2023 Optimal maps and local-to-global property in negative dimensional spaces with Ricci curvature bounded from below
Mattia Magnabosco, Chiara Rigoni
Tohoku Math. J. (2) 75(4): 483-507 (2023). DOI: 10.2748/tmj.20220420

Abstract

In this paper we investigate two important properties of metric measure spaces satisfying the reduced curvature-dimension condition for negative values of the dimension parameter: the existence of a transport map between two suitable marginals and the so-called local-to-global property.

Citation

Download Citation

Mattia Magnabosco. Chiara Rigoni. "Optimal maps and local-to-global property in negative dimensional spaces with Ricci curvature bounded from below." Tohoku Math. J. (2) 75 (4) 483 - 507, 2023. https://doi.org/10.2748/tmj.20220420

Information

Published: 2023
First available in Project Euclid: 12 December 2023

MathSciNet: MR4677752
Digital Object Identifier: 10.2748/tmj.20220420

Subjects:
Primary: 30L99
Secondary: 49N99

Keywords: CD spaces , local-to-global property , negative dimension , Optimal transport maps

Rights: Copyright © 2023 Tohoku University

JOURNAL ARTICLE
25 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.75 • No. 4 • 2023
Back to Top