Токуо J. Матн. Vol. 27, No. 1, 2004

Upper Complete Intersection Dimension Relative to a Local Homomorphism

Ryo TAKAHASHI

Okayama University

(Communicated by R. Tsushima)

Abstract. In this note, we introduce a homological invariant for finitely generated modules over commutative noetherian local rings by slightly modifying the definition of complete intersection dimension defined by Avramov, Gasharov, and Peeva [4], and observe it from a relative point of view.

1. Introduction

Throughout this note, we assume that all rings are commutative noetherian rings, and all modules are finitely generated.

Projective dimension and Gorenstein dimension (abbr. G-dimension) have played important roles in the classification of modules and rings. Recently, complete intersection dimension (abbr. CI-dimension) and Cohen-Macaulay dimension (abbr. CM-dimension) were introduced by Avramov, Gasharov, and Peeva [4] and Gerko [6], respectively. The former is defined by using projective dimension and the idea of quasi-deformation, and the latter is defined by using G-dimension and the idea of G-quasideformation.

These dimensions are homological invariants for modules, and share many properties with each other. For example, they satisfy the Auslander-Buchsbaum-type equalities. Every module over a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) local ring is of finite projective (resp. CI-, G-, CM-) dimension, and a local ring is a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) ring if the projective (resp. CI-, G-, CM-) dimension of its residue class field is finite. Moreover, among these dimensions, there are inequalities which yield the well-known implications for a local ring R: R is regular $\Rightarrow R$ is a complete intersection $\Rightarrow R$ is Gorenstein $\Rightarrow R$ is Cohen-Macaulay.

In this note, we are interested in CI-dimension. Gulliksen [7] showed that every module over a complete intersection has finite complexity, that is, the Betti numbers are eventually bounded by a polynomial. As a result extending this, Avramov, Gasharov, and Peeva [4] proved that any module of finite CI-dimension has finite complexity. Hence, free resolutions of modules of finite CI-dimension are eventually well-behaved. However, there are a lot of

Received May 1, 2003

Key words and phrases. complete intersection, CI-dimension.

²⁰⁰⁰ Mathematics Subject Classification: 13D05, 13H10, 14M10.

unsolved problems on CI-dimension. For instance, it is unknown whether a module of finite complexity is always of finite CI-dimension. Though we do not discuss these problems in this note, it is important to consider CI-dimension.

Here we recall the definition of the CI-dimension of a module over a local ring R. It is similar to that of virtual projective dimension introduced by Avramov [2]:

(1) A local homomorphism $\phi : S \to R$ of local rings is called a *deformation* if ϕ is surjective and the kernel of ϕ is generated by an S-regular sequence.

(2) A diagram $S \xrightarrow{\phi} R' \xleftarrow{\alpha} R$ of local homomorphisms of local rings is called a *quasi*deformation of R if α is faithfully flat and ϕ is a deformation.

(3) For an *R*-module M, the *complete intersection dimension* of M is defined as follows:

$$\text{CI-dim}_R M = \inf \left\{ \begin{array}{c} \text{pd}_S(M \otimes_R R') \\ -\text{pd}_S R' \end{array} \middle| \begin{array}{c} S \to R' \leftarrow R \text{ is a} \\ \text{quasi-deformation of } R \end{array} \right\}.$$

Now, slightly modifying the definition of CI-dimension, we define a homological invariant for a module over a local ring as follows.

DEFINITION 1.1. (1) We call a diagram $S \xrightarrow{\phi} R' \xleftarrow{\alpha} R$ of local homomorphisms of local rings an *upper quasi-deformation* of R if α is faithfully flat, the closed fiber of α is regular, and ϕ is a deformation.

(2) For an *R*-module M, we define the *upper complete intersection dimension* (abbr. CI*-dimension) of M as follows:

$$\operatorname{CI}^*\operatorname{-dim}_R M = \inf \left\{ \begin{array}{c|c} \operatorname{pd}_S(M \otimes_R R') \\ -\operatorname{pd}_S R' \end{array} \middle| \begin{array}{c} S \to R' \leftarrow R \text{ is an} \\ \text{upper quasi-deformation of } R \end{array} \right\}.$$

Here we itemize several properties of CI*-dimension, which are analogous to those of CI-dimension. We omit their proofs because we can prove them in the same way as the proofs of the corresponding results of CI-dimension given in [4]. Let *R* be a local ring with residue field $k, M \neq 0$ an *R*-module, and $\mathbf{x} = x_1, x_2, \dots, x_n$ a sequence in *R*. We denote by $\Omega_R^r M$ the *r*th syzygy module of *M*.

- (1) The following conditions are equivalent.
 - i) *R* is a complete intersection.
 - ii) CI^* -dim_{*R*} $X < \infty$ for any *R*-module X.
 - iii) $CI^*-\dim_R k < \infty$.
- (2) If $\operatorname{CI}^*\operatorname{-dim}_R M < \infty$, then $\operatorname{CI}^*\operatorname{-dim}_R M = \operatorname{depth}_R M$.
- (3) $\operatorname{CI}^*\operatorname{-dim}_R \Omega_R^r M = \sup\{\operatorname{CI}^*\operatorname{-dim}_R M r, 0\}.$
- (4) $\operatorname{CI}^*\operatorname{-dim}_R M/\mathbf{x}M = \operatorname{CI}^*\operatorname{-dim}_R M + n$ if \mathbf{x} is M-regular.
- (5) $\operatorname{CI}^*\operatorname{-dim}_{R/(\mathbf{x})}M/\mathbf{x}M \leq \operatorname{CI}^*\operatorname{-dim}_R M$ if \mathbf{x} is *R*-regular and *M*-regular. The equality holds if $\operatorname{CI}^*\operatorname{-dim}_R M < \infty$.
- (6) $\operatorname{CI}^*\operatorname{-dim}_{R/(\mathbf{x})} M \leq \operatorname{CI}^*\operatorname{-dim}_R M n$ if \mathbf{x} is R-regular and $\mathbf{x}M = 0$. The equality holds if $\operatorname{CI}^*\operatorname{-dim}_R M < \infty$.

UPPER COMPLETE INTERSECTION DIMENSION

(7) $\operatorname{CI-dim}_R M \leq \operatorname{CI}^*\operatorname{-dim}_R M \leq \operatorname{pd}_R M.$

If any one of these dimensions is finite, then it is equal to those to its left.

Araya, Takahashi, and Yoshino [1], modifying the definition of CM-dimension, define a homological invariant for modules as a relative version of the modified CM-dimension. This invariant has a lot of properties similar to projective dimension, CI-dimension, G-dimension, and CM-dimension.

Let $\phi : S \to R$ be a local homomorphism of local rings. The main purpose of this note is to define a new homological invariant for an *R*-module *M* as a relative version of CI*-dimension over *R*, and to study its properties. We will call this the *upper complete intersection dimension* of *M relative* to ϕ , and denote it by CI*-dim $_{\phi}M$. We shall observe that this invariant has many properties similar to those of the invariant defined by Araya, Takahashi, and Yoshino. For example, we will prove the following. Let *k* denote the residue class field of *R*.

THEOREM 2.10. Let *M* be a non-zero *R*-module. If $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$, then $\operatorname{CI}^*\operatorname{-dim}_{\phi} M = \operatorname{depth}_R M$.

THEOREM 2.14. Suppose that S = R and ϕ is the identity map on R. Then $CI^*-\dim_{\phi}M = pd_RM$ for every R-module M.

THEOREM 2.15. The following conditions are equivalent.

- i) *R* is a complete intersection and *S* is a regular ring.
- ii) $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$ for any *R*-module *M*.
- iii) $CI^*-\dim_{\phi} k < \infty$.

2. Relative CI*-dimension

Throughout the section, $\phi : (S, n, l) \to (R, m, k)$ always denotes a local homomorphism of local rings.

In this section, we shall make the precise definition of the upper complete intersection dimension of an *R*-module relative to ϕ to observe CI*-dimension from a relative point of view. To do this, we need the notion of P-factorization, instead of that of upper quasi-deformation used in the definition of (absolute) CI*-dimension.

DEFINITION 2.1. Let

$$\begin{array}{cccc} S' & \stackrel{\phi'}{\longrightarrow} & R' \\ & & & & \uparrow \\ & & & \uparrow \\ S & \stackrel{\phi}{\longrightarrow} & R \\ & & & \phi \end{array}$$

be a commutative diagram of local homomorphisms of local rings. We call this diagram a *P*-factorization of ϕ if α and β are faithfully flat, the closed fiber of α is regular, and ϕ' is a deformation.

Note that this is an imitation of a G-factorization defined in [1]. The existence of a P-factorization of ϕ transmits several properties of *R* to *S*:

PROPOSITION 2.2. Suppose that there exists a P-factorization of ϕ . Then, if R is a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) ring, so is S.

PROOF. Let $S \xrightarrow{\beta} S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ be a P-factorization of ϕ . Suppose that *R* is a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) ring. Since α is a faithfully flat homomorphism with regular closed fiber, *R'* is also a regular (resp. ...) ring. Since ϕ' is a deformation, we easily see that *S'* is also a regular (resp. ...) ring, and so is *S* by the flatness of β .

From now on, we consider the existence of a P-factorization of ϕ . First of all, the above proposition yields the following example which says that ϕ may not have a P-factorization.

EXAMPLE 2.3. Suppose that R = l is the residue class field of S and ϕ is the natural surjection from S to l. Then ϕ has no P-factorization unless S is regular.

Although there does not necessarily exist a P-factorization of ϕ in general, a P-factorization of ϕ seems to exist whenever the ring S is regular. We are able to show it if in addition we assume the condition that S contains a field:

THEOREM 2.4. Suppose that S is a regular local ring containing a field. Then every local homomorphism $\phi : S \rightarrow R$ of local rings has a P-factorization.

This theorem is essentially proved in [1]. But we shall give here a whole proof of it for this note to be as self-contained as possible. We need the following two lemmas:

LEMMA 2.5. [3, Theorem 1.1] Let ϕ : $(S, \mathfrak{n}) \to (R, \mathfrak{m})$ be a local homomorphism of local rings, and α be the natural embedding from R into its \mathfrak{m} -adic completion \hat{R} . Then there exists a commutative diagram

$$S' \xrightarrow{\phi'} \hat{R}$$

$$\beta \uparrow \qquad \uparrow \alpha$$

$$S \xrightarrow{\phi} R$$

of local homomorphisms of local rings such that β is faithfully flat, the closed fiber of β is regular, and ϕ' is surjective. (Such a diagram is called a Cohen factorization of ϕ .)

LEMMA 2.6. Let $\phi : S \to R$ be a local homomorphism of complete local rings that admit the common coefficient field k. Put $S' = S \otimes_k R$. Let $\lambda : S \to S'$ be the injective homomorphism mapping $b \in S$ to $b \otimes 1 \in S'$, and $\varepsilon : S' \to R$ be the surjective homomorphism mapping $b \otimes a \in S'$ to $\phi(b)a \in R$. Suppose that S is regular. Then $S \xrightarrow{\lambda} S' \xrightarrow{\varepsilon} R \xleftarrow{id} R$ is a *P*-factorization of ϕ .

PROOF. Let y_1, y_2, \dots, y_s be a minimal system of generators of the unique maximal ideal of S. Put $J = \text{Ker } \varepsilon$ and $dy_i = y_i \otimes 1 - 1 \otimes \phi(y_i) \in S'$ for each $1 \leq i \leq s$.

CLAIM 1. The ideal J of S' is generated by dy_1, dy_2, \dots, dy_s .

Indeed, put $J_0 = (dy_1, dy_2, \dots, dy_s)S'$. Let $z = b \otimes a$ be an element in J, and let $b = \sum b_{i_1i_2\cdots i_s} y_1^{i_1} y_2^{i_2} \cdots y_s^{i_s}$ be a power series expansion in y_1, y_2, \dots, y_s with coefficients $b_{i_1i_2\cdots i_s} \in k$. Then we have $b \otimes 1 = \sum b_{i_1i_2\cdots i_s} (y_1 \otimes 1)^{i_1} (y_2 \otimes 1)^{i_2} \cdots (y_s \otimes 1)^{i_s} \equiv \sum b_{i_1i_2\cdots i_s} (1 \otimes \phi(y_1))^{i_1} (1 \otimes \phi(y_2))^{i_2} \cdots (1 \otimes \phi(y_s))^{i_s} = 1 \otimes \phi(b)$ modulo J_0 . It follows that $z \equiv 1 \otimes \phi(b)a$ modulo J_0 . Since $\phi(b)a = \varepsilon(b \otimes a) = 0$, we have $z \equiv 0$ modulo J_0 , that is, the element $z \in J$ belongs to J_0 . Thus, we see that $J = J_0$.

CLAIM 2. The sequence dy_1, dy_2, \dots, dy_s is an S'-regular sequence.

Indeed, since S is regular, we may assume that $S = k[[Y_1, Y_2, \dots, Y_s]]$ and $S' = R[[Y_1, Y_2, \dots, Y_s]]$ are formal power series rings, and $dy_i = Y_i - \phi(Y_i) \in S'$ for each $1 \leq i \leq s$. Note that the endomorphism on S' which sends Y_i to dy_i is an automorphism. Since the sequence Y_1, Y_2, \dots, Y_s is S'-regular, we see that dy_1, dy_2, \dots, dy_s also form an S'-regular sequence.

These claims prove that the homomorphism ε is a deformation. On the other hand, it is easy to see that λ is faithfully flat. Thus, the lemma is proved.

PROOF OF THEOREM 2.4. We may assume that R (resp. S) is complete in its m-adic (resp. n-adic) topology. Hence Lemma 2.5 implies that ϕ has a Cohen factorization

where β is a faithfully flat homomorphism with regular closed fiber, and ϕ' is a surjective homomorphism. Hence S' is also a regular local ring containing a field. Therefore, replacing S with S', we may assume that ϕ is a surjection. In particular R and S have the common coefficient field, hence Lemma 2.6 implies that ϕ has a P-factorization, as desired.

CONJECTURE 2.7. Whenever *S* is regular, the local homomorphism $\phi : S \to R$ would have a P-factorization.

Now, by using the idea of P-factorization, we define the CI*-dimension of a module in a relative sense.

DEFINITION 2.8. For an R-module M, we put

$$\operatorname{CI}^*\operatorname{-dim}_{\phi} M = \inf \left\{ \begin{array}{c} \operatorname{pd}_{S'}(M \otimes_R R') \\ -\operatorname{pd}_{S'} R' \end{array} \middle| \begin{array}{c} S \to S' \to R' \leftarrow R \\ \text{is a P-factorization of } \phi \end{array} \right\}$$

and call it the *upper complete intersection dimension* of *M* relative to ϕ .

By definition, CI*-dim $_{\phi}M = \infty$ for an *R*-module *M* if ϕ has no P-factorization. Suppose that ϕ has at least one P-factorization $S \to S' \to R' \leftarrow R$. Then we have $pd_{S'}(F \otimes_R R') = pd_{S'}R' (<\infty)$ for any free *R*-module *F*. Therefore Theorem 2.4 yields the following result:

PROPOSITION 2.9. If S is a regular local ring that contains a field, then

 $\operatorname{CI}^*\operatorname{-dim}_{\phi} F = 0 \ (<\infty)$

for any free R-module F.

In the rest of this section, we observe the properties of relative CI*-dimension CI*-dim $_{\phi}$. We begin by proving that relative CI*-dimension also satisfies the Auslander-Buchsbaum-type equality:

THEOREM 2.10. Let M be a non-zero R-module. If CI^* -dim_{ϕ}M < ∞ , then

 $\operatorname{CI}^*\operatorname{-dim}_{\phi} M = \operatorname{depth} R - \operatorname{depth}_R M$.

PROOF. Since CI*-dim_{ϕ} $M < \infty$, there exists a P-factorization $S \xrightarrow{\beta} S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ of ϕ such that CI*-dim_{ϕ} $M = \text{pd}_{S'}(M \otimes_R R') - \text{pd}_{S'}R' < \infty$. Hence we see that

 $CI^*-\dim_{\phi} M = \mathrm{pd}_{S'}(M \otimes_R R') - \mathrm{pd}_{S'}R'$ = (depth S' - depth_{S'}(M \otimes_R R')) - (depth S' - depth_{S'}R') = depth_{S'}R' - depth_{S'}(M \otimes_R R').

Note that ϕ' is surjective. Since α and β are faithfully flat, we obtain

 $\begin{cases} \operatorname{depth}_{S'} R' = \operatorname{depth} R + \operatorname{depth} R' / \mathfrak{m} R', \\ \operatorname{depth}_{S'} (M \otimes_R R') = \operatorname{depth}_R M + \operatorname{depth} R' / \mathfrak{m} R'. \end{cases}$

It follows that CI^* -dim $_{\phi}M = \operatorname{depth} R - \operatorname{depth}_R M$.

In view of this theorem, we notice that the value of the relative CI^* -dimension of an *R*-module is given independently of the ring *S* if it is finite.

PROPOSITION 2.11. Let M be an R-module. Then

- (1) $\operatorname{CI}^*\operatorname{-dim}_{\phi} M \geqq \operatorname{CI}^*\operatorname{-dim}_R M.$
 - The equality holds if $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$.
- (2) $\operatorname{CI}^*\operatorname{-dim}_{\phi} M \leq \operatorname{pd}_R M$ if ϕ is faithfully flat. The equality holds if in addition $\operatorname{pd}_R M < \infty$.

PROOF. (1) Since the inequality holds if $\operatorname{CI}^*\operatorname{-dim}_{\phi} M = \infty$, assume that $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$. Let $S \xrightarrow{\beta} S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ be a P-factorization of ϕ such that $\operatorname{pd}_{S'}(M \otimes_R R') - \operatorname{pd}_{S'} R' < \infty$. Then by definition $S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ is a quasi-deformation of

214

R, which shows that $CI^*-\dim_R M < \infty$. Hence the assertion follows from Theorem 2.10 and the Auslander-Buchsbaum-type equality for CI^* -dimension.

(2) Suppose that ϕ is faithfully flat. Since the inequality holds if $pd_R M = \infty$, assume that $pd_R M < \infty$. We easily see that the diagram $S \xrightarrow{\phi} R \xrightarrow{id} R \xleftarrow{id} R$ is a P-factorization of ϕ . Therefore we have CI*-dim $\phi M < \infty$. Hence the assertion follows from Theorem 2.10 and the Auslander-Buchsbaum formula for projective dimension.

The inequality in the second assertion of the above proposition may not hold without the faithful flatness of ϕ ; see Remark 2.17 below.

Now, recall that

$$\operatorname{CI}^*\operatorname{-dim}_R M \leq \operatorname{pd}_R M$$

for any *R*-module *M*. Hence the above proposition says that relative CI*-dimension is inserted between absolute CI*-dimension and projective dimension if ϕ is faithfully flat.

It is natural to ask when relative CI*-dimension CI*-dim_{ϕ} coincides with absolute one CI*-dim_R as an invariant for *R*-modules. It seems to happen if *S* is the prime field of *R*.

Let us consider the case that the characteristic chark of k is zero. Then we easily see that char R = 0. It follows that R has the prime field **Q**. Let $S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ be a quasideformation of R. Since α is injective and ϕ' is surjective, the residue class field of R' is of characteristic zero, and so is that of S'. Hence we see that char S' = 0, and there exists a commutative diagram

$$\begin{array}{ccc} S' & \stackrel{\phi'}{\longrightarrow} & R' \\ & & & \uparrow \\ & & & \uparrow \\ Q & \stackrel{}{\longrightarrow} & R \end{array},$$

where ϕ and β denote the natural embeddings. Note that β is faithfully flat because **Q** is a field. Therefore this diagram is a P-factorization of ϕ . Thus, Proposition 2.11(1) yields the following:

PROPOSITION 2.12. Suppose that k is of characteristic zero. If S is the prime field of R, then

$$\operatorname{CI}^*\operatorname{-dim}_{\phi} M = \operatorname{CI}^*\operatorname{-dim}_R M$$

for any R-module M.

CONJECTURE 2.13. If S is the prime field of R, then it would always hold that $CI^*-\dim_{\phi} M = CI^*-\dim_{R} M$ for any R-module M.

As we have observed in Proposition 2.11, the relative CI*-dimension CI*-dim_{ϕ} *M* of an *R*-module *M* is always less than or equal to its projective dimension pd_{*R*}*M*, as long as ϕ is

faithfully flat. The next theorem gives a sufficient condition for these dimensions to coincide with each other as invariants for *R*-modules.

THEOREM 2.14. Suppose that S = R and ϕ is the identity map of R. Then

 $\operatorname{CI}^*\operatorname{-dim}_{\phi} M = \operatorname{pd}_R M$

for every R-module M.

PROOF. The assumption in the theorem in particular implies that ϕ is faithfully flat. Hence Proposition 2.11(2) yields one inequality relation in the theorem. Thus we have only to prove the other inequality relation CI*-dim $_{\phi}M \ge \text{pd}_R M$. There is nothing to show if CI*-dim $_{\phi}M = \infty$. Hence assume that CI*-dim $_{\phi}M < \infty$. Then the identity map ϕ on Rhas a P-factorization $R \xrightarrow{\beta} S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ such that $\text{pd}_{S'}(M \otimes_R R') < \infty$. Let l' denote the residue class field of S'. Taking an S'-sequence $\mathbf{x} = x_1, x_2, \cdots, x_r$ generating the kernel of ϕ' , we have $\mathbb{R}\text{Hom}_{S'}(R', l') \cong \text{Hom}_{S'}(\mathbb{K}_{\bullet}(\mathbf{x}), l') \cong \bigoplus_{i=0}^r l'^{\binom{r}{i}}[-i]$, where $\mathbb{K}_{\bullet}(\mathbf{x})$ is the Koszul complex of \mathbf{x} over S'. Noting that both α and β are faithfully flat, we see that

$$\mathbf{R}\mathrm{Hom}_{S'}(M \otimes_R R', l') \cong \mathbf{R}\mathrm{Hom}_{S'}((M \otimes_R^{\mathsf{L}} S') \otimes_{S'}^{\mathsf{L}} R', l') \\ \cong \mathbf{R}\mathrm{Hom}_{S'}(M \otimes_R^{\mathsf{L}} S', \mathbf{R}\mathrm{Hom}_{S'}(R', l')) \\ \cong \mathbf{R}\mathrm{Hom}_{S'}(M \otimes_R S', \bigoplus_{i=0}^r {l'}^{\binom{r}{i}}[-i]) \\ \cong \bigoplus_{i=0}^r \mathbf{R}\mathrm{Hom}_{S'}(M \otimes_R S', l')^{\binom{r}{i}}[-i].$$

It follows from this that

$$\operatorname{Ext}_{S'}^{J}(M \otimes_{R} R', l') \cong \operatorname{H}^{j}(\operatorname{\mathbf{R}Hom}_{S'}(M \otimes_{R} R', l'))$$
$$\cong \operatorname{H}^{j}(\bigoplus_{i=0}^{r} \operatorname{\mathbf{R}Hom}_{S'}(M \otimes_{R} S', l')^{\binom{r}{i}}[-i])$$
$$\cong \bigoplus_{i=0}^{r} \operatorname{Ext}_{S'}^{j-i}(M \otimes_{R} S', l')^{\binom{r}{i}}.$$

Note that $\operatorname{Ext}_{S'}^{j}(M \otimes_{R} R', l') = 0$ for any $j \gg 0$ because $\operatorname{pd}_{S'}(M \otimes_{R} R') < \infty$. Hence we obtain $\operatorname{Ext}_{S'}^{j}(M \otimes_{R} S', l') = 0$ for any $j \gg 0$, which implies that $\operatorname{pd}_{S'}(M \otimes_{R} S') < \infty$. Thus we get $\operatorname{pd}_{R}M < \infty$. Then the Auslander-Buchsbaum-type equalities for projective dimension and CI^{*} -dimension yield that CI^{*} -dim $_{\phi}M = \operatorname{pd}_{R}M = \operatorname{depth} R - \operatorname{depth}_{R}M$.

We know that $CI^*-\dim_R M < \infty$ for any *R*-module *M* if *R* is a complete intersection and that *R* is a complete intersection if $CI^*-\dim_R k < \infty$. We can prove the following result similar to this:

THEOREM 2.15. The following conditions are equivalent.

- i) *R* is a complete intersection and *S* is a regular ring.
- ii) CI^* -dim $_{\phi}M < \infty$ for any *R*-module *M*.
- iii) CI*-dim_{ϕ} k < ∞ .

PROOF. i) \Rightarrow ii): It follows from Lemma 2.5 that there is a Cohen factorization $S \xrightarrow{\beta} S' \xrightarrow{\phi'} \hat{R} \xleftarrow{\alpha} R$ of ϕ . Since both the ring S and the closed fiber of β are regular, so

is S' by the faithful flatness of β . On the other hand, since R is a complete intersection, so is its m-adic completion \hat{R} . Hence the homomorphism ϕ' is a deformation. (A surjective homomorphism from a regular local ring to a local complete intersection must be a deforma-

tion; see [5, Theorem 2.3.3].) Thus, we see that the factorization $S \xrightarrow{\beta} S' \xrightarrow{\phi'} \hat{R} \xleftarrow{\alpha} R$ is a P-factorization of ϕ . The regularity of the ring S' implies that every S'-module is of finite projective dimension over S', from which the condition ii) follows.

ii) \Rightarrow iii): This is trivial.

iii) \Rightarrow i): The condition iii) says that ϕ has a P-factorization $S \xrightarrow{\beta} S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ such that $pd_{S'}(k \otimes_R R') < \infty$. Put $A = k \otimes_R R'$. Note that A is a regular local ring because it is the closed fiber of α . Let $\mathbf{a} = a_1, a_2, \dots, a_t$ be a regular system of parameters of A. Since \mathbf{a} is an A-regular sequence, we have $pd_{S'}A/(\mathbf{a}) = pd_{S'}A + t < \infty$. Since ϕ' is surjective, we see that the quotient ring $A/(\mathbf{a})$ is isomorphic to the residue class field l' of S'. Hence we obtain $pd_{S'}l' < \infty$, which implies that S' is regular, and so is S. On the other hand, it follows from Theorem 2.11(1) that R is a complete intersection.

Suppose that *R* is regular. Then, by Proposition 2.2, *S* is also regular if ϕ has at least one P-factorization. Thus the above theorem implies the following corollary:

COROLLARY 2.16. Suppose that R is regular. If $\operatorname{CI}^*\operatorname{-dim}_{\phi} N < \infty$ for some R-module N, then $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$ for every R-module M.

REMARK 2.17. Relating to the second assertion of Proposition 2.11, there is no inequality relation between relative CI*-dimension and projective dimension in a general setting. In fact, the following results immediately follow from Theorem 2.15:

(1) CI*-dim_{ϕ}k < pd_Rk if R is a complete intersection which is not regular and S is a regular ring.

(2) $\operatorname{CI}^*\operatorname{-dim}_{\phi}k > \operatorname{pd}_Rk$ if *R* is regular and *S* is not regular.

We can calculate the relative CI*-dimension of each of the syzygy modules of an R-module M by using the relative CI*-dimension of M:

PROPOSITION 2.18. For an *R*-module *M* and an integer $n \ge 0$,

$$\operatorname{CI}^*\operatorname{-dim}_{\phi}\Omega^n_{\mathcal{B}}M = \sup\{\operatorname{CI}^*\operatorname{-dim}_{\phi}M - n, 0\}.$$

PROOF. We claim that CI*-dim $_{\phi}M < \infty$ if and only if CI*-dim $_{\phi}\Omega_R^1M < \infty$. Indeed, let $S \to S' \to R' \leftarrow R$ be a P-factorization of ϕ . There is a short exact sequence

$$0 \to \Omega^1_R M \to R^m \to M \to 0$$

with some integer m. Since R' is flat over R, we obtain

$$0 \to \Omega^1_R M \otimes_R R' \to {R'}^m \to M \otimes_R R' \to 0.$$

Note that $\operatorname{pd}_{S'} R' < \infty$. Hence we see that $\operatorname{pd}_{S'}(M \otimes_R R') < \infty$ if and only if $\operatorname{pd}_{S'}(\Omega_R^1 M \otimes_R R') < \infty$. This implies the claim.

It follows from the claim that $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$ if and only if $\operatorname{CI}^*\operatorname{-dim}_{\phi} \Omega_R^n M < \infty$. Thus, in order to prove the proposition, we may assume that $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$ and $\operatorname{CI}^*\operatorname{-dim}_{\phi} \Omega_R^n M < \infty$. In particular, we have $\operatorname{CI}^*\operatorname{-dim}_R M < \infty$ by Proposition 2.11(1), hence we also have $\operatorname{CI}\operatorname{-dim}_R M < \infty$. Therefore [4, (1.9)] gives us the equality

 $\operatorname{depth}_R \Omega_R^n M = \min \{\operatorname{depth}_R M + n, \operatorname{depth} R \}.$

Consequently we obtain

$$CI^*-\dim_{\phi} \Omega_R^n M = \operatorname{depth} R - \operatorname{depth}_R \Omega_R^n M$$

= max{depth R - depth_R M - n, 0}
= max{CI^*-dim_{\phi} M - n, 0},

as desired.

As the last result of this note, we state the relationship between relative CI*-dimension and regular sequences.

PROPOSITION 2.19. Let $\mathbf{x} = x_1, x_2, \dots, x_m$ (resp. $\mathbf{y} = y_1, y_2, \dots, y_n$) be a sequence in R (resp. S). Denote by $\overline{\phi}$ (resp. $\widetilde{\phi}$) the local homomorphism $S/(\mathbf{y}) \rightarrow R/\mathbf{y}R$ (resp. $S \rightarrow R/(\mathbf{x})$) induced by ϕ . Then

- (1) $\operatorname{CI}^*\operatorname{-dim}_{\phi} M/\mathbf{x}M = \operatorname{CI}^*\operatorname{-dim}_{\phi} M + m \text{ if } \mathbf{x} \text{ is } M \operatorname{-regular.}$
- (2) $\operatorname{CI}^*\operatorname{-dim}_{\bar{\phi}}M/\mathbf{y}M \leq \operatorname{CI}^*\operatorname{-dim}_{\phi}M$ if \mathbf{y} is S-regular, R-regular, and M-regular. The equality holds if $\operatorname{CI}^*\operatorname{-dim}_{\phi}M < \infty$.
- (3) $\operatorname{CI}^*\operatorname{-dim}_{\tilde{\phi}} M \leq \operatorname{CI}^*\operatorname{-dim}_{\phi} M m$ if **x** is *R*-regular and *R*-regular and **x**M = 0. The equality holds if $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$.

PROOF. (1) By Theorem 2.10 we have only to show that $\operatorname{CI}^*\operatorname{-dim}_{\phi}M/\mathbf{x}M < \infty$ if and only if $\operatorname{CI}^*\operatorname{-dim}_{\phi}M < \infty$. Let $S \to S' \to R' \leftarrow R$ be a P-factorization of ϕ . Since R' is Rflat, the sequence \mathbf{x} is also $(M \otimes_R R')$ -regular. Hence we obtain $\operatorname{pd}_{S'}(M \otimes_R R')/\mathbf{x}(M \otimes_R R') =$ $\operatorname{pd}_{S'}(M \otimes_R R') + m$. Note that $(M \otimes_R R')/\mathbf{x}(M \otimes_R R') \cong (M/\mathbf{x}M) \otimes_R R'$. Therefore we see that $\operatorname{pd}_{S'}(M/\mathbf{x}M) \otimes_R R' < \infty$ if and only if $\operatorname{pd}_{S'}(M \otimes_R R') < \infty$. Thus the desired result is proved.

(2) We may assume that $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$ because the assertion immediately follows if $\operatorname{CI}^*\operatorname{-dim}_{\phi} M = \infty$. It suffices to prove that the left side of the inequality is also finite, because the equality is implied by Theorem 2.10. There exists a P-factorization $S \to S' \to R' \leftarrow R$ of ϕ such that $\operatorname{pd}_{S'}(M \otimes_R R') < \infty$. Since y is both S-regular and R-regular, it is easy to see that the induced diagram $S/(y) \to S'/yS' \to R'/yR' \leftarrow R/yR$ is a P-factorization of $\overline{\phi}$. As y is M-regular, it is also $(M \otimes_R R')$ -regular, and we have $\operatorname{pd}_{S'/yS'}(M/yM) \otimes_R R' = \operatorname{pd}_{S'/yS'}(M \otimes_R R')/y(M \otimes_R R') = \operatorname{pd}_{S'}(M \otimes_R R') < \infty$. Hence we have $\operatorname{CI}^*\operatorname{-dim}_{\overline{\phi}} M/yM < \infty$.

(3) Suppose that $\operatorname{CI}^*\operatorname{-dim}_{\phi} M < \infty$. It is enough to prove that $\operatorname{CI}^*\operatorname{-dim}_{\tilde{\phi}} M < \infty$ by Theorem 2.10. Let $S \to S' \to R' \leftarrow R$ of ϕ be a P-factorization of ϕ with $\operatorname{pd}_{S'}(M \otimes_R R') < \infty$

218

 ∞ . Then we easily see that the induced diagram $S \to S' \to R'/\mathbf{x}R' \leftarrow R/(\mathbf{x})$ is a P-factorization of $\tilde{\phi}$. Since $M \otimes_{R/(\mathbf{x})} R'/\mathbf{x}R' \cong M \otimes_R R'$ has finite projective dimension over S', we have $\operatorname{CI}^*\operatorname{-dim}_{\tilde{\phi}} M < \infty$, as desired. \Box

ACKNOWLEDGMENTS. The author wishes to express his hearty thanks to his supervisor Yuji Yoshino for a lot of valuable discussions and suggestions.

References

- T. ARAYA, R. TAKAHASHI and Y. YOSHINO, Upper Cohen-Macaulay dimension, to appear in Math. J. Okayama Univ.
- [2] L. L. AVRAMOV, Modules of finite virtual projective dimension, Invent. Math. 96 (1989), 71-101.
- [3] L. L. AVRAMOV, H. -B. FOXBY and B. HERZOG, Structure of local homomorphisms, J. Algebra 164 (1994), 124–145.
- [4] L. L. AVRAMOV, V. N. GASHAROV and I. V. PEEVA, Complete intersection dimension, Inst. Hautes Etudes Sci. Publ. Math. 86 (1997), 67–114.
- [5] W. BRUNS and J. HERZOG, Cohen-Macaulay rings, revised edition, Cambridge University Press (1998).
- [6] A. A. GERKO, On homological dimensions, Mat. Sb. 192 (2001), 79–94; translation in Sb. Math. 192 (2001), 1165–1179.
- [7] T. H. GULLIKSEN, On the deviations of a local ring, Math. Scand. 47 (1980), 5-20.

Present Address: FACULTY OF SCIENCE, OKAYAMA UNIVERSITY, OKAYAMA, 700–8530 JAPAN. *e-mail*: takahasi@math.okayama-u.ac.jp