Translator Disclaimer
June 2008 Counting Points of the Curve $y^2=x^{12}+a$ over a Finite Field
Yasuhiro NIITSUMA
Tokyo J. Math. 31(1): 59-94 (June 2008). DOI: 10.3836/tjm/1219844824

Abstract

We give explicit formulas of the number of rational points and those of the congruence zeta functions for the hyperelliptic curves over a finite field defined by affine equations $y^2=x^6+a$, $y^2=x^{12}+a$ and $y^2=x(x^6+a)$.

Citation

Download Citation

Yasuhiro NIITSUMA. "Counting Points of the Curve $y^2=x^{12}+a$ over a Finite Field." Tokyo J. Math. 31 (1) 59 - 94, June 2008. https://doi.org/10.3836/tjm/1219844824

Information

Published: June 2008
First available in Project Euclid: 27 August 2008

zbMATH: 1235.11059
MathSciNet: MR2426795
Digital Object Identifier: 10.3836/tjm/1219844824

Subjects:
Primary: 11G20
Secondary: 11L05, 14G10

Rights: Copyright © 2008 Publication Committee for the Tokyo Journal of Mathematics

JOURNAL ARTICLE
36 PAGES


SHARE
Vol.31 • No. 1 • June 2008
Back to Top