cong \operatorname{Hom}_{R}\left(C, \operatorname{Hom}_{R}\left(\mathrm{E}_{C}(k), C\right)\right) \\
& \cong \stackrel{n}{\oplus} \operatorname{Hom}_{R}(C, C) \\
& \cong R^{n}
\end{aligned}
$$

for some $n>0$. This, in particular, implies that

$$
\operatorname{Ann}_{R}\left(\operatorname{Hom}_{R}\left(\mathrm{E}_{C}(k), R\right)\right)=\operatorname{Ann}_{R} R .
$$

Since R is Artinian, $\mathfrak{m}^{t}=0$ and $\mathfrak{m}^{t-1} \neq 0$ for some $t>0$. If for every $f \in \operatorname{Hom}_{R}\left(\mathrm{E}_{C}(k), R\right)$, $\operatorname{im} f \subseteq \mathfrak{m}$, then $\mathfrak{m}^{t-1} f=0$ so $\mathfrak{m}^{t-1} \operatorname{Hom}_{R}\left(\mathrm{E}_{C}(k), R\right)=0$ a contradiction. Thus there is an epimorphism $\mathrm{E}_{C}(k) \rightarrow R \rightarrow 0$, and so R is a direct summand of $\mathrm{E}_{C}(k)$. Next, [HJ1, Lemma 2.6] implies that R is a Gorenstein injective $R \ltimes C$-module. This yields that C is a dualizing R-module, because by [HJ2, Proposition 4.5], one has

$$
\operatorname{id}_{R} C \leq \operatorname{Gid}_{R \ltimes C} R+\text { width }_{R} R .
$$

Conversely, if C is a dualizing R-module of dimension 0 , then $\operatorname{dim} R=0$ by Lemma 2.3 (i). Hence, $\mathrm{E}_{R}(k)$ is a dualizing R-module, and then by [BH, Theorem 3.3.4 (b)] we have $C \cong \mathrm{E}_{R}(k)$. Thus

$$
\begin{aligned}
\mathrm{E}_{C}(k) \otimes_{R} \mathrm{E}_{C}(k) & \cong \operatorname{Hom}_{R}\left(\mathrm{E}_{R}(k), \mathrm{E}_{R}(k)\right) \otimes_{R} \operatorname{Hom}_{R}\left(\mathrm{E}_{R}(k), \mathrm{E}_{R}(k)\right) \\
& \cong R \otimes_{R} R \\
& \cong R \\
& \cong \operatorname{Hom}_{R}\left(C, \mathrm{E}_{R}(k)\right),
\end{aligned}
$$

which is a non-zero C-injective R-module.
Remark 2.5 (See [B, (2.5)]). Let M be an R-module and let $r \in R$ be a non-unit which is a non-zero divisor of both R and M. Let $0 \rightarrow M \rightarrow I^{0} \xrightarrow{d^{0}} I^{1} \rightarrow \cdots$ be a
minimal injective resolution of M. Then there is a natural $R /(r)$-isomorphism $M /(r) M \cong$ $\operatorname{Hom}_{R}\left(R /(r), \operatorname{im} d^{0}\right)$ and

$$
0 \rightarrow \operatorname{Hom}_{R}\left(R /(r), I^{1}\right) \rightarrow \operatorname{Hom}_{R}\left(R /(r), I^{2}\right) \rightarrow \cdots
$$

is a minimal injective resolution of the $R /(r)$-module $M /(r) M$.
Next, we recall the definition of the notion of co-regular sequences. Let X be an R module. An element r of R is said to be co-regular on X if the map $X \xrightarrow{r} X$ is surjective. A sequence r_{1}, \ldots, r_{n} of elements of R is said to be a co-regular sequence on X if r_{i} is co-regular on $\left(0:_{M}\left(r_{1}, \ldots, r_{i-1}\right)\right)$ for all $i=1, \ldots, n$.

The following result plays a crucial role in the proof of Theorem 2.7.
Lemma 2.6. Let (R, \mathfrak{m}, k) be a local ring and C a semidualizing R-module. Let $r \in \mathfrak{m}$ be a non-zero divisor of R. Assume that r is co-regular on $\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right)$ for all i. Then for any $i \geq 0$, we have a natural \bar{R}-isomorphism

$$
\operatorname{Tor}_{i-1}^{\bar{R}}\left(\mathrm{E}_{\bar{C}}(k), \mathrm{E}_{\bar{C}}(k)\right) \cong \operatorname{Hom}_{R}\left(\bar{R}, \operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right)\right),
$$

where $\bar{R}:=R /(r), \bar{C}:=C /(r) C, \mathrm{E}_{C}(k):=\operatorname{Hom}_{R}\left(C, \mathrm{E}_{R}(k)\right)$ and $\mathrm{E}_{\bar{C}}(k):=$ $\operatorname{Hom}_{\bar{R}}\left(\bar{C}, \mathrm{E}_{\bar{R}}(k)\right)$.

Proof. Let $0 \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots$ be a minimal injective resolution of C. Then

$$
\cdots \rightarrow \operatorname{Hom}_{R}\left(I^{1}, \mathrm{E}_{R}(k)\right) \rightarrow \operatorname{Hom}_{R}\left(I^{0}, \mathrm{E}_{R}(k)\right) \rightarrow 0
$$

is a flat resolution of $\mathrm{E}_{C}(k)$. Applying $\mathrm{E}_{C}(k) \otimes_{R}$-, we get the complex

$$
\cdots \rightarrow \mathrm{E}_{C}(k) \otimes_{R} \operatorname{Hom}_{R}\left(I^{1}, \mathrm{E}_{R}(k)\right) \rightarrow \mathrm{E}_{C}(k) \otimes_{R} \operatorname{Hom}_{R}\left(I^{0}, \mathrm{E}_{R}(k)\right) \rightarrow 0
$$

We will denote $\mathrm{E}_{C}(k) \otimes_{R} \operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right)$ by X_{i} and set

$$
X_{\bullet}:=\cdots \longrightarrow X_{i} \longrightarrow \cdots \longrightarrow X_{1} \longrightarrow X_{0} \longrightarrow 0
$$

Then for each $i \geq 0$, we have $H_{i}\left(X_{\bullet}\right)=\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right)$.
By Remark 2.5,

$$
0 \rightarrow \operatorname{Hom}_{R}\left(\bar{R}, I^{1}\right) \rightarrow \operatorname{Hom}_{R}\left(\bar{R}, I^{2}\right) \rightarrow \cdots
$$

is a minimal injective resolution of \bar{C} as an \bar{R}-module. So,

$$
\cdots \rightarrow \operatorname{Hom}_{\bar{R}}\left(\operatorname{Hom}_{R}\left(\bar{R}, I^{2}\right), \mathrm{E}_{\bar{R}}(k)\right) \rightarrow \operatorname{Hom}_{\bar{R}}\left(\operatorname{Hom}_{R}\left(\bar{R}, I^{1}\right), \mathrm{E}_{\bar{R}}(k)\right) \rightarrow 0
$$

is a flat resolution of $\mathrm{E}_{\bar{C}}(k)$ as an \bar{R}-module. Thus for each $i \geq 1$, the \bar{R}-module $\operatorname{Tor}_{i-1}^{\bar{R}}\left(\mathrm{E}_{\bar{C}}(k), \mathrm{E}_{\bar{C}}(k)\right)$ is isomorphic to the i th homology of the following complex

$$
(\star) \cdots \longrightarrow \mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \operatorname{Hom}_{\bar{R}}\left(\operatorname{Hom}_{R}\left(\bar{R}, I^{2}\right), \mathrm{E}_{\bar{R}}(k)\right)
$$

$$
\longrightarrow \mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \operatorname{Hom}_{\bar{R}}\left(\operatorname{Hom}_{R}\left(\bar{R}, I^{1}\right), \mathrm{E}_{\bar{R}}(k)\right) \rightarrow 0 .
$$

We shall show that the later complex is isomorphic to the complex $Y_{\bullet}:=\operatorname{Hom}_{R}\left(\bar{R}, X_{\bullet}\right)$.
Noting that $\mathrm{E}_{\bar{R}}(k) \cong \operatorname{Hom}_{R}\left(\bar{R}, \mathrm{E}_{R}(k)\right)$ and using Adjointness yields that

$$
\mathrm{E}_{\bar{C}}(k)=\operatorname{Hom}_{\bar{R}}\left(\bar{C}, \mathrm{E}_{\bar{R}}(k)\right) \cong \operatorname{Hom}_{R}\left(\bar{R}, \mathrm{E}_{C}(k)\right) .
$$

Hence for each $i \geq 0$, by using Adjointness, Hom-evaluation and Tensor-evaluation, one has the following natural \bar{R}-isomorphisms:

$$
\begin{aligned}
\mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \operatorname{Hom}_{\bar{R}}\left(\operatorname{Hom}_{R}\left(\bar{R}, I^{i}\right), \mathrm{E}_{\bar{R}}(k)\right) & \cong \mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \operatorname{Hom}_{\bar{R}}\left(\operatorname{Hom}_{R}\left(\bar{R}, I^{i}\right), \operatorname{Hom}_{R}\left(\bar{R}, \mathrm{E}_{R}(k)\right)\right) \\
& \cong \mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}\left(\bar{R}, I^{i}\right), \mathrm{E}_{R}(k)\right) \\
& \cong \mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}}\left(\bar{R} \otimes_{R} \operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right)\right) \\
& \cong \operatorname{Hom}_{R}\left(\bar{R}, \mathrm{E}_{C}(k)\right) \otimes_{R} \operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right) \\
& \cong \operatorname{Hom}_{R}\left(\bar{R}, \mathrm{E}_{C}(k) \otimes_{R} \operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right)\right) \\
& \cong Y_{i} .
\end{aligned}
$$

Note that $\operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right)$ is a flat R-module. As r is a non-zero divisor of R, it is also a nonzero divisor of C. This implies that r is a non-zero divisor of I^{0}, and so $\operatorname{Hom}_{R}\left(\bar{R}, I^{0}\right)=0$. Thus

$$
Y_{0} \cong \mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \operatorname{Hom}_{\bar{R}}\left(\operatorname{Hom}_{R}\left(\bar{R}, I^{0}\right), \mathrm{E}_{\bar{R}}(k)\right)=0
$$

Therefore, the two complexes (\star) and Y_{\bullet} are isomorphic, and so we deduce that $\operatorname{Tor}_{i-1}^{\bar{R}}\left(\mathrm{E}_{\bar{C}}(k), \mathrm{E}_{\bar{C}}(k)\right)=H_{i}\left(Y_{\bullet}\right)$ for all $i \geq 0$.

Since r is a non-zero divisor of C, it is co-regular on $\mathrm{E}_{C}(k)$, and so it is co-regular on X_{i} for all i. Thus, we can deduce the following exact sequence of complexes

$$
0 \longrightarrow Y_{\bullet} \longrightarrow X_{\bullet} \xrightarrow{r} X_{\bullet} \longrightarrow 0 .
$$

It yields the following exact sequences of modules

$$
\begin{aligned}
\cdots \longrightarrow & \operatorname{Tor}_{i+1}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right) \xrightarrow{r} \operatorname{Tor}_{i+1}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right) \longrightarrow \operatorname{Tor}_{i-1}^{\bar{R}}\left(\mathrm{E}_{\bar{C}}(k), \mathrm{E}_{\bar{C}}(k)\right) \\
& \xrightarrow{f_{i}} \operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right) \xrightarrow{r} \operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right) \longrightarrow \cdots .
\end{aligned}
$$

As r is a co-regular element on $\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right)$ for all i, we deduce that f_{i} is a monomorphism for all i. This implies our desired isomorphisms.

Theorem 2.7. Let C be a semidualizing R-module. The following are equivalent:
(i) $\quad C_{\mathfrak{p}}$ is a dualizing $R_{\mathfrak{p}}$-module for all $\mathfrak{p} \in \operatorname{Spec} R$.
(ii) For any prime ideal \mathfrak{p} of R and any $i \geq 0$,

$$
\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(R / \mathfrak{p}), \mathrm{E}_{C}(R / \mathfrak{p})\right)= \begin{cases}0 & \text { if } i \neq \operatorname{dim}_{R_{\mathfrak{p}}} C_{\mathfrak{p}} \\ \mathrm{E}_{C}(R / \mathfrak{p}) & \text { if } i=\operatorname{dim}_{R_{\mathfrak{p}}} C_{\mathfrak{p}}\end{cases}
$$

where $\mathrm{E}_{C}(R / \mathfrak{p}):=\operatorname{Hom}_{R}\left(C, \mathrm{E}_{R}(R / \mathfrak{p})\right)$.
(iii) For any C-injective R-modules E and E^{\prime} and any $i \geq 0, \operatorname{Tor}_{i}^{R}\left(E, E^{\prime}\right)$ is C injective.

Proof. (i) \Rightarrow (ii) Let \mathfrak{p} be a prime ideal of R. There are natural $R_{\mathfrak{p}}$-isomorphisms $\mathrm{E}_{C}(R / \mathfrak{p}) \cong \mathrm{E}_{C_{\mathfrak{p}}}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right)$ and

$$
\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(R / \mathfrak{p}), \mathrm{E}_{C}(R / \mathfrak{p})\right) \cong \operatorname{Tor}_{i}^{R_{\mathfrak{p}}}\left(\mathrm{E}_{C_{\mathfrak{p}}}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right), \mathrm{E}_{C_{\mathfrak{p}}}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right)\right)
$$

for all $i \geq 0$. Hence, we can complete the proof of this part by showing that if C is a dualizing module of a local ring (R, \mathfrak{m}, k), then

$$
\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right)= \begin{cases}0 & i \neq \operatorname{dim}_{R} C \\ \mathrm{E}_{C}(k) & i=\operatorname{dim}_{R} C\end{cases}
$$

Set $d:=\operatorname{dim}_{R} C$. As C is a dualizing R-module, [BH, Theorem 3.3.10] implies that for any prime ideal \mathfrak{p}, one has

$$
\mu^{i}(\mathfrak{p}, C)= \begin{cases}0 & i \neq \mathrm{ht} \mathfrak{p} \\ 1 & i=\mathrm{ht} \mathfrak{p}\end{cases}
$$

So, if $I^{\bullet}=0 \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots$ is a minimal injective resolution of C, then $I^{d} \cong \mathrm{E}_{R}(k)$ and for any $i \neq d, \mathrm{E}_{R}(k)$ is not a direct summand of I^{i}. In particular, $\operatorname{Hom}_{R}\left(R / \mathfrak{m}, I^{i}\right)=0$ for all $i \neq d$. Now, $\operatorname{Hom}_{R}\left(I^{\bullet}, \mathrm{E}_{R}(k)\right)$ is a flat resolution of $\mathrm{E}_{C}(k)$. Clearly, one has

$$
\mathrm{E}_{C}(k) \otimes_{R} \operatorname{Hom}_{R}\left(I^{d}, \mathrm{E}_{R}(k)\right) \cong \mathrm{E}_{C}(k) \otimes_{R} \widehat{R} \cong \mathrm{E}_{C}(k) .
$$

Next, let $i \neq d$. Since $\operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right)$ is a flat R-module, [M, Theorem 23.2 (ii)] implies that

$$
\operatorname{Ass}_{R}\left(\mathrm{E}_{C}(k) \otimes_{R} \operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right)\right)=\operatorname{Ass}_{R}\left(R / \mathfrak{m} \otimes_{R} \operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right)\right)
$$

But,

$$
R / \mathfrak{m} \otimes_{R} \operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right) \cong \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}\left(R / \mathfrak{m}, I^{i}\right), \mathrm{E}_{R}(k)\right)=0
$$

and so $\mathrm{E}_{C}(k) \otimes_{R} \operatorname{Hom}_{R}\left(I^{i}, \mathrm{E}_{R}(k)\right)=0$. Therefore, it follows that the complex $\mathrm{E}_{C}(k) \otimes_{R}$ $\operatorname{Hom}_{R}\left(I^{\bullet}, \mathrm{E}_{R}(k)\right)$ has $\mathrm{E}_{C}(k)$ in its d-place and 0 in its other places. Thus, we deduce that

$$
\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right)=H_{i}\left(\mathrm{E}_{C}(k) \otimes_{R} \operatorname{Hom}_{R}\left(I^{\bullet}, \mathrm{E}(k)\right)\right)= \begin{cases}0 & i \neq d \\ \mathrm{E}_{C}(k) & i=d\end{cases}
$$

(ii) \Rightarrow (iii) Let E be an injective R-module. Since $E \cong \underset{\mathfrak{p} \in \operatorname{Spec} R}{ } \mathrm{E}_{R}(R / \mathfrak{p})^{\mu^{0}(\mathfrak{p}, E)}$ and C
is finitely generated, we have

$$
\operatorname{Hom}_{R}(C, E) \cong \bigoplus_{\mathfrak{p} \in \operatorname{Spec} R} \mathrm{E}_{C}(R / \mathfrak{p})^{\mu^{0}(\mathfrak{p}, E)}
$$

As R is Noetherian, clearly any direct sum of C-injective R-modules is again C-injective, and so (ii) yields (iii) by Lemma 2.1 (ii).
(iii) \Rightarrow (i) It is easy to check that a given $R_{\mathfrak{p}}$-module M is $C_{\mathfrak{p}}$-injective if and only if it is the localization at \mathfrak{p} of a C-injective R-module. Thus, it is enough to show that if C is a semidualizing module of a local ring (R, \mathfrak{m}, k) such that $\operatorname{Tor}_{i}^{R}\left(E, E^{\prime}\right)$ is C-injective for all C-injective R-modules E and E^{\prime} and all $i \geq 0$, then C is dualizing.

Let $\underline{r}=r_{1}, \ldots, r_{d} \in \mathfrak{m}$ be a maximal regular R-sequence. Then \underline{r} is also a regular C-sequence. It is easy to verify that \underline{r} is a co-regular sequence on any C-injective R-module, and consequently \underline{r} is a co-regular sequence on $\operatorname{Tor}_{i}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right)$ for all $i \geq 0$. Letting $\bar{R}:=R /(\underline{r})$ and $\bar{C}:=C /(\underline{r}) C$, by Lemma 2.3 (iv), it turns out that \bar{C} is a semidualizing \bar{R}-module. Making repeated use of Lemma 2.6 , we can establish the following natural \bar{R} isomorphism

$$
\mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \mathrm{E}_{\bar{C}}(k) \cong \operatorname{Hom}_{R}\left(\bar{R}, \operatorname{Tor}_{d}^{R}\left(\mathrm{E}_{C}(k), \mathrm{E}_{C}(k)\right)\right) .
$$

So, $\mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \mathrm{E}_{\bar{C}}(k)$ is a \bar{C}-injective \bar{R}-module. Lemma 2.3 implies that

$$
\operatorname{depth}_{\widehat{\bar{R}}} \widehat{\bar{C}}=\operatorname{depth}_{\bar{R}} \bar{C}=\operatorname{depth}_{\bar{R}} \bar{R}=0
$$

and so there are natural inclusion maps $k \stackrel{i}{\hookrightarrow} \bar{C}$ and $k \stackrel{j}{\hookrightarrow} \widehat{\bar{C}}$. By applying the functor $\operatorname{Hom}_{\bar{R}}\left(-, \mathrm{E}_{\bar{R}}(k)\right)$ on i, we get an epimorphism $\mathrm{E}_{\bar{C}}(k) \rightarrow k$. Next, by applying the functor $\operatorname{Hom}_{\bar{R}}(-, \widehat{\bar{C}})$ on the later map, we see that

$$
\operatorname{Hom}_{\bar{R}}\left(\mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \mathrm{E}_{\bar{C}}(k), \mathrm{E}_{\bar{R}}(k)\right) \cong \operatorname{Hom}_{\bar{R}}\left(\mathrm{E}_{\bar{C}}(k), \widehat{\bar{C}}\right) \neq 0
$$

Hence, $\mathrm{E}_{\bar{C}}(k) \otimes_{\bar{R}} \mathrm{E}_{\bar{C}}(k)$ is a non-zero \bar{C}-injective \bar{R}-module, and so Lemma 2.4 yields that \bar{C} is a dualizing \bar{R}-module. Now, by Lemma 2.3 (v), we deduce that C is a dualizing R module.

We end the paper with the following immediate corollary.
Corollary 2.8. Let R be a finite dimensional ring and C a semidualizing R module. Then C is a dualizing R-module if and only if $\operatorname{Tor}_{i}^{R}\left(E, E^{\prime}\right)$ is C-injective for all C-injective R-modules E and E^{\prime} and all $i \geq 0$.

References

[B] H. BASs, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
[BH] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1998.
[C] L.W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353(5), (2001), 1839-1883.
[EH] E. E. Enochs and Z. Huang, Canonical filtrations of Gorenstein injective modules, Proc. Amer. Math. Soc. 139(7), (2011), 2415-2421.
[EJ] E. E. Enochs and O. M. G. Jenda, Tensor and torsion products of injective modules, J. Pure Appl. Algebra 76(2), (1991), 143-149.
[HJ1] H. Holm and P. JøRGENSEN, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205(2), (2006), 423-445.
[HJ2] H. Holm and P. JøRGENSEN, Cohen-Macaulay homological dimensions, Rend. Semin. Mat. Univ. Padova 117 (2007), 87-112.
[I] T. Ishikawa, On injective modules and flat modules, J. Math. Soc. Japan 17(3), (1965), 291-292.
[KLS] B. Kubik, M. J. Leamer and S. Sather-Wagstaff, Homology of Artinian and Matlis reflexive modules, I, J. Pure Appl. Algebra 215(10), (2011), 2486-2503.
[M] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1986.
[S] S. Sather-Wagstaff, Semidualizing modules, 2009, preprint.
[TYY] R. Takahashi, S. Yassemi and Y. Yoshino, On the existence of embeddings into modules of finite homological dimensions, Proc. Amer. Math. Soc. 138(7), (2010), 2265-2268.

Present Addresses:

K. Divanni-Aazar

Department of Mathematics,
AlZahra University,
Vanak, Post Code 19834, Tehran, Iran.
School of Mathematics,
Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.
e-mail: kdivaani@ipm.ir
M. Nikkhah Babaei

Department of Mathematics,
Alzahra University,
Vanak, Post Code 19834, Tehran, Iran.
e-mail: massnikkhah@yahoo.com
M. Tousi

Department of Mathematics, Shahid Beheshti University, G.C., Tehran, Iran.

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.
e-mail: mtousi@ipm.ir

[^0]: Received November 1, 2013
 2010 Mathematics Subject Classification: 13C05, 13D07, 13H10
 Key words and phrases: C-injective modules, dualizing modules, semidualizing modules, trivial extensions The research of the first and third authors are supported by grants from IPM (No. 92130212 and No. 92130211, respectively).

