Translator Disclaimer
December 1991 Deficient and Ramified Small Functions for Admissible Solutions of Some Differential Equations II
Kenji FUJITA, Katsuya ISHIZAKI
Tokyo J. Math. 14(2): 269-276 (December 1991). DOI: 10.3836/tjm/1270130371

Abstract

Let $\alpha_{j}(z)$, $j=1,2$, $a_{i}(z)$, $i=1,2,\ldots,6$ be meromorphic functions. Suppose the differential equation (*) $w'^3+\alpha_2(z)w'^2+\alpha_1(z)w'=a_6(z)w^6+\cdots+a_1(z)w+a_0(z)$ possesses an admissible solution $w(z)$. If $\eta(z)$ is a solution of (*) and small with respect to $w(z)$ and if (*) is irreducible, then $\eta(z)$ is a deficient or a ramified function for $w(z)$.

Citation

Download Citation

Kenji FUJITA. Katsuya ISHIZAKI. "Deficient and Ramified Small Functions for Admissible Solutions of Some Differential Equations II." Tokyo J. Math. 14 (2) 269 - 276, December 1991. https://doi.org/10.3836/tjm/1270130371

Information

Published: December 1991
First available in Project Euclid: 1 April 2010

zbMATH: 0749.34006
MathSciNet: MR1138166
Digital Object Identifier: 10.3836/tjm/1270130371

Rights: Copyright © 1991 Publication Committee for the Tokyo Journal of Mathematics

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.14 • No. 2 • December 1991
Back to Top