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Abstract. In this note, we introduce a homological invariant for finitely generated modules over commutative
noetherian local rings by slightly modifying the definition of complete intersection dimension defined by Avramoyv,
Gasharov, and Peeva [4], and observe it from a relative point of view.

1. Introduction

Throughout this note, we assume that all rings are commutative noetherian rings, and all
modules are finitely generated.

Projective dimension and Gorenstein dimension (abbr. G-dimension) have played im-
portant roles in the classification of modules and rings. Recently, complete intersection di-
mension (abbr. CI-dimension) and Cohen-Macaulay dimension (abbr. CM-dimension) were
introduced by Avramov, Gasharov, and Peeva [4] and Gerko [6], respectively. The former
is defined by using projective dimension and the idea of quasi-deformation, and the latter is
defined by using G-dimension and the idea of G-quasideformation.

These dimensions are homological invariants for modules, and share many properties
with each other. For example, they satisfy the Auslander-Buchsbaum-type equalities. Every
module over a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) local ring
is of finite projective (resp. CI-, G-, CM-) dimension, and a local ring is a regular (resp.
complete intersection, Gorenstein, Cohen-Macaulay) ring if the projective (resp. CI-, G-,
CM-) dimension of its residue class field is finite. Moreover, among these dimensions, there
are inequalities which yield the well-known implications for a local ring R: R is regular = R
is a complete intersection = R is Gorenstein = R is Cohen-Macaulay.

In this note, we are interested in CI-dimension. Gulliksen [7] showed that every module
over a complete intersection has finite complexity, that is, the Betti numbers are eventually
bounded by a polynomial. As a result extending this, Avramov, Gasharov, and Peeva [4]
proved that any module of finite CI-dimension has finite complexity. Hence, free resolutions
of modules of finite CI-dimension are eventually well-behaved. However, there are a lot of
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unsolved problems on CI-dimension. For instance, it is unknown whether a module of finite
complexity is always of finite CI-dimension. Though we do not discuss these problems in this
note, it is important to consider CI-dimension.

Here we recall the definition of the CI-dimension of a module over a local ring R. It is
similar to that of virtual projective dimension introduced by Avramov [2]:

(1) A local homomorphism ¢ : S — R of local rings is called a deformation if ¢ is
surjective and the kernel of ¢ is generated by an S-regular sequence.

(2) A diagram S f) R < R of local homomorphisms of local rings is called a quasi-
deformation of R if « is faithfully flat and ¢ is a deformation.

(3) For an R-module M, the complete intersection dimension of M is defined as fol-
lows:

pdg(M ®r R')

,
Cl-dimgM = inf )| S = R < Risa .
—pdsR

quasi-deformation of R

Now, slightly modifying the definition of CI-dimension, we define a homological invari-
ant for a module over a local ring as follows.

DEFINITION 1.1. (1) We call a diagram S 4 R & R of local homomorphisms of
local rings an upper quasi-deformation of R if « is faithfully flat, the closed fiber of « is
regular, and ¢ is a deformation.

(2) For an R-module M, we define the upper complete intersection dimension (abbr.
CI*-dimension) of M as follows:

pdg(M ®r R')

—pdsR/

CI*-dimgM = inf
MR m { upper quasi-deformation of R

S — R <« Risan }

Here we itemize several properties of CI*-dimension, which are analogous to those of
CI-dimension. We omit their proofs because we can prove them in the same way as the proofs
of the corresponding results of CI-dimension given in [4]. Let R be a local ring with residue
field k, M # 0 an R-module, and x = x1, x2, - - - , X, a sequence in R. We denote by .QI’QM
the rth syzygy module of M.

(1) The following conditions are equivalent.

i) R is a complete intersection.
ii) CI*-dimgX < oo for any R-module X.
iii) CI*-dimgk < oo.

(2) IfCI*-dimgM < oo, then CI*-dimgM = depth R — depth, M.

(3) CI*-dimg$2,M = sup{CI*-dimgM — r, 0}.

4) Cr*-dimgM/xM = CI*-dimgM + n if x is M-regular.

(5) CI*-dimg;xyM/xM < CI*-dimgM if x is R-regular and M-regular.

The equality holds if CI*-dimgM < oo.
(6) CI*-dimg;xyM < CI*-dimgM — n if x is R-regular and xM = 0.
The equality holds if CI*-dimgM < oo.
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(7) Cl-dimgM < CI*-dimgM < pdzM.

If any one of these dimensions is finite, then it is equal to those to its left.

Araya, Takahashi, and Yoshino [1], modifying the definition of CM-dimension, define a
homological invariant for modules as a relative version of the modified CM-dimension. This
invariant has a lot of properties similar to projective dimension, CI-dimension, G-dimension,
and CM-dimension.

Let ¢ : S — R be a local homomorphism of local rings. The main purpose of this
note is to define a new homological invariant for an R-module M as a relative version of
CI*-dimension over R, and to study its properties. We will call this the upper complete inter-
section dimension of M relative to ¢, and denote it by CI* -dimg M. We shall observe that this
invariant has many properties similar to those of the invariant defined by Araya, Takahashi,
and Yoshino. For example, we will prove the following. Let k denote the residue class field
of R.

THEOREM 2.10. Let M be a non-zero R-module. If CI*-dimgM < oo, then
CI*-dimgM = depth R — depth, M.

THEOREM 2.14. Suppose that S = R and ¢ is the identity map on R. Then
CI*-dimyM = pdp M for every R-module M.

THEOREM 2.15. The following conditions are equivalent.
1) R is a complete intersection and S is a regular ring.
i) CI*-dimgM < oo for any R-module M.

iii) CI*-dimgk < oo.

2. Relative CI*-dimension

Throughout the section, ¢ : (S, n,[) — (R, m, k) always denotes a local homomorphism
of local rings.

In this section, we shall make the precise definition of the upper complete intersection di-
mension of an R-module relative to ¢ to observe CI*-dimension from a relative point of view.
To do this, we need the notion of P-factorization, instead of that of upper quasi-deformation
used in the definition of (absolute) CI*-dimension.

DEFINITION 2.1. Let

S/ ¢ R/

I

S — R,
¢
be a commutative diagram of local homomorphisms of local rings. We call this diagram a
P-factorization of ¢ if o and B are faithfully flat, the closed fiber of « is regular, and ¢’ is a
deformation.
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Note that this is an imitation of a G-factorization defined in [1]. The existence of a
P-factorization of ¢ transmits several properties of R to S:

PROPOSITION 2.2. Suppose that there exists a P-factorization of ¢. Then, if R is a
regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) ring, so is S.

PROOF. Let S L4 S’ S RER be a P-factorization of ¢. Suppose that R is a regular

(resp. complete intersection, Gorenstein, Cohen-Macaulay) ring. Since « is a faithfully flat
homomorphism with regular closed fiber, R’ is also a regular (resp. ...) ring. Since ¢’ is a
deformation, we easily see that S’ is also a regular (resp. ...) ring, and so is S by the flatness
of B. O

From now on, we consider the existence of a P-factorization of ¢. First of all, the above
proposition yields the following example which says that ¢ may not have a P-factorization.

EXAMPLE 2.3. Suppose that R = [ is the residue class field of S and ¢ is the natural
surjection from S to /. Then ¢ has no P-factorization unless S is regular.

Although there does not necessarily exist a P-factorization of ¢ in general, a P-
factorization of ¢ seems to exist whenever the ring S is regular. We are able to show it if
in addition we assume the condition that S contains a field:

THEOREM 2.4. Suppose that S is a regular local ring containing a field. Then every
local homomorphism ¢ : S — R of local rings has a P-factorization.

This theorem is essentially proved in [1]. But we shall give here a whole proof of it for
this note to be as self-contained as possible. We need the following two lemmas:

LEMMA 2.5. [3, Theorem 1.1] Let ¢ : (S,n) — (R, m) be a local homomorphism of

local rings, and a be the natural embedding from R into its m-adic completion R. Then there
exists a commutative diagram

of local homomorphisms of local rings such that B is faithfully flat, the closed fiber of B is
regular, and ¢’ is surjective. (Such a diagram is called a Cohen factorization of ¢.)

LEMMA 2.6. Let ¢ : S — R be a local homomorphism of complete local rings that
admit the common coefficient field k. Put S’ = S®i R. Let A : S — S’ be the injective

homomorphism mapping b € Stob®1 € §', ands : S' — R be the surjective homomorphism
&

mapping b®a € S' to ¢p(b)a € R. Suppose that S is regular. Then S A S = R a Risa
P-factorization of ¢.
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PROOF. Let yi, y2,--- ., ys be a minimal system of generators of the unique maximal
ideal of S. Put J = Kerg anddy; = y; ® 1 — 1 ® ¢ (y;) € §' foreach 1 <i <s.

CLAIM 1. Theideal J of S’ is generated by dyy, dy>, - -+ , dys.

Indeed, put Jo = (dy1,dys, - ,dys)S’. Letz = b&a be an element in J, and
let b = Zbi1i2~~~iSYi] yéz .-y be a power series expansion in yi, 2, -+ , ys with coeffi-
cients b ,..;; € k. Then we have b® 1 = 3 bjipoiy 1 @ D1 (12 @ D2 -+ (y, & Dis =
> biyii, 1 &S (1)) R P(32)2 - (1 R P (y5))™ = 1 ® ¢ (b) modulo Jo. It follows that
z=1® ¢ (b)a modulo Jy. Since ¢ (b)a = e(b®a) = 0, we have z = 0 modulo Jo, that is,
the element z € J belongs to Jy. Thus, we see that J = Jp.

CLAIM 2. The sequence dyi,dys, --- , dys is an S’-regular sequence.

Indeed, since S is regular, we may assume that S = k[[Y],Y2,---, Y]] and S’ =
R[[Y1, Ys, - -, Y]] are formal power series rings, and dy; = Y; — ¢(¥;) € S’ for each
1 < i < s. Note that the endomorphism on S’ which sends Y¥; to dy; is an automorphism.
Since the sequence Y1, Y2, - -+, Y, is §'-regular, we see that dy|, dys, - -+ , dy, also form an
S’-regular sequence.

These claims prove that the homomorphism ¢ is a deformation. On the other hand, it is
easy to see that X is faithfully flat. Thus, the lemma is proved. O

PROOF OF THEOREM 2.4. We may assume that R (resp. S) is complete in its m-adic
(resp. n-adic) topology. Hence Lemma 2.5 implies that ¢ has a Cohen factorization

S/
7 X
s

where B is a faithfully flat homomorphism with regular closed fiber, and ¢’ is a surjective
homomorphism. Hence § is also a regular local ring containing a field. Therefore, replacing
S with §’, we may assume that ¢ is a surjection. In particular R and S have the common
coefficient field, hence Lemma 2.6 implies that ¢ has a P-factorization, as desired. O

S

CONJECTURE 2.7. Whenever S is regular, the local homomorphism ¢ : S — R would
have a P-factorization.

Now, by using the idea of P-factorization, we define the CI*-dimension of a module in a
relative sense.

DEFINITION 2.8. For an R-module M, we put

pdg (M ®r R')

CI*-dimp M = inf{ pdg R

S—S - R <R
is a P-factorization of ¢
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and call it the upper complete intersection dimension of M relative to ¢.

By definition, CI*-dimyM = oo for an R-module M if ¢ has no P-factorization.
Supppose that ¢ has at least one P-factorization S — S’ — R’ <« R. Then we have
pdy(F ®g R') = pdg R’ (< 0o) for any free R-module F. Therefore Theorem 2.4 yields the
following result:

PROPOSITION 2.9. If S is a regular local ring that contains a field, then
CI*-dimy F = 0 (< 00)
for any free R-module F.

In the rest of this section, we observe the properties of relative CI*-dimension CI*-dimg.
We begin by proving that relative CI*-dimension also satisfies the Auslander-Buchsbaum-type
equality:

THEOREM 2.10. Let M be a non-zero R-module. IfCI*-dim(pM < 00, then

CI*-dimgM = depth R — depth, M .

PROOF. Since CI*-dimyp M < oo, there exists a P-factorization S ﬁ) S’ ﬂ) R &£ Rof
¢ such that CI*-dimy M = pdg (M ®r R’) — pdg'R’ < oo. Hence we see that

CI*-dimgM = pdy (M ®g R') — pdg R’
= (depth §" — depthg/ (M ®g R’)) — (depth §" — depthg R’)
= depths/R/ — depths/(M ®R R,) .

Note that ¢’ is surjective. Since « and B are faithfully flat, we obtain

depthg/ R” = depth R + depth R’/mR/,
depthg (M ®g R’) = depthx M + depth R /mR’.

It follows that CI*-dimg M = depth R — depth M. O

In view of this theorem, we notice that the value of the relative CI*-dimension of an
R-module is given independently of the ring S if it is finite.

PROPOSITION 2.11. Let M be an R-module. Then
(1) CI*-dimgM = CI*-dimgp M.
The equality holds if CT*-dimy M < oo.
(2) CI*-dimgM < pdxM if ¢ is faithfully flat.
The equality holds if in addition pdp M < o0.
PROOF. (1) Since the inequality holds if CI*-dimyM = oo, assume that
CI*-dimy M < oo. Let S LY N % R & R be a P-factorization of ¢ such that

pdg (M ®r R') — pdg' R’ < co. Then by definition S’ % R £ Risa quasi-deformation of
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R, which shows that CI*-dimg M < oo. Hence the assertion follows from Theorem 2.10 and
the Auslander-Buchsbaum-type equality for CI*-dimension.
(2) Suppose that ¢ is faithfully flat. Since the inequality holds if pdz M = oo, assume

that pdp M < oo. We easily see that the diagram S 14 R4 R ¥ Ris a P-factorization of
¢. Therefore we have CI*-dimy M < oo. Hence the assertion follows from Theorem 2.10 and
the Auslander-Buchsbaum formula for projective dimension. a

The inequality in the second assertion of the above proposition may not hold without the
faithful flatness of ¢; see Remark 2.17 below.
Now, recall that

CI*-dimgM < pdpM

for any R-module M. Hence the above proposition says that relative CI*-dimension is inserted
between absolute CI*-dimension and projective dimension if ¢ is faithfully flat.

It is natural to ask when relative CI*-dimension CI*-dimy coincides with absolute one
CI*-dimg as an invariant for R-modules. It seems to happen if S is the prime field of R.

Let us consider the case that the characteristic chark of k is zero. Then we easily see

/
that char R = 0. It follows that R has the prime field Q. Let §’ &R & Rbea quasi-
deformation of R. Since « is injective and ¢’ is surjective, the residue class field of R’ is of
characteristic zero, and so is that of S’. Hence we see that char S’ = 0, and there exists a
commutative diagram

Q — R,
¢

where ¢ and 8 denote the natural embeddings. Note that 8 is faithfully flat because Q is a
field. Therefore this diagram is a P-factorization of ¢. Thus, Proposition 2.11(1) yields the
following:

PROPOSITION 2.12. Suppose that k is of characteristic zero. If S is the prime field of
R, then

CI*-dimg M = CI*-dimg M
for any R-module M.

CONJECTURE 2.13. If S is the prime field of R, then it would always hold that
CI*-dimgM = CI*-dimg M for any R-module M.

As we have observed in Proposition 2.11, the relative CI*-dimension CI* -dimg M of an
R-module M is always less than or equal to its projective dimension pdz M, as long as ¢ is
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faithfully flat. The next theorem gives a sufficient condition for these dimensions to coincide
with each other as invariants for R-modules.

THEOREM 2.14. Suppose that S = R and ¢ is the identity map of R. Then
CI*-dimgM = pdxM
for every R-module M.

PROOF. The assumption in the theorem in particular implies that ¢ is faithfully flat.
Hence Proposition 2.11(2) yields one inequality relation in the theorem. Thus we have only
to prove the other inequality relation CI*-dimyM = pdpM. There is nothing to show if
CI*-dimy M = oo. Hence assume that CI*-dimgyM < oo. Then the identity map ¢ on R
has a P-factorization R L A\ 2, R & R such that pdg (M ®r R') < oo. Let! denote
the residue class field of S’. Taking an S’-sequence X = x1, x3, - - - , X, generating the kernel
of ¢/, we have RHomg (R',I') = Homg (Kq(x), 1) = @/_y ' [—i], where K,(x) is the
Koszul complex of x over S’. Noting that both o and B are faithfully flat, we see that

RHomg (M ®g R, ") = RHomg (M ®% §') @% R, 1)

= RHomy (M ®% S, RHomg/ (R, "))
>~ RHomg/(M @z S, @_o ' D[—il)
P_, RHomg (M ®g ', 1D [—i] .

e 1l

It follows from this that

Extl,(M ®g R',1') = H/(RHomg (M ®¢ R, 1)
=~ H/()_, RHomg (M ® §'.1)D[—i])

PBr_oExt), (M @ 8/, 1)) .

Note that Ext‘é/(M ®p R',I") = 0 for any j > 0 because pdg (M ®g R’) < co. Hence we

obtain Exté, (M ®g S',1") = 0forany j > 0, which implies that pdg (M ®g S’) < oco. Thus
we get pdp M < oo. Then the Auslander-Buchsbaum-type equalities for projective dimension
and CI*-dimension yield that CI*-dimg M = pdzx M = depth R — depthp M. a

We know that CI*-dimg M < oo for any R-module M if R is a complete intersection
and that R is a complete intersection if CI*-dimgk < oco. We can prove the following result
similar to this:

THEOREM 2.15. The following conditions are equivalent.

i) R is a complete intersection and S is a regular ring.

ii) CI*-dimgM < oo for any R-module M.

iii) CI*-dimgk < oo.

PROOF. i) = ii): It follows from Lemma 2.5 that there is a Cohen factorization

S ﬁ) s 4 R & Rof ¢. Since both the ring S and the closed fiber of g are regular, so



UPPER COMPLETE INTERSECTION DIMENSION 217

is S’ by the faithful flatness of 8. On the other hand, since R is a complete intersection, so

is its m-adic completion R. Hence the homomorphism ¢’ is a deformation. (A surjective
homomorphism from a regular local ring to a local complete intersection must be a deforma-

tion; see [5, Theorem 2.3.3].) Thus, we see that the factorization S £> S’ i/) R < Risa
P-factorization of ¢. The regularity of the ring S’ implies that every S’-module is of finite
projective dimension over §’, from which the condition ii) follows.

ii) = iii): This is trivial.

iii) = 1i): The condition iii) says that ¢ has a P-factorization S —ﬁ> S’ ﬂ R < R such
that pdg (k ® g R’) < 0o. Put A = k ®g R’. Note that A is a regular local ring because it is
the closed fiber of «. Leta = ay, a, - - - , a; be a regular system of parameters of A. Since
a is an A-regular sequence, we have pdgA/(a) = pdgyA + ¢ < oo. Since ¢’ is surjective,
we see that the quotient ring A/(a) is isomorphic to the residue class field I’ of S”. Hence we
obtain pdg/!’ < oo, which implies that S’ is regular, and so is S. On the other hand, it follows
from Theorem 2.11(1) that R is a complete intersection. a

Suppose that R is regular. Then, by Proposition 2.2, § is also regular if ¢ has at least one
P-factorization. Thus the above theorem implies the following corollary:

COROLLARY 2.16. Suppose that R is regular. If CI*-dimy N < oo for some R-
module N, then CI*-dimy M < oo for every R-module M.

REMARK 2.17. Relating to the second assertion of Proposition 2.11, there is no in-
equality relation between relative CI*-dimension and projective dimension in a general set-
ting. In fact, the following results immediately follow from Theorem 2.15:

(1) CI*-dimgk < pdgk if R is a complete intersection which is not regular and S is a
regular ring.

(2) CI*-dimgk > pdgk if R is regular and S is not regular.

We can calculate the relative CI*-dimension of each of the syzygy modules of an R-
module M by using the relative CI*-dimension of M:

PROPOSITION 2.18. For an R-module M and an integer n = 0,
CI*-dimy 2% M = sup{CI*-dimyM — n, 0} .

PROOF. We claim that CI*-dimy M < oo if and only if CI*-dimy Q}QM < 00. Indeed,
let § — §" — R’ < R be a P-factorization of ¢. There is a short exact sequence

0— QM — R" - M — 0
with some integer m. Since R’ is flat over R, we obtain
0> QM ®rR — R™ - M®r R — 0.

Note that pdg R’ < co. Hence we see that pdg/ (M ®g R') < oo if and only if pdg (2, M Qg
R’") < oco. This implies the claim.
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It follows from the claim that CI*-dimy M < oo if and only if CI*-dimy 23 M < oo.
Thus, in order to prove the proposition, we may assume that CI*-dimyM < oo and
CI*-dimy 2% M < oo. In particular, we have CI*-dimgM < oo by Proposition 2.11(1),
hence we also have CI-dimg M < co. Therefore [4, (1.9)] gives us the equality

depth, 2% M = min{depthp M + n, depth R} .
Consequently we obtain

CI*-dimg 2% M = depth R — depthp 23 M
= max{depth R — depthp M — n, 0}
= max{CI*-dimg M — n, 0},

as desired. O

As the last result of this note, we state the relationship between relative CI*-dimension
and regular sequences.

PROPOSITION 2.19. Letx = x1,x2,--- , Xy (resp. y = y1, Y2, - -+ , yn) be a sequence
in R (resp. S). Denote by ¢ (resp. @) the local homomorphism S/(y) — R/yR (resp.
S — R/(x)) induced by ¢. Then

(1) CI*-dimgM/xM = CI*-dimgM + m if X is M-regular.

2) CI*-dimqg M/yM < CI*-dimgM ify is S-regular, R-regular, and M-regular.

The equality holds if CI*-dimg M < oo.
3) CI*-dimJ,M < CI*-dimg M — m if x is R-regular and R-regular and XM = 0.
The equality holds if CT*-dimy M < oo.

PROOF. (1) By Theorem 2.10 we have only to show that CT*-dimg M /xM < oo if and
only if CI*-dimy M < oo. Let S — §" — R’ < R be a P-factorization of ¢. Since R’ is R-
flat, the sequence x is also (M ® g R')-regular. Hence we obtain pdg (M ®g R") /x(M®rR’) =
pdg (M ®g R') +m. Note that (M Qg R")/x(M ®g R') = (M /XM) ®g R’. Therefore we see
that pdg (M /xM) g R’ < oo if and only if pdg (M ®g R’) < oco. Thus the desired result is
proved.

(2) We may assume that CI*-dimyM < oo because the assertion immediately follows
if CI*-dimyM = oo. It suffices to prove that the left side of the inequality is also finite,
because the equality is implied by Theorem 2.10. There exists a P-factorization S — S’ —
R’ < Rof ¢ suchthatpdg (M®RrR’') < oo. Sincey is both S-regular and R-regular, it is easy
to see that the induced diagram S/(y) — S'/yS’ — R’/yR’ < R/yR is a P-factorization of
¢. Asy is M-regular, it is also (M ®g R’)-regular, and we have pdg jys (M/yM) @ R" =
pdg ys (M ®g RN /y(M®rR') = pdg (M ®g R") < co. Hence we have CI*-diméM/yM <
00.

(3) Suppose that CI*-dimgM < oo. It is enough to prove that CI*-dim d;M < oo by

Theorem 2.10. Let S — §” — R’ < R of ¢ be a P-factorization of ¢ with pd¢/(M ®g R') <
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0o. Then we easily see that the induced diagram S — S — R//xR’ < R/(x) is a P-

factorization of q} Since M Qg (x) R'/XxR' = M ®p R’ has finite projective dimension over
S’, we have CI*-dimd;M < 00, as desired. O
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