Translator Disclaimer
December 2013 A Remark on Spectral Properties of Certain Non-selfadjoint Schrödinger Operators
Daisuke AIBA
Tokyo J. Math. 36(2): 337-345 (December 2013). DOI: 10.3836/tjm/1391177974

Abstract

In this paper, we study the spectral and pseudospectral properties of the differential operator $H_{\varepsilon} = -\partial_{x}^{2} + x^{2m} +i\varepsilon^{-1}f(x)$ on $L^{2}(\mathbb{R})$, where $\varepsilon > 0$ is a small parameter, $m \in \mathbb{N}$ and $f$ is a real-valued Morse function which satisfies $| \partial^{l}_{x} ( f(x) - |x|^{-k} ) | \le C|x|^{-k-l-1}$ for $l = 0,1,2,3$ and large $|x|$. We show that $\Psi(\varepsilon) = ( \sup_{\lambda \in \mathbb{R} } \| ( H_{\varepsilon} - i\lambda )^{-1} \| )^{-1}$ and $\Sigma(\varepsilon) = \inf \Re (\sigma(H_{\varepsilon}))$ satisfy $C^{-1} \varepsilon^{-\nu(m)} \le \Psi(\varepsilon) \le C \varepsilon^{-\nu(m)}$ and $\Sigma(\varepsilon) \ge C^{-1} \varepsilon^{-\nu(m)}$, $\nu(m) = \min \left\{ \frac{2m}{k+3m+1}, \frac{1}{2} \right\}$. This extends the result of I.~Gallagher, T.~Gallay and F.~Nier [3] (2009) for the case $m=1$ to general $m \in \mathbb{N}$.

Citation

Download Citation

Daisuke AIBA. "A Remark on Spectral Properties of Certain Non-selfadjoint Schrödinger Operators." Tokyo J. Math. 36 (2) 337 - 345, December 2013. https://doi.org/10.3836/tjm/1391177974

Information

Published: December 2013
First available in Project Euclid: 31 January 2014

zbMATH: 1293.35182
MathSciNet: MR3161561
Digital Object Identifier: 10.3836/tjm/1391177974

Subjects:
Primary: 35P15

Rights: Copyright © 2013 Publication Committee for the Tokyo Journal of Mathematics

JOURNAL ARTICLE
9 PAGES


SHARE
Vol.36 • No. 2 • December 2013
Back to Top