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Introduction.

The purpose of this paper is to generalize the Hounie and Malagutti’s local
embedding theorem for Mizohata structures and to discuss their embedding theorem
in the frame work of Kuranishi.

It is Treves who introduced the notion of Mizohata structures (cf. [Trl]). Hounie
and Malagutti developed Treves’s theory and proved that; any formally integrable
Mizohata structure is actually integrable if the Mizohata structure is strongly
pseudoconvex and $\dim_{R}M\geq 3$ (cf. [H-M]). This result reminds us of the CR-local
embedding theorem (cf. [A2], [Ku3]), namely any formally integrable CR structure
$(M, oT^{\prime\prime})$ is actually integrable if the CR structure $(M, oT^{\prime\prime})$ is strongly pseudoconvex
and $\dim_{R}M=2n-1\geq 7$ . Furthermore, in many points, Mizohata structures quite
resemble CR structures. Hence it seems quite reasonable to try to discuss both in one
context. We, therefore, introduce a notion of a generalized complex manifold and
consider a regular real hypersurface $M$, namely a submanifold with real codimension
1, which satisfies some conditions in a generalized complex manifold. Over this
hypersurface, from the generalized complex manifold, naturally a structure $(M, E_{M})$ is
induced as in the CR case, which we call a generalized-Mizohata structure. Like
formally integrable CR structures, we introduce a notion of a formally integrable
generalized-Mizohata structure, and consider the local embedding theorem. With these
in mind, in a more general context, we would like to discuss a local embedding theorem
of generalized-Mizohata structures, which covers Hounie and Malagutti’s local
embedding theorem, and the CR-local embedding theorem (see [Kul], [Ku2], [Ku3]).
For this purpose, we recall the proof of the local embedding theorem of CR-structures
(cf. [A2]). The proof consists of the following three parts.

Part 1. Let $f$ be a $C^{\infty}$ local embedding of $M$ into $C^{n}$ at the reference point $p_{0}$ .
We set a neighborhood of $p_{0}$ by
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$U_{\epsilon}(f)=\{x;x\in M, 2{\rm Re}(h\cdot f(x))<\epsilon\}$ ,

where $\dim_{R}M=2n-1$ , and $h$ is a fixed holomorphic function on $C^{n}$ satisfying certain
conditions (see in [A2]). Then, for the solvability of the D-Neumann problem over
$U_{\epsilon}(f)$ , we see that it suffices to solve a nonlinear $D_{b}$-equation on $U_{\epsilon}(f)$ (for the detail,
see Chapter 8 in [A2]), where D-operator means the induced operator by the given CR
structure $0T^{\prime\prime}$ .

Part 2. Let $f$ be a $C^{\infty}$ local embedding of $M$ into $C^{n}$ , and $(M, fT^{\prime\prime})$ denotes the
induced CR-structure and $D_{b}^{f}$ denotes the tangential induced operator on $U_{e}(f)$ by $fT^{\prime\prime}$

via $f$ (for the detail, see Chapter 2 in [A2]). For this $D_{b}^{f}$ , we have an a priori estimate,
if $2n-1\geq 7$ .

Part 3. With the Neumann operator obtained in Part 2, by using the Nash iteration
procedure, we obtain the local embedding theorem of CR structures.

We follow this approach. In the case of generalized-Mizohata structures, the part
1 and the part 3 are valid. We see the part 2. However, by following the proofs of
Kuranishi’s a priori estimate, this part is also valid with a slight change. Hence, we can
discuss the generalized local embedding theorem in the frame work of Kuranishi [Kul],
[Ku2], [Ku3].

After completing this paper, I learned that Webster obtained a similar result (not
the same one). However, I think that still our result is worth publication. And in the
same letter, I also leamed that A. Meziani proves the local integrability of all strictly
pseudoconvex Mizohata structures in dimension two (see [Me]).

1. CR structures and Mizohata structures.

Let $N$ be a complex manifold with complex dimension $n$ (so the real dimension of
$N$ is $2n$). Let $M$ be a real hypersurface in $N$. We assume that $M$ is smooth. This means
that; $M$ is defined by a $C^{\infty}$ function $r$ on $N$ by;

$M=\{x;x\in N, r(x)=0\}$ , $dr\neq 0$ at every point $p$ of $M$ .
Over $M$, a CR-structure is naturally induced from $N$. Namely, we set a subbundle of
the complexified tangent bundle $C\otimes TM$ by;

$0T^{\prime\prime}=C\otimes TM\cap T^{\prime\prime}N|_{M}$ .
Then,

(1-1) $oT^{\prime\prime}\cap^{\overline{o}}T^{\prime\prime}=0$ , $\dim_{C}\frac{C\otimes TM}{o_{T’+}\overline{0_{T’}}}=1$ ,

(1-2) $[\Gamma(M,T^{\prime\prime}), \Gamma(M,T^{\prime\prime})]\subset\Gamma(M, 0T^{\prime\prime})$ .

Conversely, for an orientable $C^{\infty}$ manifold $M$ with real dimension $2n-1$ , and for a
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subbundle $E$ of the complexified tangent bundle $C\otimes TM$, satisfying;

(1-1) $E\cap\overline{E}=0$ , $\dim_{C}\frac{C\otimes TM}{E+\overline{E}}=1$ ,

(1-2) $[\Gamma(M, E), \Gamma(M, E)]\subset\Gamma(M, E)$ ,

the pair $(M, E)$ is called a CR-structure. On the other hand, the Mizohata structure is
defined as follows: Let $M$ be a $C^{\infty}$ manifold with real dimension $p+1$ . We consider a
subbundle $E_{M}$ of the complexified tangent bundle $C\otimes TM$ with $\dim_{C}E_{M}=p$ satisfying;

(1-3) $[\Gamma(M, E_{M}), \Gamma(M, E_{M})]\subset\Gamma(M, E_{M})$ .
We set

$C(E_{M})=E_{M}^{\perp}\cap T^{*}M$ ,

$E_{M}^{\perp}=$ { $u;u\in C\otimes T^{*}M,$ $u(L)=0$ for $L\in E_{M}$}.
And for $(q, \xi)\in C(E_{M})$ , the Levi-form is defined by;

$\Theta_{\langle q,\xi)}(u, v)=\frac{1}{2\sqrt{-1}}\xi([L_{1},\overline{L_{2}}])(q)$ ,

where $L_{1}$ and $L_{2}$ are $C^{\infty}$ local sections of $E_{M}$ defined in a neighborhood of $q$ so that
$L_{1}(q)=u,$ $L_{2}(q)=v$ . With these preparations, the pair $(M, E_{M})$ satisfying (1-3) is called
a Mizohata structure, or a Mizohata manifold if and only if $C(E_{M})\neq 0$ and the Levi
form associated to $E_{M}$ is non degenerate.

2. Generalized complex manifolds.

In this section, we introduce the notion of generalized complex manifolds and
regular real hypersurfaces for generalized complex manifolds.

Let $X$ be a differentiable manifold with real dimension $2n+p$ . Let $E$ be an $n+p$

dimensional subbundle of the complexified tangent bundle $C\otimes TM$ satisfying;

(2-0) $\dim_{C}E\cap\overline{E}=p$ .
We assume that;

(2-1) $C\otimes TMisgeneratedbyEand\overline{E}$ at every pointp ofX,

(2-2) $[\Gamma(X, E), \Gamma(X, E)]\subset\Gamma(X, E)$ .

If the pair (X, $E$ ) satisfies (2-1) and (2-2), then we call (X, $E$ ) a generalized complex
manifold. For a generalized complex manifold (X, $E$), we can introduce holomorphic
functions and germs of holomorphic functions by the standard way. That is to say, for
a point $q$ of $X$,
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$O_{E}(X)_{q}=\{u;u$ is a complex function satisfying $Yu=0$

for an E-valued $C^{\infty}$ section on a neighborhood of $q$}.

We see some examples (see Example VII.1.2 and 1.3 and other important examples in
[Tr]).

EXAMPLE 2-1. We take a realp-dimensional euclidean space $R^{p}$, and let $(t_{1}, \cdots, t_{p})$

be a real coordinate system $ofR^{p}$ . We set $E=the$ complexified tangent bundle $C\otimes TR^{p}$

itself. Then, this pair $(R^{p}, E)$ obviously satisfies (2-1) and (2-2). And in this case,
$O_{E}(R^{p})=$ { $c;c$ is a constant}.

EXAMPEL 2-2. More generally, we take $R^{p}\times C^{n}$ , where $R^{p}$ means the real p-
dimensional euclidean space and $C^{n}$ means the complex n-dimensional euclidean space.
As a generalized complex structure, we set

$E=$ {$complex$ vector fields generated by $\partial/\partial t_{1},$
$\cdots,$ $\partial/\partial t_{p},$ $\partial/\partial z_{1}-,$

$\cdots,$
$\partial/\partial\overline{z_{n}}$ } ,

where $(t_{1}, \cdots, t_{p})$ is a real coordinate system of $R^{p}$ , and $(z_{1}, \cdots, z_{n})$ is a complex
coordinate system of $C^{n}$ . Then, obviously, our $(R^{p}\times C^{n}, E)$ satisfies (2-0), (2-1) and
(2-2). So $(R^{p}\times C^{n}, E)$ is a generalized complex manifold. In this case,

$O_{E}(R^{p}\times C^{n})=$ { $holomorphic$ functions of $z_{1},$ $\cdots,$ $z_{n}$}.

On the other hand, if$p=0$ , we have $E\cap\overline{E}=0$ . So by the Newlander-Nirenberg theorem,
in this case, our generalized complex manifolds coincide with standard complex
manifolds. More generally, we have that our generalized complex manifold (X$2n+pE^{n+p}$)
is locally isomorphic to ($R^{p}\times C^{n}$ , {complex vector fields generated by $\partial/\partial t_{1},$ $\cdots,$ $\partial/\partial t_{p}$ ,
$\partial/\partial\overline{z_{1}},$

$\cdots,$
$\partial/\partial\overline{z_{n}}$}), which was discussed in Example 2-2. This is easily proved by using

the Newlander-Nirenberg theorem (our partial differential equation is elliptic).

Let (X, $E$ ) be a generalized complex manifold. We consider a smooth real
hypersurface in $X$. Namely, we assume that $M$ is defined by;

$M=\{q;q\in X, r(q)=0\}$ ,

where $r$ is a $C^{\infty}$ function on $X$. In this paper, we assume more. That is to say, for every
point $q$ of $M$, there is an E-valued $C^{\infty}$ section $Y$ on a neighborhood of $q$ satisfying;

$Yr(q)\neq 0$ , $Y_{q}\not\in E_{q}\cap\overline{E_{q}}$ .

We call this real hypersurface a regular real hypersurface. Over this $M$, from $E$, naturally
a structure is induced. Namely, we set a subbundle of $E$ by

$E_{M}=\{X;X\in E, Xr=0\}$ .

Then, obviously,

$[\Gamma(M, E_{M}), \Gamma(M, E_{M})]\subset\Gamma(M, E_{M})$ .
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We call this pair $(M, E_{M})$ a generalized-Mizohata structure or a generalized-Mizohata
manifold. We see an example.

EXAMPLE 2-3. We consider a $C^{\infty}$ embedding $i$ from $R^{p}\times R$ to $R^{p}\times C$ defined by;

$i$ : $(t_{1}, \cdots, t_{p}, x)\rightarrow((t_{1}, \cdots, t_{p}),$ $x+\frac{\sqrt{-1}}{2}\sum_{i=1}^{p}t_{i}^{2})$

and consider the hypersurface $M=i(R^{p}\times R)$ . In $R^{p}\times C,$ $M$ is defined by the equation
${\rm Im} z=\neq\sum_{i=1}^{p}t_{i}^{2}$ , where $(t_{1}, \cdots, t_{p}, z)$ is a coordinate system of $R^{p}\times C$ . Then, by the
definition of the induced strucure, $E_{M}$ is generated by $L_{1},$ $\cdots,$ $L_{p}$ where

$L_{i}=\frac{\partial}{\partial t_{i}}-2\sqrt{-1}t_{i}\frac{\partial}{\partial\overline{z}}$ , $i=1,$ $\cdots,$ $p$ .

Therefore our $(M, E_{M})$ becomes the Mizohata structure which Hounie and Malagutti
discussed.

Let (X, $E$ ) be a generalized complex manifold with $\dim_{R}X=2n+p,$ $\dim_{C}E=n+p$ ,
and $\dim_{C}E\cap\overline{E}=p$ . And let $(M, E_{M})$ be a regular hypersurface in $X$. For this $(M, E_{M})$ ,
we set, by the same way as in Mizohata structures,

$C(E_{M})=E_{M}^{\perp}\cap T^{*}M$ ,

$E_{M}^{\perp}=$ { $u;u\in C\otimes T^{*}M,$ $u(L)=0$ for $L\in E_{M}$}.

By the definition, for $(q, \xi)\in C(E_{M}),$ $\xi(\overline{L})(q)=0$ for $L\in(E_{M})_{q}$ . The Levi form is defined by:

$\Theta_{\langle q,\xi)}(u, v)=\frac{1}{2\sqrt{-1}}\xi([L_{1}, \overline{L_{2}}])(q)$ ,

where $L_{1},$ $L_{2}$ are $C^{\infty}$ local sections $ofE_{M}$ defined in a neighborhood of $q$ so that $L_{1}(q)=u$ ,
$L_{2}(q)=v$ .

DEFINITION 2.1. Let $(M, E_{M})$ be a generalized-Mizohata structure. If $C(E_{M})\neq 0$

and the Levi form is positive or negative definite, the pair $(M, E_{M})$ is called strongly
pseudoconvex.

We see this explicitly. By the definiton, we may assume that $(0, u)\in C(E_{M}),$ $u\neq 0$ .
By using the Newlander-Nirenberg theorem with the assumption; $M$ being regular, for
a point $0$ of $M$, there is a local coordinate neighborhood $U(0)$ and a local coordinate
system $(t_{1}, \cdots, t_{p}, z_{1}, \cdots, z_{n})$ of $U(0)$ satisfying;

$M\cap U(0)=\{q;q\in U(0), r(q)=0\}$ , $\frac{\partial r}{\partial z_{n}}(0)\neq 0$ ,

(2-1) $r(t_{1}, \cdots, t_{p}, z_{1}, \cdots, z_{n})={\rm Im} z_{n}-\psi(t_{1}, \cdots, t_{p}, z_{1}, \cdots, z_{n-1}, {\rm Re} z_{n})$ .
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Here grad $\psi(t_{1}, \cdots, t_{p}, z_{1}, \cdots, z_{n-1}, {\rm Re} z_{n})=0$ at $0$ . And $E$ is generated by
$\partial$ $\partial$

$\overline{\partial\overline{z_{1}}}$ $\overline{\partial\overline{z_{n}}}$

and $E_{M}$ is generated by

$\frac{\partial}{\partial\overline{z_{1}}}-\frac{r_{\overline{1}}}{r_{\overline{n}}}\frac{\partial}{\partial z_{\overline{n}}}$

$\underline{\partial}$

$\ldots$ ,
$\underline{\partial}$

$\partial t_{1}$ $\partial t_{p}$

$\frac{\partial r_{\overline{n-1}}}{\partial\overline{z_{n-1}}r_{\overline{n}}}\frac{\partial}{\partial z_{\overline{n}}}$

$\frac{\partial}{\partial t_{1}}-\frac{r_{1}}{r_{\overline{n}}}\frac{\partial}{\partial z_{\overline{n}}’}$
$\frac{\partial r_{p}}{\partial t_{p}r_{\overline{n}}}\frac{\partial}{\partial z_{\overline{n}}}$

Here $r_{k}=\partial r/\partial t_{k},$ $r_{\overline{i}}=\partial r/\partial z_{\overline{i}}$ . We put

$\zeta=\sqrt{-1}(r_{\overline{n}}\frac{\partial}{\partial z_{n}}-r_{n}\frac{\partial}{\partial\overline{z_{n}}})$ .

Obviously, $\zeta_{0}\not\in(E_{M})_{0}$ , and $C\otimes TM_{o}$ is generated by $\zeta_{0},$ $(E_{M})_{0},$ $(\overline{E_{M}})_{0}$ . On the other hand,
in general, we can infer neither that; $\zeta_{0}\not\in(E_{M})_{0}+(\overline{E_{M}})_{0}$ , nor $\dim_{C}((E_{M})_{q}+(\overline{E_{M}})_{q})=const$ .
on a neighborhood of the origin $0$ . Here $(E_{M})_{q}+(\overline{E_{M}})_{q}$ means the subvector space of
$C\otimes TM_{q}$ which is generated by $(E_{M})_{q},$ $(\overline{E_{M}})_{q}$ . For example, in Example 2.3 in this paper,

$\zeta_{0}\not\in(E_{M})_{0}+(\overline{E_{M}})_{0}$ at the origin,
$\zeta_{q}\in(E_{M})_{q}+(\overline{E_{M}})_{q}$ at $q\neq 0$ .

In our case, if $r_{k}(q)=0,1\leq k\leq p$ ,

$\zeta_{q}\not\in(E_{M})_{q}+(\overline{E}_{M})_{q}$ , and $\dim_{C}(E_{M}\cap\overline{E}_{M})_{q}=p$ .
Since $(0, u)\in C(E_{M}),$ $u\neq 0$ , we can infer $\zeta_{0}\not\in(E_{M})_{0}+(\overline{E}_{M})_{0}$ . So we set the decomposition
of the vector space:

(2-2) $C\otimes TM_{o}=(C\zeta)_{0}+(E_{M})_{0}+(\overline{E_{M}})_{0}$ .
PROPOSmON 2.2. $(M, E_{M})$ is called strongly pseudoconvex if and only if the Levi

form $L(u, v)$ defined by;

$-\sqrt{-1}[L_{1}, \overline{L_{2}}]_{\zeta}=L\langle u,$ $v$) $\zeta$ for $u,$ $v\in E_{M}$ ,

where $L_{1},$ $L_{2}$ are $C^{\infty}$ local sections of $E_{M}$ defined in a neighborhood of the origin so that
$L_{1}(0)=u,$ $L_{2}(0)=v$ and $[L_{1}, \overline{L_{2}}]_{\zeta}$ means the $\zeta$ part of $[L_{1}, \overline{L_{2}}]$ according to (2.2), is positive
or negative definite.

Namely, if our $p+n-1$ matrix;
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$\left(\begin{array}{ll}(\frac{\partial^{2}r}{\partial t_{i}\partial t_{j}})_{1\leq i,j\leq p} & (\frac{\partial^{2}r}{\partial t_{i}\partial z_{\overline{k}}})_{1\leq i\leq p,1\leq k\leq n-1}\\(\frac{\partial^{2}r}{\partial z_{k}\partial t_{j}})_{1\leq k\leq p,1\leq j\leq n-1} & (\frac{\partial^{2}r}{\partial z_{l}\partial z_{\overline{k}}})_{1\leq l.k\leq n-1}\end{array}\right)$

is positive or negative definite, then our $(M, E_{M})$ is strongly pseudoconvex. Now with

these preparations, the following theorems are obvious.

THEOREM 2.3. Let $(M, E_{M})$ be a generalized-Mizohata structure with $\dim_{R}M=$

$2n+p-1,$ $\dim_{C}E_{M}=n+p-1$ . We assume that $(M, E_{M})$ is strongly pseudoconvex and
$n=1$ , then our generalized-Mizohata structure becomes the Mizohata structure which
Hounie and Malagutti introduced.

For the case of $p=0$ , we have

THEOREM 2.4. Let $(M, E_{M})$ be a generalized-Mizohata structure. If$p=0$ , then our
structure becomes the standard CR-structure.

3. An a priori estimate.

In this section, we introduoe D-complex over a generalized-Mizohata manifold,

and show an a priori estimate which plays an essential role in proving a general
embedding theorem. Let $(M, E_{M})$ be a generalized-Mizohata structure. Namely, $M$ is a
complex $2n+p-1$ dimensional $C^{\infty}$ manifold and $E_{M}$ is a complex $n+p-1$ dimensional
subbundle of the complexified tangent bundle $C\otimes TM$ satisfying;

$[\Gamma(M, E_{M}), \Gamma(M, E_{M})]\subset\Gamma(M, E_{M})$ .

For this $(M, E_{M})$ , we set a first order differential operator $D$ from $\Gamma(M, C)$ to $\Gamma(M, (E_{M})^{*})$

by the usual way. Namely, for $u$ in $\Gamma(M, C)$ ,

$Du(X)=Xu$ , $X\in E_{M}$ .

Then by the same method as in the case of differential forms, we have a differential
complex

$ 0\rightarrow\Gamma(M, C)\rightarrow^{D}\Gamma(M, (E_{M})^{*})\rightarrow^{D}\Gamma(M, \wedge^{2}(E_{M})^{*})\rightarrow$

$\rightarrow\Gamma(M, \wedge^{p}(E_{M})^{*})\rightarrow^{D}\Gamma(M, \wedge^{p+1}(E_{M})^{*})\rightarrow$ .

We see that; if $(M, E_{M})$ is strongly pseudoconvex, and if $n+p-1\geq 3$ , where
$\dim_{R}M=2n+p-1,$ $\dim_{C}E_{M}=n+p-1$ , Kuranishi’s local a priori estimate holds and
also $D_{b}- a$ priori estimate” holds (these are proved by the complete same method as
in [A2], [Ku3]). Let $(x, z, z_{n})\in R^{p}\times C^{n-1}\times C$ . We assume that $M$ is a regular real
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hypersurface in $R^{p}\times C^{n-1}\times C=R^{p}\times C^{n},$ $0\in M$ . Then, we can assume that on a
neighborhood of the origin, $M$ is defined by

${\rm Im} z_{n}-\psi(x, z, {\rm Re} z_{n})=0$ ,

where $\psi$ is a real valued $C^{\infty}$ function satisfying $\psi(0,0,0)=0$ and

$\psi(x, z, {\rm Re} z_{n})=x^{2}+|z|^{2}+$ ($terms$ of degree $\geq 3$ in $(x,$ $z,\overline{z},$ ${\rm Re} z_{n})$),

where if necessary, we must change the coordinates. We set

$\rho(x, z, z_{n})={\rm Im} z_{n}-\psi(x, z, {\rm Re} z_{n})$ ,

Here

$h(x, z, z_{n})=\frac{1}{2\sqrt{-1}}z_{n}+z_{n}^{2}$ .

$Y_{i}^{\prime}:=\frac{\partial}{\partial\overline{z_{i}}}-(\frac{p_{\overline{i}}}{\rho_{\overline{n}}})\frac{\partial}{\partial\overline{z_{n}}}$ , $1\leq i\leq n-1$ ,

$X_{j}^{\prime}:=\frac{\partial}{\partial x_{j}}-(\frac{\partial_{j}}{\rho_{\overline{n}}})\frac{\partial}{\partial_{Z_{n}}^{-}}$ , $1\leq j\leq p$ ,

where $\rho_{\overline{i}}=\partial\rho/\partial z_{i}-,$ $\rho_{j}=\partial\rho/\partial x_{j}$ .
We set $Y_{n-1+j}^{\prime}:=X_{j}^{\prime}$ . Then, as our generalized-Mizohata structure is strongly

pseudoconvex, we can assume the $n+p-1$ matrix

$(a_{tm})_{1\leq l,m\leq n+p-1}>0$ .

Here $a_{lm}$ means the coefficient of $\zeta$ part of

$-\sqrt{-1}[Y_{l}^{\prime}, Y_{m}^{\prime}]$ mod $\{Y_{k}, \overline{Y_{k}};1\leq k\leq n+p-1\}$ ,

where

$\zeta=\sqrt{-1}(r_{\overline{n}}\frac{\partial}{\partial z_{n}}-r_{n}\frac{\partial}{\partial\overline{z_{n}}})$ .

So by the Schmidt orthogonal procedure, we have an orthonormal base $Y_{j}$,
$ 1\leq j\leq n+p-1,with-\sqrt{-1}[Y_{l}, \overline{Y_{m}}]_{\zeta}=\delta_{lm}\zeta$ , where $[Y_{l}, \overline{Y_{m}}]_{\zeta}$ means the $\zeta$ part $of[Y_{l}, \overline{Y_{m}}]$

according to (2.2). Now we follow the Kuranishi’s method ($cf$. [A2], [Ku3]). We set

$Y^{o}=\sum_{l=1}^{n+p-1}\frac{\overline{Y_{l}t}}{b}Y_{l}$ , $W_{l}=Y_{l}-\frac{Y_{l}t}{b}Y^{o}$ $(1\leq l\leq n+p-1)$

where $t=2{\rm Re} h(x, z, z_{n}),$ $b=\sqrt{\sum_{\iota--1}^{n+p-1}|Y_{l}t|^{2}}$ . Then our $W_{l}$ satisfies

$\sum_{l=1}^{n+p-1}(\overline{Y_{l}t})W_{l}=0$ .
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We set

$U_{\epsilon}(0)=$ { $q$ ; $q\in M$, 2Re $ h(q)<\epsilon$}.

Over $U_{\epsilon}(0)$ , we will introduce $D_{b}$-operator and $D_{b}$-complex. For this purpose, we set
the characteristic curve

$C=\{p ; p\in M, b(p)=0\}$ .

On $U_{\epsilon}(0)-C$, we introduce a subbundle $(E_{M})_{b}$ of $E_{M}$ by

$(E_{M})_{b}=\{W;W\in E_{M}, Wt=0\}$ .
Obviously this $(E_{M})_{b}$ is generated by the above $W_{l}’ s$ . Now we set

$D_{b}$ : $\Gamma(U_{\epsilon}(0)-C, 1)\rightarrow\Gamma(U_{\epsilon}(0)-C, ((E_{M})_{b})^{*})$

by; for $f$ in $\Gamma(U_{\epsilon}(0)-C, 1)$ ,

$D_{b}f(W)=Wf$ , $W\in(E_{M})_{b}$ .

Then by the usual way,

$0\rightarrow\Gamma(U_{\epsilon}(0)-C, 1)\Gamma(U_{\epsilon}(0)-C, ((E_{M})_{b})^{*})\underline{D_{b}}\rightarrow^{D_{b}}\Gamma(U_{\epsilon}(0)-C, \wedge^{2}((E_{M})_{b})^{*})$ .

We put the Levi metric on $M$ . Then, with respect to this metric, we can treat $Y_{l},$ $W_{l}$

by the complete same way as in [Ku3], [A2]. Hence we have

THEOREM 3.1. If $n+p-1\geq 3$ , then, for $u$ in $\Gamma(U_{\epsilon}(0)-C, ((E_{M})_{b})^{*})$ with $(1/b)u,$ $W_{i}u$

$(1\leq i\leq n+p-1),$ $D_{b}u,$ $D_{b}^{*}u$ in $L^{2}$ , we have

$\Vert D_{b}u\Vert^{2}+\Vert D_{b}^{*}u\Vert^{2}\geq c\Vert(\frac{1}{b})\Vert^{2}$ ,

where $c$ is a positive constant, $\Vert$ $\Vert$ means the $L^{2}$ -norm defined by the Levi metric on
$U_{\epsilon}(0)-C$, and $D^{*}$ means the adjoint operator with respect to the Levi metric.

4. Formally integrable generalized-Mizohata structures.

Let $M$ be a $C^{\infty}$ manifold with $\dim_{R}M=2n+p-1$ , and let $E_{M}$ be a subbundle of
the complexified tangent bundle $C\otimes TM$ satisfying $[\Gamma(E_{M}), \Gamma(E_{M})]\subset\Gamma(E_{M})$ , with
$\dim_{C}E_{M}=n+p-1,$ $C(E_{M})\neq 0$ . We assume that for every $(p, u)\in C(E),$ $u\neq 0$ , there is a
vector field $\zeta$ of $M$, defined on a neighborhood of $p$ such that $C\otimes TM_{p}$ is generated
by $(E_{M})_{p},$ $(\overline{E_{M}})_{p},$ $\zeta_{p}$ .

DEFINITION 4.1. We assume that $(M, E_{M})$ satisfies the above. Then, the pair
$(M, E_{M})$ is called a formally integrable generalized-Mizohata structure.

As we have shown in Sect. 2 in this paper, we have
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PROPOSITION 4.2. A regular real hypersurface in $R^{p}\times C^{n}$ is a formally integrable
generalized-Mizohata structure.

For a formally integrable Mizohata structure which Hounie and Malagutti
introduced, we have

PROPOSITION 4.3. Let $(M, E_{M})$ be a formally integrable Mizohata structure which
Hounie and Malagutti stated. Then, this $(M, E_{M})$ becomes a formally integrable
generalized-Mizohata structure in our sense.

$PR\infty F$ . We see that for every point $(p, u)\in C(E_{M}),$ $u\neq 0$ , there is a real vector field
$\zeta$, defined on a neighborhood of $p$ satisfying that $C\otimes TM_{p}$ is generated by $(E_{M})_{p},$ $(\overline{(E_{M})})_{p}$ ,
$\zeta$ . However, by the assumption, $\dim_{R}M=\dim_{C}E_{M}+1$ , and $(E_{M})_{p}+\overline{(E_{M})_{p}}\subsetneq C\otimes TM$ (we
note that $(p, u)$ is a characteristic point). Then $(E_{M})_{p}=(\overline{(E_{M})})_{p}$ must hold. So by taking
a supplement vector field of $(E_{M})_{p}$ as $\zeta$ , our proposition is OK. Q.E.D.

Now we introduce the notion of strong pseudoconvexity. For a point $(p, u)$ in
$C(E_{M}),$ $u\neq 0$ , we set a vector bundle decomposition

(4-1) $C\otimes TM_{p}=C\zeta_{p}+(E_{M})_{p}+\overline{(E_{M})_{p}}$ ,

where $(E_{M})_{p}+\overline{(E_{M})_{p}}$ means the vector space generated by $(E_{M})_{p}$ and $\overline{(E_{M})_{p}}$ . By using the
decomposition (4-1), we set a Levi form by;

$L\langle u,$ $v$)$\zeta=-\sqrt{-1}[L_{1}, \overline{L_{2}}]_{\zeta}$ for $u,$ $v\in E_{M}$ ,

where $L_{1},$ $L_{2}$ are $C^{\infty}$ local sections of $E_{M}$ defined in a neighborhood of $q$ so that
$L_{1}(q)=u,$ $L_{2}(q)=v$, and $[L_{1}, \overline{L_{2}}]_{\zeta}$ means the $\zeta$ part of $[L_{1}, \overline{L_{2}}]$ according to (4-1). If
this Levi form is positive or negative definite at every point of $C(E_{M})$ , then our $(M, E_{M})$

is called a strongly pseudoconvex generalized-Mizohata structure.

5. Local embedding theorem.

Let $(M, E_{M})$ be a formally integrable generalized-Mizohata structure, which is
strongly pseudoconvex. We see that this generalized-Mizohata structure can be locally
embedded in $R^{p}\times C^{n}$ as a regular real hypersurface, where $\dim_{R}M=2n+p-1$ ,
$\dim_{C}E_{M}=n+p-1$ . However, as you have already recognized, by the complete same
line as in [A2], [Ku3], our local embedding theorem is proved. For the proo $f$, we see
the following corresponding parts, which are already obvious.

Part 1’. Let $f$ be a $C^{\infty}$ local embedding of $M$ into $R^{p}\times C^{n}$ at the reference point
$p_{0}$ . We set a neighborhood of $p_{0}$ by

$U_{e}(f)=\{x;x\in M, 2{\rm Re}(h\cdot f(x))<\epsilon\}$ ,

where $h$ is a fixed holomorphic function on $R^{p}\times C^{n}$ satisfying certain conditions (see
[A2]). Then, for the solvability of the D-Neumann problem over $U_{\epsilon}(f)$, we see that
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it suffices to solve a nonlinear $D_{b}$-equation on $U_{\epsilon}(f)$ (for the detail, see Chapter 8 in
[A2], where D-operator means the induced operator by the given CR structure $oT^{\prime\prime}$).

Part 2’. Let $f$ be a $C^{\infty}$ local embedding of $M$ into $R^{p}\times C^{n}$ , and $(M, fT^{\prime\prime})$ denotes
the induced CR-structure and $D_{b}^{f}$ denotes the tangential induced operator on $U_{\epsilon}(f)$ by
$fT^{\prime\prime}$ via $f$ (for the detail, see Chapter 2 in [A2]). For this $D_{b}^{f}$ , we have an a priori
estimate, if $n+p-1\geq 3$ .

Part 3’. With the Neumann operator obtained in Part 2, by using the Nash
iteration procecure, we obtain the local embedding theorem of generalized-Mizohata
structures.

Namely, we have

THEOREM 5.1. If $(M, E_{M})$ is a formally integrable generalized-Mizohata structure,
which is strongly pseudoconvex and $n+p-1\geq 3$ , where $\dim_{R}M=2n+p-1,$ $\dim_{C}E_{M}=$

$n+p-1$ , then there is a $C^{\infty}$ local embedding of $M$ into a generalized complex manifold
$R^{p}\times C^{n}$ , satisfying;

$Xf_{i}=0$ , $X\in E_{M}$

where $f=(f_{1}, \cdots,f_{p}, f_{p+1}, \cdots, f_{p+n})$ .
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