Translator Disclaimer
December 2011 On Some Functional-differential Inequalities Related to the Exponential Mapping
Włodzimierz FECHNER
Tokyo J. Math. 34(2): 345-352 (December 2011). DOI: 10.3836/tjm/1327931390

Abstract

We consider real-valued twice differentiable functions defined on an open interval. Our main result states that if a function $f$ satisfies some inequalities then a map $x\mapsto f(x)\exp(-cx)$ is convex, where $c$ is an arbitrary point of $\mathbf{R}$ or of $\mathbf{R}\setminus (c_1,c_2)$ for some real $c_1, c_2$.

Citation

Download Citation

Włodzimierz FECHNER. "On Some Functional-differential Inequalities Related to the Exponential Mapping." Tokyo J. Math. 34 (2) 345 - 352, December 2011. https://doi.org/10.3836/tjm/1327931390

Information

Published: December 2011
First available in Project Euclid: 30 January 2012

zbMATH: 1247.26005
MathSciNet: MR2918910
Digital Object Identifier: 10.3836/tjm/1327931390

Subjects:
Primary: 26A09
Secondary: 26A51‎, 26D10, 34A40, 34K38, ‎39B62

Rights: Copyright © 2011 Publication Committee for the Tokyo Journal of Mathematics

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.34 • No. 2 • December 2011
Back to Top