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Abstract. In this note, we introduce a homological invariant for finitely generated modules over commutative
noetherian local rings by slightly modifying the definition of complete intersection dimension defined by Avramov,
Gasharov, and Peeva [4], and observe it from a relative point of view.

1. Introduction

Throughout this note, we assume that all rings are commutative noetherian rings, and all
modules are finitely generated.

Projective dimension and Gorenstein dimension (abbr. G-dimension) have played im-
portant roles in the classification of modules and rings. Recently, complete intersection di-
mension (abbr. CI-dimension) and Cohen-Macaulay dimension (abbr. CM-dimension) were
introduced by Avramov, Gasharov, and Peeva [4] and Gerko [6], respectively. The former
is defined by using projective dimension and the idea of quasi-deformation, and the latter is
defined by using G-dimension and the idea of G-quasideformation.

These dimensions are homological invariants for modules, and share many properties
with each other. For example, they satisfy the Auslander-Buchsbaum-type equalities. Every
module over a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) local ring
is of finite projective (resp. CI-, G-, CM-) dimension, and a local ring is a regular (resp.
complete intersection, Gorenstein, Cohen-Macaulay) ring if the projective (resp. CI-, G-,
CM-) dimension of its residue class field is finite. Moreover, among these dimensions, there
are inequalities which yield the well-known implications for a local ring R: R is regular⇒ R

is a complete intersection⇒ R is Gorenstein⇒ R is Cohen-Macaulay.
In this note, we are interested in CI-dimension. Gulliksen [7] showed that every module

over a complete intersection has finite complexity, that is, the Betti numbers are eventually
bounded by a polynomial. As a result extending this, Avramov, Gasharov, and Peeva [4]
proved that any module of finite CI-dimension has finite complexity. Hence, free resolutions
of modules of finite CI-dimension are eventually well-behaved. However, there are a lot of
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unsolved problems on CI-dimension. For instance, it is unknown whether a module of finite
complexity is always of finite CI-dimension. Though we do not discuss these problems in this
note, it is important to consider CI-dimension.

Here we recall the definition of the CI-dimension of a module over a local ring R. It is
similar to that of virtual projective dimension introduced by Avramov [2]:

(1) A local homomorphism φ : S → R of local rings is called a deformation if φ is
surjective and the kernel of φ is generated by an S-regular sequence.

(2) A diagram S
φ→ R′ α← R of local homomorphisms of local rings is called a quasi-

deformation of R if α is faithfully flat and φ is a deformation.
(3) For an R-module M , the complete intersection dimension of M is defined as fol-

lows:

CI-dimRM = inf

{
pdS(M ⊗R R′) S → R′ ← R is a

−pdSR′ quasi-deformation of R

}
.

Now, slightly modifying the definition of CI-dimension, we define a homological invari-
ant for a module over a local ring as follows.

DEFINITION 1.1. (1) We call a diagram S
φ→ R′ α← R of local homomorphisms of

local rings an upper quasi-deformation of R if α is faithfully flat, the closed fiber of α is
regular, and φ is a deformation.

(2) For an R-module M , we define the upper complete intersection dimension (abbr.
CI∗-dimension) of M as follows:

CI∗-dimRM = inf

{
pdS(M ⊗R R′) S → R′ ← R is an

−pdSR′ upper quasi-deformation of R

}
.

Here we itemize several properties of CI∗-dimension, which are analogous to those of
CI-dimension. We omit their proofs because we can prove them in the same way as the proofs
of the corresponding results of CI-dimension given in [4]. Let R be a local ring with residue
field k, M �= 0 an R-module, and x = x1, x2, · · · , xn a sequence in R. We denote by Ωr

RM

the rth syzygy module of M .
(1) The following conditions are equivalent.

i) R is a complete intersection.
ii) CI∗-dimRX <∞ for any R-module X.

iii) CI∗-dimRk <∞.
(2) If CI∗-dimRM <∞, then CI∗-dimRM = depth R − depthRM .
(3) CI∗-dimRΩr

RM = sup{CI∗-dimRM − r, 0}.
(4) CI∗-dimRM/xM = CI∗-dimRM + n if x is M-regular.
(5) CI∗-dimR/(x)M/xM ≤ CI∗-dimRM if x is R-regular and M-regular.

The equality holds if CI∗-dimRM <∞.
(6) CI∗-dimR/(x)M ≤ CI∗-dimRM − n if x is R-regular and xM = 0.

The equality holds if CI∗-dimRM <∞.
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(7) CI-dimRM ≤ CI∗-dimRM ≤ pdRM .
If any one of these dimensions is finite, then it is equal to those to its left.

Araya, Takahashi, and Yoshino [1], modifying the definition of CM-dimension, define a
homological invariant for modules as a relative version of the modified CM-dimension. This
invariant has a lot of properties similar to projective dimension, CI-dimension, G-dimension,
and CM-dimension.

Let φ : S → R be a local homomorphism of local rings. The main purpose of this
note is to define a new homological invariant for an R-module M as a relative version of
CI∗-dimension over R, and to study its properties. We will call this the upper complete inter-
section dimension of M relative to φ, and denote it by CI∗-dimφM . We shall observe that this
invariant has many properties similar to those of the invariant defined by Araya, Takahashi,
and Yoshino. For example, we will prove the following. Let k denote the residue class field
of R.

THEOREM 2.10. Let M be a non-zero R-module. If CI∗-dimφM < ∞, then
CI∗-dimφM = depth R − depthRM .

THEOREM 2.14. Suppose that S = R and φ is the identity map on R. Then
CI∗-dimφM = pdRM for every R-module M .

THEOREM 2.15. The following conditions are equivalent.
i) R is a complete intersection and S is a regular ring.

ii) CI∗-dimφM <∞ for any R-module M .
iii) CI∗-dimφk <∞.

2. Relative CI∗-dimension

Throughout the section, φ : (S, n, l)→ (R,m, k) always denotes a local homomorphism
of local rings.

In this section, we shall make the precise definition of the upper complete intersection di-
mension of an R-module relative to φ to observe CI∗-dimension from a relative point of view.
To do this, we need the notion of P-factorization, instead of that of upper quasi-deformation
used in the definition of (absolute) CI∗-dimension.

DEFINITION 2.1. Let

S′ φ′−−→ R′

β

� �α

S −−→
φ

R ,

be a commutative diagram of local homomorphisms of local rings. We call this diagram a
P-factorization of φ if α and β are faithfully flat, the closed fiber of α is regular, and φ′ is a
deformation.
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Note that this is an imitation of a G-factorization defined in [1]. The existence of a
P-factorization of φ transmits several properties of R to S:

PROPOSITION 2.2. Suppose that there exists a P-factorization of φ. Then, if R is a
regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) ring, so is S.

PROOF. Let S
β→ S′ φ′→ R′ α← R be a P-factorization of φ. Suppose that R is a regular

(resp. complete intersection, Gorenstein, Cohen-Macaulay) ring. Since α is a faithfully flat
homomorphism with regular closed fiber, R′ is also a regular (resp. ...) ring. Since φ′ is a
deformation, we easily see that S′ is also a regular (resp. ...) ring, and so is S by the flatness
of β. �

From now on, we consider the existence of a P-factorization of φ. First of all, the above
proposition yields the following example which says that φ may not have a P-factorization.

EXAMPLE 2.3. Suppose that R = l is the residue class field of S and φ is the natural
surjection from S to l. Then φ has no P-factorization unless S is regular.

Although there does not necessarily exist a P-factorization of φ in general, a P-
factorization of φ seems to exist whenever the ring S is regular. We are able to show it if
in addition we assume the condition that S contains a field:

THEOREM 2.4. Suppose that S is a regular local ring containing a field. Then every
local homomorphism φ : S → R of local rings has a P-factorization.

This theorem is essentially proved in [1]. But we shall give here a whole proof of it for
this note to be as self-contained as possible. We need the following two lemmas:

LEMMA 2.5. [3, Theorem 1.1] Let φ : (S, n) → (R,m) be a local homomorphism of

local rings, and α be the natural embedding from R into its m-adic completion R̂. Then there
exists a commutative diagram

S′ φ′−−→ R̂

β

� �α

S −−→
φ

R

of local homomorphisms of local rings such that β is faithfully flat, the closed fiber of β is
regular, and φ′ is surjective. (Such a diagram is called a Cohen factorization of φ.)

LEMMA 2.6. Let φ : S → R be a local homomorphism of complete local rings that
admit the common coefficient field k. Put S′ = S ⊗̂k R. Let λ : S → S′ be the injective

homomorphism mapping b ∈ S to b⊗̂1 ∈ S′, and ε : S′ → R be the surjective homomorphism

mapping b ⊗̂ a ∈ S′ to φ(b)a ∈ R. Suppose that S is regular. Then S
λ→ S′ ε→ R

id← R is a
P-factorization of φ.
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PROOF. Let y1, y2, · · · , ys be a minimal system of generators of the unique maximal
ideal of S. Put J = Ker ε and dyi = yi ⊗̂ 1− 1 ⊗̂φ(yi) ∈ S′ for each 1 � i � s.

CLAIM 1. The ideal J of S′ is generated by dy1, dy2, · · · , dys .

Indeed, put J0 = (dy1, dy2, · · · , dys)S
′. Let z = b ⊗̂ a be an element in J, and

let b = ∑
bi1i2···is y

i1
1 y

i2
2 · · · yis

s be a power series expansion in y1, y2, · · · , ys with coeffi-

cients bi1i2···is ∈ k. Then we have b ⊗̂ 1 = ∑
bi1i2···is (y1 ⊗̂ 1)i1(y2 ⊗̂ 1)i2 · · · (ys ⊗̂ 1)is ≡∑

bi1i2···is (1 ⊗̂φ(y1))
i1(1 ⊗̂φ(y2))

i2 · · · (1 ⊗̂φ(ys))
is = 1 ⊗̂φ(b) modulo J0. It follows that

z ≡ 1 ⊗̂φ(b)a modulo J0. Since φ(b)a = ε(b ⊗̂ a) = 0, we have z ≡ 0 modulo J0, that is,
the element z ∈ J belongs to J0. Thus, we see that J = J0.

CLAIM 2. The sequence dy1, dy2, · · · , dys is an S′-regular sequence.

Indeed, since S is regular, we may assume that S = k[[Y1, Y2, · · · , Ys ]] and S′ =
R[[Y1, Y2, · · · , Ys ]] are formal power series rings, and dyi = Yi − φ(Yi) ∈ S′ for each
1 � i � s. Note that the endomorphism on S′ which sends Yi to dyi is an automorphism.
Since the sequence Y1, Y2, · · · , Ys is S′-regular, we see that dy1, dy2, · · · , dys also form an
S′-regular sequence.

These claims prove that the homomorphism ε is a deformation. On the other hand, it is
easy to see that λ is faithfully flat. Thus, the lemma is proved. �

PROOF OF THEOREM 2.4. We may assume that R (resp. S) is complete in its m-adic
(resp. n-adic) topology. Hence Lemma 2.5 implies that φ has a Cohen factorization

S �
φ

R ,
�
��� �

���

S′

β φ′

where β is a faithfully flat homomorphism with regular closed fiber, and φ′ is a surjective
homomorphism. Hence S′ is also a regular local ring containing a field. Therefore, replacing
S with S′, we may assume that φ is a surjection. In particular R and S have the common
coefficient field, hence Lemma 2.6 implies that φ has a P-factorization, as desired. �

CONJECTURE 2.7. Whenever S is regular, the local homomorphism φ : S → R would
have a P-factorization.

Now, by using the idea of P-factorization, we define the CI∗-dimension of a module in a
relative sense.

DEFINITION 2.8. For an R-module M , we put

CI∗-dimφM = inf

{
pdS ′(M ⊗R R′) S → S′ → R′ ← R

−pdS ′R
′ is a P-factorization of φ

}
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and call it the upper complete intersection dimension of M relative to φ.

By definition, CI∗-dimφM = ∞ for an R-module M if φ has no P-factorization.
Supppose that φ has at least one P-factorization S → S′ → R′ ← R. Then we have
pdS ′(F ⊗R R′) = pdS ′R

′ (<∞) for any free R-module F . Therefore Theorem 2.4 yields the
following result:

PROPOSITION 2.9. If S is a regular local ring that contains a field, then

CI∗-dimφF = 0 (<∞)

for any free R-module F .

In the rest of this section, we observe the properties of relative CI∗-dimension CI∗-dimφ .
We begin by proving that relative CI∗-dimension also satisfies the Auslander-Buchsbaum-type
equality:

THEOREM 2.10. Let M be a non-zero R-module. If CI∗-dimφM <∞, then

CI∗-dimφM = depth R − depthRM .

PROOF. Since CI∗-dimφM <∞, there exists a P-factorization S
β→ S′ φ′→ R′ α← R of

φ such that CI∗-dimφM = pdS ′(M ⊗R R′)− pdS ′R
′ <∞. Hence we see that

CI∗-dimφM = pdS ′(M ⊗R R′)− pdS ′R
′

= (depth S′ − depthS ′(M ⊗R R′))− (depth S′ − depthS ′R
′)

= depthS ′R
′ − depthS ′(M ⊗R R′) .

Note that φ′ is surjective. Since α and β are faithfully flat, we obtain{
depthS ′R

′ = depth R + depth R′/mR′,
depthS ′(M ⊗R R′) = depthRM + depth R′/mR′ .

It follows that CI∗-dimφM = depth R − depthRM . �

In view of this theorem, we notice that the value of the relative CI∗-dimension of an
R-module is given independently of the ring S if it is finite.

PROPOSITION 2.11. Let M be an R-module. Then
(1) CI∗-dimφM � CI∗-dimRM .

The equality holds if CI∗-dimφM <∞.
(2) CI∗-dimφM � pdRM if φ is faithfully flat.

The equality holds if in addition pdRM <∞.

PROOF. (1) Since the inequality holds if CI∗-dimφM = ∞, assume that

CI∗-dimφ M < ∞. Let S
β→ S′ φ′→ R′ α← R be a P-factorization of φ such that

pdS ′(M ⊗R R′)− pdS ′R
′ <∞. Then by definition S′ φ′→ R′ α← R is a quasi-deformation of
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R, which shows that CI∗-dimRM <∞. Hence the assertion follows from Theorem 2.10 and
the Auslander-Buchsbaum-type equality for CI∗-dimension.

(2) Suppose that φ is faithfully flat. Since the inequality holds if pdRM = ∞, assume

that pdRM < ∞. We easily see that the diagram S
φ→ R

id→ R
id← R is a P-factorization of

φ. Therefore we have CI∗-dimφM <∞. Hence the assertion follows from Theorem 2.10 and
the Auslander-Buchsbaum formula for projective dimension. �

The inequality in the second assertion of the above proposition may not hold without the
faithful flatness of φ; see Remark 2.17 below.

Now, recall that

CI∗-dimRM � pdRM

for any R-module M . Hence the above proposition says that relative CI∗-dimension is inserted
between absolute CI∗-dimension and projective dimension if φ is faithfully flat.

It is natural to ask when relative CI∗-dimension CI∗-dimφ coincides with absolute one
CI∗-dimR as an invariant for R-modules. It seems to happen if S is the prime field of R.

Let us consider the case that the characteristic char k of k is zero. Then we easily see

that char R = 0. It follows that R has the prime field Q. Let S′ φ′→ R′ α← R be a quasi-
deformation of R. Since α is injective and φ′ is surjective, the residue class field of R′ is of
characteristic zero, and so is that of S′. Hence we see that char S′ = 0, and there exists a
commutative diagram

S′ φ′−−→ R′

β

� �α

Q −−→
φ

R ,

where φ and β denote the natural embeddings. Note that β is faithfully flat because Q is a
field. Therefore this diagram is a P-factorization of φ. Thus, Proposition 2.11(1) yields the
following:

PROPOSITION 2.12. Suppose that k is of characteristic zero. If S is the prime field of
R, then

CI∗-dimφM = CI∗-dimRM

for any R-module M .

CONJECTURE 2.13. If S is the prime field of R, then it would always hold that
CI∗-dimφM = CI∗-dimRM for any R-module M .

As we have observed in Proposition 2.11, the relative CI∗-dimension CI∗-dimφM of an
R-module M is always less than or equal to its projective dimension pdRM , as long as φ is
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faithfully flat. The next theorem gives a sufficient condition for these dimensions to coincide
with each other as invariants for R-modules.

THEOREM 2.14. Suppose that S = R and φ is the identity map of R. Then

CI∗-dimφM = pdRM

for every R-module M .

PROOF. The assumption in the theorem in particular implies that φ is faithfully flat.
Hence Proposition 2.11(2) yields one inequality relation in the theorem. Thus we have only
to prove the other inequality relation CI∗-dimφM � pdRM . There is nothing to show if
CI∗-dimφM = ∞. Hence assume that CI∗-dimφM < ∞. Then the identity map φ on R

has a P-factorization R
β→ S′ φ′→ R′ α← R such that pdS ′(M ⊗R R′) < ∞. Let l′ denote

the residue class field of S′. Taking an S′-sequence x = x1, x2, · · · , xr generating the kernel

of φ′, we have RHomS ′(R′, l′) ∼= HomS ′(K•(x), l′) ∼= ⊕r
i=0 l′(

r
i)[−i], where K•(x) is the

Koszul complex of x over S′. Noting that both α and β are faithfully flat, we see that

RHomS ′(M ⊗R R′, l′) ∼= RHomS ′((M ⊗L
R S′)⊗L

S ′ R
′, l′)

∼= RHomS ′(M ⊗L
R S′, RHomS ′(R′, l′))

∼= RHomS ′(M ⊗R S′,
⊕r

i=0 l′(
r
i)[−i])

∼= ⊕r
i=0 RHomS ′(M ⊗R S′, l′)(

r
i)[−i] .

It follows from this that

Extj
S ′(M ⊗R R′, l′) ∼= Hj (RHomS ′(M ⊗R R′, l′))

∼= Hj (
⊕r

i=0 RHomS ′(M ⊗R S′, l′)(
r
i)[−i])

∼= ⊕r
i=0 Extj−i

S ′ (M ⊗R S′, l′)(
r
i) .

Note that Extj
S ′(M ⊗R R′, l′) = 0 for any j 
 0 because pdS ′(M ⊗R R′) < ∞. Hence we

obtain Extj
S ′(M ⊗R S′, l′) = 0 for any j 
 0, which implies that pdS ′(M ⊗R S′) <∞. Thus

we get pdRM <∞. Then the Auslander-Buchsbaum-type equalities for projective dimension
and CI∗-dimension yield that CI∗-dimφM = pdRM = depth R − depthRM . �

We know that CI∗-dimRM < ∞ for any R-module M if R is a complete intersection
and that R is a complete intersection if CI∗-dimRk < ∞. We can prove the following result
similar to this:

THEOREM 2.15. The following conditions are equivalent.
i) R is a complete intersection and S is a regular ring.

ii) CI∗-dimφM <∞ for any R-module M .
iii) CI∗-dimφk <∞.

PROOF. i) ⇒ ii): It follows from Lemma 2.5 that there is a Cohen factorization

S
β→ S′ φ′→ R̂

α← R of φ. Since both the ring S and the closed fiber of β are regular, so
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is S′ by the faithful flatness of β. On the other hand, since R is a complete intersection, so

is its m-adic completion R̂. Hence the homomorphism φ′ is a deformation. (A surjective
homomorphism from a regular local ring to a local complete intersection must be a deforma-

tion; see [5, Theorem 2.3.3].) Thus, we see that the factorization S
β→ S′ φ′→ R̂

α← R is a
P-factorization of φ. The regularity of the ring S′ implies that every S′-module is of finite
projective dimension over S′, from which the condition ii) follows.

ii)⇒ iii): This is trivial.

iii)⇒ i): The condition iii) says that φ has a P-factorization S
β→ S′ φ′→ R′ α← R such

that pdS ′(k ⊗R R′) < ∞. Put A = k ⊗R R′. Note that A is a regular local ring because it is
the closed fiber of α. Let a = a1, a2, · · · , at be a regular system of parameters of A. Since
a is an A-regular sequence, we have pdS ′A/(a) = pdS ′A + t < ∞. Since φ′ is surjective,
we see that the quotient ring A/(a) is isomorphic to the residue class field l′ of S′. Hence we
obtain pdS ′ l

′ <∞, which implies that S′ is regular, and so is S. On the other hand, it follows
from Theorem 2.11(1) that R is a complete intersection. �

Suppose that R is regular. Then, by Proposition 2.2, S is also regular if φ has at least one
P-factorization. Thus the above theorem implies the following corollary:

COROLLARY 2.16. Suppose that R is regular. If CI∗-dimφN < ∞ for some R-
module N, then CI∗-dimφM <∞ for every R-module M .

REMARK 2.17. Relating to the second assertion of Proposition 2.11, there is no in-
equality relation between relative CI∗-dimension and projective dimension in a general set-
ting. In fact, the following results immediately follow from Theorem 2.15:

(1) CI∗-dimφk < pdRk if R is a complete intersection which is not regular and S is a
regular ring.

(2) CI∗-dimφk > pdRk if R is regular and S is not regular.

We can calculate the relative CI∗-dimension of each of the syzygy modules of an R-
module M by using the relative CI∗-dimension of M:

PROPOSITION 2.18. For an R-module M and an integer n � 0,

CI∗-dimφΩn
RM = sup{CI∗-dimφM − n, 0} .

PROOF. We claim that CI∗-dimφM < ∞ if and only if CI∗-dimφΩ1
RM < ∞. Indeed,

let S → S′ → R′ ← R be a P-factorization of φ. There is a short exact sequence

0→ Ω1
RM → Rm → M → 0

with some integer m. Since R′ is flat over R, we obtain

0→ Ω1
RM ⊗R R′ → R′m → M ⊗R R′ → 0 .

Note that pdS ′R
′ <∞. Hence we see that pdS ′(M⊗R R′) <∞ if and only if pdS ′(Ω

1
RM⊗R

R′) <∞. This implies the claim.
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It follows from the claim that CI∗-dimφM < ∞ if and only if CI∗-dimφΩn
RM < ∞.

Thus, in order to prove the proposition, we may assume that CI∗-dimφM < ∞ and
CI∗-dimφΩn

RM < ∞. In particular, we have CI∗-dimRM < ∞ by Proposition 2.11(1),
hence we also have CI-dimRM <∞. Therefore [4, (1.9)] gives us the equality

depthRΩn
RM = min{depthRM + n, depth R} .

Consequently we obtain

CI∗-dimφΩn
RM = depth R − depthRΩn

RM

= max{depth R − depthRM − n, 0}
= max{CI∗-dimφM − n, 0} ,

as desired. �

As the last result of this note, we state the relationship between relative CI∗-dimension
and regular sequences.

PROPOSITION 2.19. Let x = x1, x2, · · · , xm (resp. y = y1, y2, · · · , yn) be a sequence

in R (resp. S). Denote by φ̄ (resp. φ̃) the local homomorphism S/(y) → R/yR (resp.
S → R/(x)) induced by φ. Then

(1) CI∗-dimφM/xM = CI∗-dimφM +m if x is M-regular.
(2) CI∗-dimφ̄M/yM � CI∗-dimφM if y is S-regular, R-regular, and M-regular.

The equality holds if CI∗-dimφM <∞.
(3) CI∗-dimφ̃M � CI∗-dimφM −m if x is R-regular and R-regular and xM = 0.

The equality holds if CI∗-dimφM <∞.

PROOF. (1) By Theorem 2.10 we have only to show that CI∗-dimφM/xM <∞ if and
only if CI∗-dimφM < ∞. Let S → S′ → R′ ← R be a P-factorization of φ. Since R′ is R-
flat, the sequence x is also (M⊗RR′)-regular. Hence we obtain pdS ′(M⊗RR′)/x(M⊗RR′) =
pdS ′(M⊗R R′)+m. Note that (M⊗R R′)/x(M⊗R R′) ∼= (M/xM)⊗R R′. Therefore we see
that pdS ′(M/xM)⊗R R′ <∞ if and only if pdS ′(M ⊗R R′) <∞. Thus the desired result is
proved.

(2) We may assume that CI∗-dimφM <∞ because the assertion immediately follows
if CI∗-dimφM = ∞. It suffices to prove that the left side of the inequality is also finite,
because the equality is implied by Theorem 2.10. There exists a P-factorization S → S′ →
R′ ← R of φ such that pdS ′(M⊗RR′) <∞. Since y is both S-regular and R-regular, it is easy
to see that the induced diagram S/(y)→ S′/yS′ → R′/yR′ ← R/yR is a P-factorization of
φ̄. As y is M-regular, it is also (M ⊗R R′)-regular, and we have pdS ′/yS ′(M/yM) ⊗R R′ =
pdS ′/yS ′(M⊗R R′)/y(M⊗R R′) = pdS ′(M⊗R R′) <∞. Hence we have CI∗-dimφ̄M/yM <

∞.
(3) Suppose that CI∗-dimφM < ∞. It is enough to prove that CI∗-dimφ̃M < ∞ by

Theorem 2.10. Let S → S′ → R′ ← R of φ be a P-factorization of φ with pdS ′(M⊗R R′) <
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∞. Then we easily see that the induced diagram S → S′ → R′/xR′ ← R/(x) is a P-

factorization of φ̃. Since M ⊗R/(x) R′/xR′ ∼= M ⊗R R′ has finite projective dimension over
S′, we have CI∗-dimφ̃M <∞, as desired. �
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