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0. In [3] H. Zassenhaus has given a determination of the irreducible
representations of a nilpotent Lie algebra £ over an algebraically closed
field K of characteristic p > 0 as follows. For each ordered set (A;,\,, ....,
As) of elements of K, there exists one and only one equivalence class {U} of
irreducible representations of & such that A; is the unique eigenvalue of
U(x:), where x,,%, ....,x, is a regular base of £ Reczntly, in [1], replacing
the set of scalars by the set (fi,....,fs) of irreducible polynomials, C.W.
Curtis has proved that for each set (f,....,fs) there exists an equivalence
class {U} of irreducible representations of ¥ such that the minimal poly-
nomial of U(x;) is a power of f;, when K is an arbitrary field of character-
istic p > 0. But generally the uniqueness of the existence of the class does
not hold in Curtis’ case. In this paper we shall give an answer to the
problem of the one-to-one correspondence in his case and at the same time
we consider this problem in the case of soluble Lie algebras over an
arbitrary field K of characteritic 0.

The author wishes to thank Professor T.Tannaka and Dr. C. W. Curtis.

1. We begin with some elementairy results. Let & be a Lie algebra over
an arbitrary field K with a basis %, %, .. .., %, and let 2 be the universal
enveloping algebra of 2. If we imbed the vector space € into U, we obtain
a basis 7 x2....x», e =0 of U over K, where x)x)....4, = 1. Then we have
a natural one-to-one correspondence between the representations? of £ and
those of U, which is described as follows. To any representation U of {,
we may correspond the representation U of U defined by U'(x) = U(x;) and
U1)=E,i=1,....,n, where E isidentity transformation. In the following
we identify U with U

Let U be an irreducible representation of U with the representation
space U. For any non-zero element # of I, we have » U(Y) = U. Let I be
the right ideal of U which consists of elements @ such that # U(q) = 0, then
we have the difference group A — I of A by the maximal right ideal J and
the right %-module A — & is of finite dimension over K. Let us denote by N
the set of all elements ¢ € A such as Aa=3J. Then N is the largest two-
sided ideal of U contained in &. We shall call it the quotient of & relative
to .

These definitions give us

LEMMA 1. Let & and N; be a right ideal of W and its quotient relative
to A, =12 1If two U-modules N — 3 and N — 3., are isomorphic, then
N = Na. Further, if 3 is a two-sided ideal, i = 1,2, then & = G

1) In this paper we consider the representations of finite dimension only.
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LEMMA 2. 'If a right ideal & of U contains [&, 8], then & is a two-sided
ideal and | is commutative ring.

PrOOF. Let %, %, ...-%, -..., % be a base of ¥ such that x, ...., % span
{2, 8]. We write € = [, 2] A. Every element of € is expressed in the form

2;1 %:a;, where a; € . For j>7r, x; 2;1 %A CEN_l x:%A + 2:=1 [x; 21U
— 6. This means AC = 6. Therefore € is a two-sided ideal and /€ is com-
mutative ring. It is easy to see that § is a two-sided ideal and A/F is
commutative. q.e.d.

LEMMmA 3. Let L be an n-dimensional Lie algebra over K. If the dimension
of [L 8 is 7, then the polynomial ring K[X,, ...., Xu-r] and the ring A/C are
isomorphic, where € is the two-sided ideal [, ] .

ProOF. Let x,....,%, ..., % be the base of &such that x;, .. .., x. span
{8, %]. Then a = 2“»1-'% x%....x;» is contained in € if and only if for every

Qey...., ¥ 0, there exists the positive integer s=<7 suchthat e, =e:= .... =
e, =0, and e; = 0. In fact, take monomials of the form «f*....xr.... 27,

. .. -1 .
i =< r,and suppose that for i < j<7 ands = E,M e <t —1, wehave straight-

ed the element x;x%....xr....x» into the required canonical form. Then

in the case of s = ¢, we obtain x;x5.... 2% = Kixxp ... a0+ Zkﬂ Y Xt
....xn where o%’s are structural constants of £ Now here we may apply
the assumption of induction. Since every element of € is expressed in the
form 2;1 X ai, @ € 9, we may prove the necessary condition. The inverse
is trivial.

Now let @ be a homomorphism of K[X, ...., Xu-,] into A — € defined
by @(Xi) = %-+¢ + 6, =1, ...., » — 7. Then since every non-zero class modulo

€ has such a representative as Zaer.._p”enxf.f:il....xﬁn, @ is onto-homomor-

phism. And it is easily seenthat if for some AXj, ...., Xu-») € K[X,, .. ..,
X, (X, oo, X)) €6 (X, ..., Xusy) = 0. Thus @ is onto-isomor-
phism. q.e. d

The Corrollary of Theorem 3 and Theorem 5 of [2] have the following
consequence.

LemMA 4. If M is a maximal ideal K[X,, ...., X;l, there exists a chain
M c....acM; =M where M; =M N K [Xi...., Xi] is @ maximal ideal
o K[X,.....X],i=12,....,s.

We shall call the chain M-chain associated with the maximal ideal .
Now we shall prove the lemma which is obtained from the proof of
‘Theorem 1 of Curtis [1].

LeMmMA 5, Let & be a nilpotent Lie algebra over an arbitrary field K and
U and V be two irreducible representations of L. If for each x € &, U(x) and
V(x) have the same eigenvalue o(x), then these two representations are
equivalent.
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Proor. Let K be an algebraic closure of K and let U and V be the
scalar extensions of U and V from K to I‘(:, respectively. Let m and n be
the degrees of U and V. Then we have a representation ‘i‘(x) = l~/'(x)® Ex
—E.® V(x)‘ where E, and E,, are identity matrices of degree m and #,

respectively, and a(x‘,‘ means the transpose of T7(x). Let U and B be the
representation spaces of U and V, then there exist non-zero vectors » € Ui

and » € Bx such that ul?(x) = ua(x) and 1117(x)‘ = va(x). Then we have
(U@v)T(%) = (4 ® 1) U%) ® En — (4 @ 2) En® V(& = ul(®) ® v —u & (oV(x))
= 0. This means zero is an eigenvalue of T(x) and det ’_F(x) =0, for x€ Lk

Since K is infinite field, there exists a non-zero vector w eUxr®Vr)=U
® V)i such that Ef(x) = 0 for all x € Lk (cf. Proposition 2 of [1]). If we
write w = Ewm, RS I?, where w; € 1 ® B and As’s are linearly independent

over K, we have uTT(x) = Ewi T(x)n; = 0, for all x € €, and hence w;T(x)
= 0.

Thus we may find a non-zero element w of 1 ® B such that wT(x) = 0, for
all x€ & We write w = 2 (#: ® vy) (w;5) where u's and o's are bases of 1

and B. The simple calculation yeilds U(x) - W = W - V(x), for all x € €, where
W is the matrix (w;;). Since U and V are irreducible, U and V are equi-
valent. q.e.d.

2. In this section we shall consider a soluble Lie algebra & over an
arbitrary field K of characterestic 0. Let & be a maximal right ideal of A
such that the dimension of €-module %A — & is finite. Then, since by Lie’s
Theorem any irreducible representation of & is abelian, [£, ¥ <N < & where
M is the quotient of & relative to A. So by Lemma 2 & is a two-sided ideal
and A/F is a (commutive) field K’ which is finite (algebraic) extension over
K. Writing K’ = K if the irreducible representation U is trivial, we obtain

the field K’ which is uniquely determined by the irreducible representation
U.

Then we have

ProrosITION. Let L be a soluble Lie algebra over an arbitrary field K of
characteristic 0, let D be a derivation of L, let x— U(x) be an irreducible
representation of { with the representation space N such that U(D(R)) = 0,
and let f(X) be an irreducible polynomial in K'[X] where K’ is the field deter-
mined by U as mentioned above. Then, there exists exactly one equivalence
class {W} of irreducible representation of the semi-direct sum» L + K- D with
the representation space L8 and a one-to-one linear transformation S of U into

2) The semi-direct sum L+ KD is the Lie algebra whose urderlying vector space is
the direct sum of vector spaces L and K«D, and in which the bracket multiplication
is defined by the formula [z+eaD, z'+ae'D]=[z, z2']l+a'D(x)—aD(z’'), x, ' €L,
@, a'€K.
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W such that U(x) S =S W(x) for all x € L and f(X) is an irreducible factor of
the minimal polynomial of W(D) in X[X].

Proor. Let U be the universal enveloping algebra of L If x, %, ...., %
is a basis of £, then the standard monomials x%2....x7D%, ¢, =0, d =0
form a basis of the universal enveloping algebra U’ of & + K- D. Let & be
the maximal right ideal of % such that %-module A — & induces UU. We may
suppose that =% — S and Ux): u + F—>ux+ &, for x< L Then W is a
proper ideal of A’. In fact, every element a of U’ can be expressed uniquely

in the form a = Ea;D"’, ai € A where if ac §-U, thena; € & If A =

A’, then the identity 1 is contained in 3%’ and 1 = Eai D, a; € §. There-
fore 1= ay € 3, contrary to the fact that 3 is proper ideal. From U(D())
=0, we have D) < & and [ + D,L + D] < &. By Lemma 2, 3W is a two-
sided ideal of %’ and /3 is commutative. The mapping @ : za;Di +

R4 —>¢(2 aD'+ & QI’) = > (a + 3) D' gives the isomorphism of A’ — S’
onto (U — &) [D] = K’[D]. Thus we have a one-to-one correspondence between
maximal ideals of %’ which contain &%’ and maximal ideals of K'[D]. Let
&' be a maximal ideal of U snch that @(J’) = (AD)). It is easily seen that
the dimension of the ’-module A’'/J’ over K is finite. Since § < JW < &,
Fc 3 NA But & N U is a proper ideal of A and & is maximal, ¥ N A
=g.

Define B = A'/3’ and Wx); w+ F —wwx+ §. Since I N U= 3, the
mapping S: # + F—u + & is a one-to-one linear transformation of U into
26 such that U(x)-S = S« W(x), for x€ L.

Since &’ is the two-sided ideal of 2, the quotient W of & relative to A’
coincides with &’. Let fy(X) € K[X] be the minimal polynomial of W{(D).
Then fy(D) is the polynomial of the least degree in K[D] N &’. Therfore
SoD) = p(fy(D) + FW') € (AD)) = K'[D], and f(D) is an irreducible factor of
f«D) in K'[D] q.e. d

By Lemmas 1,3 and theorem of Lie, we have

THEOREM 1. Let L be a soluble Lie algebra over an arbitrary field K of
characteristic 0. Then there exists a one-to-one correspondence between equi-
valence classes of irreducible representations of & and maximal ideals of the
polynomial ring K[X,, . ... X;] where s is the dimension of 2/[L, L] over K.

Further

THEOREM 1. Let & be a soluble Lie algebra over an arbitrary field K of
characteristic 0, let %, ...., %, ...., %, be abase of & such that Xssi, ..., % span
[, 81, and fi(X:) be an irreducible polynomial in K; [X;] defined inductively such
as Ki=K and K = Ki-; [Xi-1]/(fi-1(Xi-1)). Then there exists a one-to-one
correspondence between equivalence classes {U?} of irreducible representations of
L and such sets (fy, ...., 1s), and if U corresponds to (fi, ...., 1), f(X) is an
irreducible factor of the minimal polynomial of U(x:) in Ki[X], ¢=1,....s.
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Proor. Let £; be the ideal of € spanned by %, ....%, X%+, ....,%. Let U
be the universal enveloping algebra of %, 7=1,2, ....,s. Then we may
suppose that %; = ... By Lemma 3 we have an isomorphism ¢ of K[X,,
...., X] onto A — € such that (X;) = % + € where € = [{, L] .

Let U be an irreducible representation of £ and let 3 be a maximal
right ideal of U such that the 2-module A — & induces U. By Lemmas 1,2
and Lie’s theorem, & is the two-sided ideal determined uniquely by the
equivalence class {U} which contains U. We write M = ¢ (J). Let M, <M, <

... M; = M be M-chain (cf. Lemma 4). Then we obtain a set (;, .. .., f;)
as mentioned in the theorem. We prove this by induction. We write 3, =
M .- K[X:,.....Xz], t=2,3....s. Let o; be the natural isomorphism of

KIX;, ..., X:J/%: onto (K[X,, ...., Xr-1]/Ms-,)[X:] defined by o, (Z a, Xi + %)

= E(a, + M, )X/, for a, € K[ Xy, ...., Xe1], t =2, ....,s. At first we have
the irreducible polynomial fi(X;) € K[X;] such that (fi(X;)) = M, and let =,
be the identity automorphism of K[X;]/(fi(Xi)) = K,. Assume that we have
constructed the natural isomorphism 7; of K[Xi, ....X:]/$: onto K;[X;] and
the irreducible polynomial fi(X;) such that (M) =/(X;) for i=2,....,
t —1. Then, let 7;-; be the induced isomorphism of KI[X, ...., X;_11/M: -1
onto Kr_y [Xi-11/(fi-1(X;-1)) = K;, and we have the required isomorphism
7 = Ts10: of K[Xi, ...., X:]/P: onto Ki[X;] and the irreducible polynomial
f{Xy) € K[X:] such that =(M,) = (fA(X:)). The set (£, ....,/:) determined

uniquely by M is called M-set associated with M. If £i(X) = 2 ai; X' € K[X]

is the minimal polynomial of U(x), i = 1,2, ....,s, then fi(x) € &. Therefore
o~ (X)) + C) =fu(X) €M N K[X,, ..., Xi]l=D and 7:(fi(X) + Pe) = fil X)
€ (fi(X:)). This means that fi(X) is an irreducible factor of the minimal
polynomial of U(%) in K;[X].

Conversely, for a given set (fy, ....,fs), there exists only one maximal
ideal M of K[X,, ...., X;} whose M-set is the given (1}, ...., /) (cf. Proof of
Proposition 1). Writing & = @(IR), then we obtain a required equivalence
class of the irreducible representations of £ which is induced by %/3. q. e.d.

3. Let € be a nilpotent Lie algebra over an arbitrary field K of cha-
racterstic p > 0. It is well known that any nilpotent Lie algebra has a regular

. “.—1 . .
base %3, %, . . .., % such that, whenever ¢ < j, [%, x;] € Z,M Kx.. In this section
we use a regular base only. There exists a positive integer 7 such that

y: = is contained in the center of the universal enveloping algebra A of

Q. We write B=K[»,....,¥,] and & = 2 ..oy #0 od KX . . xrwhere
(ey, ....,es) £ 0 (mod p") means that there exists 7 < » such that e, & o (mod.
?"). Thenwehave A =B + S, B N S = (0) and BS = SB < &S. Every element
a € U has its unique expression @ = B(a) + S(a), B(a) € B, S(a) € &, where
B and S are linear transformations of U onto B and & respectively. Then
we have
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LEMMA 6. For a maximal ideal € of B, there exists a maximal right ideal
& of U such that 3 N B = 6.

Proor. 6% =+ 9. In fact, if €- A=A 1= D cia where c; €6, a €.

Then 3, cia = 2 cBl@)+ X cS(a:) = 1. Therefore, 1= > ¢B(a)€ 6,

contrary to the fact that € is proper ideal of B. Since the dimension of the
A-module A — G is finite, there exists a maximal right ideal & such that
&> 6. On the other hand, since & does not contain 1, & | B is proper and
&NYB=6. q.e.d.

LemMA 7. Lel G be a maximal ideal of B. If there are two maximal right
ideals S and 3. of N such that 3 N B = 6, i = 1,2, then two A-modules W — S,
and W — &, are isomorphic.

ProoF. Let U; be irreducible representations of £ induced by A-module
A—Gy, fori=1,2. Since B+ F)—3J: =B —€E, {=1,2, the two represen-
tations Ui®B)|(B + F1) — G and U(B)|(B + 3u) — 3« of B are equivalent,
where the notation | means restriction of U; to the submodule (B + &) —

of A -, £=1,2. Let K be the algebraic closure of K. Then 171(58)]((58 +
) — Sk is equivalent to Us(B)| (B + F) — )k where U; and (B + )

— 3% mean the scalar extensions of U; and (B + &) — &) from K to K.
“There exists indecomposable component B; of (B + ) — )&, 7= 1,2, such

that [71@3)[381 is equivalent to l?g(%)l%g. Then, for ¥y € B we have the same
unique eigenvalue a(y) of Uy(¥)|B; i = 1,2. (cf. Theorem 1 of [1]). The module

B; = B, U(A) is an invariant submodule of (A — )z, 7 = 1, 2. Since (}T(%) is
central there exists a positive integer R such that {MZ@() ([Z(y) —a@)t =,
(Ui(y) — a()® UA) =0, i =1,2. Let W) be an irreducible constituent of
UT-(’I()IQSE with the re[:resentation space 28; which is a submodule of %;.

Then %i(ﬁf(xj) - a(y,)F)"rR =W (Uy;) —a@y)2=0, for i=1,2, and =1,
1

2, ....,n. This means that a(yi);f is the same unique eigenvalue of
Uix)| Wi, 1=1,2,7=1,2,...., n. Since x, ...., % is a regular base of £, by
Zassenhaus’ theorem, U,(N)|2W, and U,(A)|L, are equivalent. Therefore for x

=2 ZZ(x) and [}:(x) have the same eigenvalue. The application of the Lemma
5 yields that these two irreducible representations are equivalent. q.e.d.

LEMMA 8. Let &, be a mamimal right ideal of W such that the U-module
W — & is of finite dimention, let € be a maximal ideal of B which contains
SN B and let 3, be a maximal right ideal of N which contains €. Then two
W-modules U — 3, and N — $. are isomorphic.

REMARK. For the right ideal &, there exist <€ and &, as mentioned
above.

Proor. Since B+ ) —F=B—(3 NB) and B+ GJy) —F: =B — 6,
the representation U:«(B)|(B + J1) — 3 has an irreducible constituent which
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is equivalent to UB)[(B + 3,) — F. Since irreducible constituents of inde-
composable ‘component of Uy(B)|(B + 1) — 3, are equivalent, there exists
a submodule € of (B + J;) — 31 such that U(B)|€ is equivalent to UxB)|(B
+ &.) — .. The argument which we have developed in the proof of Lemma
6 gives Lemma 7. g.e.d

If &y and . are right ideals of U such that A — & =AU — G, we have
N, = N, where N; is the quotient of G relative to A (cf. Lemma 1). Since
N, is the largest two-sided ideal of U contained in §;, NV (F:NB)- A <= N;
and S N BN, NB. But since W<y and N, =N, we have F N B =
3, N B. Therefore applying the Lemma 8, we have

LEMMA 9. If & is a maximal right ideal of W such that the dimension of
W-module W — G is finite, ¥ N D is a maximal ideal of V.

The Lemmas 7 and 9 have the following consequence.

THEOREM 2. Let & be a n-dimensional nilpotent Lie algebra over an
arbitrary field of characterstic p > 0. There exists one-to-one correspondence
between equivalence classes of irreducible representations of & and maximal ideals
of polynomial ring K[X,, Xs, .. .., Xal.

Further

THEOREM 2'. Let L be a nilpotent Lie algebra over an arbitrary field K
of characteristic p >0, let %, %, ...., % be a regular base of & and let fi(X;)
be an irreducible polynomial in K;[X:] defined inductively such as K, = K and
K=K [Xi]/(fioi(Xi-1) for 1 =2,....,n. Then there exists a one-to-one
correspondence between equivalence classes {U} of irreducible representations of
L and such sets (fi, .....fs) and if U corresponds to (fi, ....,fs)J«(X) is an

irreducible factor of the minimal polynomial of U(x?") in K;[X] where r is a

positive integer such that xf’r is central in the enveloping algebra of L.

Proor. By Lemmas 6 and 7 we may consider maximal ideals of 8. The
argument which has been developed in the proof of the Theorem 1’ runs in
this case, too. q.e.d.

Here is an example of two irreducible representations of Lie algebra
which are not equivalent and correspond to the same set of irreducible
polynomials in the sense of Curtis’ Theorem 2 of [1].

ExampLE. Let K be a field which does not contain /2, and let € = Kx;
+ Kx, be a two-dimensional abelian Lie algebra over K. Then two represen-
tations U(x) = ((1) 2), i=12 and V(n)= (‘1) 2), v(x) = ( _972) are ir-
reducible and not equivalent. The irreducible polynomial X*—2 is the
minimal polynomials of U(x;) and V(x;), 7 =1, 2.
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