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POLAR FOLIATIONS ON QUATERNIONIC PROJECTIVE SPACES
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Abstract. We classify irreducible polar foliations of codimension q on quaternionic
projective spaces HPn, for all (n, q) �= (7, 1). We prove that all irreducible polar foliations
of any codimension (resp. of codimension one) on HPn are homogeneous if and only if n +
1 is a prime number (resp. n is even or n = 1). This shows the existence of inhomogeneous
examples of codimension one and higher.

1. Introduction. A singular Riemannian foliation F on a complete Riemannian man-
ifold M is called a polar foliation if through each point of M passes a complete, isometrically
immersed submanifold, called a section, that intersects all the leaves of F and always orthog-
onally. It turns out that sections are totally geodesic. A polar foliation is said to be homoge-
neous if it is the family of orbits of an isometric action on M; in this case, this action is called
a polar action.

Polar foliations on nonnegatively curved space forms have been studied under the name
of isoparametric foliations, which have been almost completely classified after outstanding
work by many mathematicians. We refer to the survey [34] and to the recent papers [8, 26] for
more information. The question that remains open is to decide whether a given codimension
one polar foliation on the unit sphere S31 must be either homogeneous or one of the known
inhomogeneous examples (see also [27, 32] for the case of S13). These inhomogeneous exam-
ples, the so-called FKM-foliations, were constructed by Ferus, Karcher and Münzner in [16].
We note that the homogeneous polar foliations are well understood. In particular, by Dadok’s
seminal work [11], homogeneous polar foliations on spheres are induced by s-representations,
that is, by the isotropy representations of symmetric spaces. Moreover, a deep result by Thor-
bergsson [33] states that irreducible polar foliations of codimension at least two on spheres
are homogeneous.

The first investigations of not necessarily homogeneous polar foliations on concrete
spaces of nonconstant curvature were developed by Lytchak [25] and the first named au-
thor [12]. Lytchak’s paper deals with simply connected symmetric spaces of compact type
and rank higher than one. He proves that polar foliations of codimension at least three on
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these spaces must be hyperpolar (i.e. polar with flat sections) which, combined with a result
by Christ ([9]; see also [19]), implies the homogeneity of all such foliations. Meanwhile,
the second paper [12] deals with polar foliations on a family of rank one symmetric spaces,
namely, on complex projective spaces. The main result is an almost complete classification
of polar foliations on these spaces. Surprisingly enough, from this classification follows the
existence of many inhomogeneous irreducible polar foliations, even in codimension higher
than one, which reveals a sharp contrast with Thorbergsson’s and Lytchak’s results.

In this paper we continue the investigation initiated in [12] of polar foliations on rank
one symmetric spaces of compact type, and we derive an almost complete classification on
quaternionic projective spaces HPn. This classification is complete in the case of irreducible
foliations of codimension higher than one. Here by irreducible we mean that no proper totally
geodesic quaternionic submanifold HPk , k = 0, . . . , n − 1, of HPn is a union of leaves of
the foliation.

Any linear quaternionic structure q on a Euclidean space V = R4n+4 determines a Hopf
fibration πq : S4n+3 → HPn from the unit sphere S4n+3 of V onto the quaternionic projective
space HPn. We say that q preserves a singular Riemannian foliation F on the sphere S4n+3

if each leaf of F is foliated by fibers of πq. In such a case there is an induced singular
Riemannian foliation πq(F) on HPn, and indeed all singular Riemannian foliations of HPn

arise in this way. Our classification amounts to listing the polar foliations F on spheres S4n+3

that are preserved by some quaternionic structure, and then determining all congruence classes
of quaternionic structures preserving F . We denote by NS (F) the number of congruence
classes of polar foliations on HPn that can be obtained as πq(F), for some polar foliation F
on S4n+3 and some quaternionic structure q preserving F . The explicit description is given in
Section 4.

In the case of codimension higher than one, each irreducible polar foliation on a sphere
must be homogeneous and, more specifically, the orbit foliation of the isotropy representation
of an irreducible symmetric space G/K , restricted to the unit sphere of T[K]G/K . We denote
this polar foliation by FG/K . Thus, we have the following result.

THEOREM 1.1. For each symmetric space G/K of rank at least two in Table 1, there
are, up to congruence in HPn, exactly NS (FG/K) polar foliations on HPn whose pull-back
under the Hopf map gives a foliation congruent to FG/K .

Conversely, let G be an irreducible polar foliation of codimension greater than one on
HPn. Then G is the projection of FG/K under the Hopf map associated with q, where G/K

is one of the symmetric spaces listed in Table 1 and q is a quaternionic structure on T[K]G/K

preserving FG/K .
Moreover, if G/K is an irreducible quaternionic-Kähler symmetric space, exactly one of

the NS (FG/K) foliations that pull back to a foliation congruent to FG/K is homogeneous. If
G/K is not quaternionic-Kähler, none of the NS (FG/K) foliations is homogeneous.

Investigating codimension one polar foliations on quaternionic projective spaces requires
the determination of the quaternionic structures that preserve FKM-foliations, up to congru-
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G/K NS Condition
SU2p+q/S(U2p × Uq) 2 q even and q �= 2p

1 q odd or q = 2p

SO4p+q/SO4p × SOq 2 q ≡ 0 (mod 4) and q �= 4p

1 q �≡ 0 (mod 4) or q = 4p

Spp+q/Spp × Spq 2 p �= q

1 p = q

G/K NS
E6/SU6 · SU2 1

E6/Spin10 · U1 1
E7/Spin12 · Sp1 2
E8/(Spin16/Z2) 1

E8/E7 · SU2 1
F4/Sp3 · SU2 1
G2/SU2 · SU2 1

TABLE 1.

ence of the projected foliations. In this paper we carry out this job for all FKM-foliations
satisfying m+ ≤ m− (see below for the explanation of this notation). According to the classi-
fication results in spheres, each codimension one polar foliation on S4n+3, n �= 7, is either a
homogeneous foliation FG/K for some rank 2 symmetric space G/K , or an inhomogeneous
FKM-foliation satisfying m+ ≤ m−. Thus, our study (summarized in Theorem 1.2 below)
yields the classification of codimension one polar foliations on HPn, for all n �= 7.

In order to understand the condition m+ ≤ m− and Theorem 1.2 below, we need to
introduce some known facts about FKM-foliations; we refer to §4.2 for more details. An
FKM-foliation FP is defined in terms of a symmetric Clifford system (P0, . . . , Pm) on R2l ,
but it only depends on the (m + 1)-dimensional vector space of symmetric matrices P =
span{P0, . . . , Pm}. The codimension one leaves of FP have g = 4 distinct principal cur-
vatures with multiplicities (m+,m−) = (m, l − m − 1). The Clifford system (P0, . . . , Pm)

determines a Clifford module on R2l . Let k be the number of its irreducible submodules. If
m ≡ 0 (mod 4), there are exactly two equivalence classes of irreducible Clifford modules;
in this case, let k+ and k− be the number of each one of these two classes appearing in the
decomposition into irreducible submodules.

THEOREM 1.2. Let FP be an FKM-foliation on S4n+3 with dimP = m + 1 and 2 ≤
m+ ≤ m−. Then, up to congruence in HPn, there are exactly NS (FP ) ≥ 1 polar foliations
on HPn that pull back under the Hopf map to a foliation congruent to FP , where:

• NS (FP ) = 2 if m ≡ 0 (mod 8) with both k+, k− ≡ 0 (mod 4), or if m ≡ 1, 7 (mod 8)

with k ≡ 0 (mod 4), or if m ≡ 2, 6 (mod 8) with k even, or if m ≡ 3, 4, 5 (mod 8);
• NS (FP ) = 1, otherwise.
Conversely, let G be a polar foliation of codimension one on HPn. Then G is the pro-

jection of a polar foliation F on S4n+3 under the Hopf map associated with q, where q is a
quaternionic structure on R4n+4 preserving F , and:

• F = FP is an FKM-foliation satisfying 2 ≤ m+ ≤ m−; or
• F = FG/K for some symmetric space G/K of rank 2 in Table 1; or
• F is an inhomogeneous polar foliation of codimension one on S31 whose hypersur-
faces have g = 4 distinct principal curvatures with multiplicities (7, 8).

Moreover, if F is not homogeneous, then G is not homogeneous either.
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Theorems 1.1 and 1.2, together with the explicit determination (obtained in Section 4) of
the quaternionic structures preserving each polar foliation on a sphere, give the classification
of irreducible polar foliations of codimension q on quaternionic projective spaces HPn, with
the only exception of (n, q) = (7, 1).

Similarly as in the case of complex projective spaces, our classification implies the exis-
tence of many inhomogeneous irreducible polar foliations on quaternionic projective spaces,
even of codimension higher than one. Indeed, we prove some neat characterizations of those
dimensions n for which HPn admits inhomogeneous examples. Intriguingly enough, these
characterizations are completely analogous to the ones obtained in [12] for the complex case,
in spite of the fact that the classification in the present paper is quite different from that in [12].

THEOREM 1.3. Every polar foliation of codimension one on HPn is homogeneous if
and only if n is even or n = 1.

THEOREM 1.4. Every irreducible polar foliation on HPn is homogeneous if and only
if n + 1 is a prime number.

We now give a quick overview of our arguments. First, the possibility of classifying polar
foliations on quaternionic projective spaces arises from the fact that a singular Riemannian
foliation on HPn is polar if and only if its pull-back under the Hopf map is polar in S4n+3.
Thus, the good knowledge we nowadays have of polar foliations in spheres suggests that it is
enough to check if each polar foliation on a sphere S4n+3 can be the pull-back of a foliation
on HPn. However, there can be noncongruent polar foliations on HPn that pull back to
congruent foliations on S4n+3. Equivalently, given a fixed foliation F on S4n+3 ⊂ R4n+4,
there can be different quaternionic structures q on R4n+4 preserving F such that the projected
foliations via the corresponding Hopf maps πq are not congruent in HPn. This phenomenon
also occurs for the Hopf fibration of the complex projective space CPn; this was first noticed
by Xiao in [37] and exhaustively explored by the first named author in [12].

Determining the set S/ ∼ of all quaternionic structures preserving F , up to congruence
of the projected foliations, turns out to be a completely nontrivial job. Our task is then to
develop a method to solve this problem. Given any singular Riemannian foliation F with
closed leaves on S4n+3, let K be the maximal connected subgroup of SO4n+4 that leaves
invariant each leaf of F . We show that quaternionic structures preserving F are induced
by those su2-subalgebras of k containing an element that is a complex structure on R

4n+4.
Combining this with the ideas in [12], we have a systematic approach to determine the moduli
space S/ ∼. Then we apply this method to almost all known polar foliations on spheres,
which is enough to obtain the classification stated in Theorems 1.1 and 1.2.

Finally, we determine which projected polar foliations on HPn are homogeneous. At
this point, we revisit Podestà and Thorbergsson’s classification of polar actions on HPn [30]
by making use of our results. The criterion of homogeneity thus obtained as Theorem 6.2 is
fundamental to the proofs of Theorems 1.3 and 1.4.

This paper is organized as follows. In Section 2 we show that, roughly speaking, polar
foliations have a good behaviour with respect to the Hopf map. Section 3 is devoted to the
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development of a method to investigate singular Riemannian foliations with closed leaves
on quaternionic projective spaces. We apply this method to polar foliations in Section 4, by
determining the quaternionic structures that preserve homogeneous polar foliations on spheres
(in §4.1), and FKM-foliations with m+ ≤ m− (in §4.2). Based on this study, in Section 5 we
prove Theorems 1.1 and 1.2. Finally, in Section 6 we investigate the homogeneity of polar
foliations on HPn and prove Theorems 1.3 and 1.4.

The authors would like to thank Marcos Alexandrino, Andreas Kollross, and Alexander
Lytchak for very useful comments.

2. Behaviour with respect to the Hopf map. We briefly recall the construction of
quaternionic projective space and its Hopf fibration; see [4, Chapter 3] for details. In what
follows, Lie algebras are denoted by gothic letters, and the unit sphere of a Euclidean space
V is denoted by S(V ).

Let V be the Euclidean space R
4n+4. A 3-dimensional subspace q of so(V ) = so4n+4

is called a (linear) quaternionic structure on V if there are elements J1, J2, J3 ∈ q such that
J 2

i = − Id and JiJi+1 = Ji+2 (indices modulo 3), for i = 1, 2, 3. Note that q is then a
Lie subalgebra of so(V ) isomorphic to sp1

∼= su2. We will denote by Q the connected Lie
subgroup of SO(V ) with Lie algebra q. Clearly, Q = {a0 Id +a1J1 + a2J2 + a3J3 : ai ∈
R,

∑3
i=0 a2

i = 1}.
Any quaternionic structure q on V induces a principal fiber bundle with total space the

unit sphere S(V ) = S4n+3, base space the quaternionic projective space HPn, and structural
group Q ∼= Sp1

∼= SU2. The corresponding fibration π : S(V ) → HPn is called the Hopf
map, and its fibers are the totally geodesic 3-dimensional spheres given by the orbits of the
isometric action of Q on S(V ). The Fubini-Study metric on HPn of constant quaternionic
sectional curvature 4 is the one that makes π into a Riemannian submersion.

The following result is the starting point of our arguments.

PROPOSITION 2.1. Let G be a singular Riemannian foliation on HPn. Then G is a
polar foliation on HPn if and only if its pull-back foliation π−1G is a polar foliation on
S(V ). In this case, any section of G is a totally geodesic RPk in HPn.

PROOF. The necessity has been proved in [25, Proposition 9.1]. Let us assume that
π−1G is a polar foliation on S(V ). Any section � for π−1G is horizontal. Since the geodesics
in � are horizontal, they are mapped to geodesics of HPn, and hence π maps � isometrically
onto a section for G. In particular, G is polar. The last assertion follows again from [25]. �

REMARK 2.2. It is known that polar and isoparametric foliations constitute the same
subclass of singular Riemannian foliations on spheres, see [2, Theorem 2.7 and Claim 2
on p. 1173]. Hence, Proposition 2.1 and [22, Theorem 3.4] imply that this also happens
for quaternionic projective spaces. (A similar remark applies to complex projective spaces,
cf. [12, Proposition 2.1].)

REMARK 2.3. In [12] it was proved that isoparametric submanifolds have a good be-
haviour with respect to the Hopf map S2n+1 → CPn, and that any isoparametric submanifold
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of CPn is an open part of a complete leaf of an isoparametric foliation that fills the whole
CPn. Whether this is also true in the quaternionic setting remains an open question. Accord-
ing to [22, Theorem 3.4] (and similar calculations as in [12, Proposition 2.1]), the difficulty
consists in showing that sections to an isoparametric submanifold in HPn are totally real.

3. Quaternionic structures preserving a foliation. In this section we develop a
method to study singular Riemannian foliations with closed leaves on quaternionic projec-
tive spaces.

Let V = R4n+4 and let F be a closed foliation on S(V ), that is, a singular Riemannian
foliation on S(V ) such that all its leaves are closed. Let ρ : K → SO(V ) be an effective
representation of a Lie group K such that ρ(K) is the maximal connected subgroup of SO(V )

leaving each leaf of F invariant. Since F is closed, K is compact.
We say that a quaternionic structure q on V preserves the foliation F if for all p ∈ S(V )

the orbit Q · p is contained in the leaf of F through p. Equivalently, q preserves F if F is
the pull-back of a foliation on HPn under the Hopf map associated with q. Similarly (cf. [12,
§4.1]), a complex structure J on V (i.e. J ∈ so(V ) ∩ SO(V )) preserves F if the Hopf circle
{cos(t)p + sin(t)Jp : t ∈ R} through any p ∈ S(V ) is contained in the leaf of F through p.

PROPOSITION 3.1. Let q be a quaternionic structure on V . The following are equiva-
lent:

(a) q preserves F .
(b) There exists a subgroup S of K such that ρ(S) = Q.
(c) There exists a subalgebra s of k such that ρ∗(s) = q.

In this situation, S ∼= SU2 and s ∼= su2.

PROOF. If q preservesF , then Q ⊂ ρ(K). By the effectiveness of ρ, there is a subgroup
S of K such that ρ(S) = Q. Thus, (a) implies (b). Since the Lie algebra of Q is q, (b) implies
(c). Finally, assume that s is a subalgebra of k such that ρ∗(s) = q. Let S be the connected
subgroup of K with Lie algebra s. Then, for all p ∈ S(V ) and X ∈ s we have ρ∗(X)p ∈
TpLp, where Lp is the leaf of F through p. Since Tp(ρ(S) · p) = {ρ∗(X)p : X ∈ s}, we
have that Tp(ρ(S) · p) ⊂ TpLp , for all p ∈ S(V ). Thus, Q · p = ρ(S) · p ⊂ Lp for all p ∈
S(V ), which means that q preserves F . �

A straightforward but important observation is the following.

PROPOSITION 3.2. If q = ρ∗(s) is a quaternionic structure preserving F , then for
each nonzero X ∈ s there is λ > 0 such that ρ∗(λX) is a complex structure on V preserving
F . In particular, {ρ∗(X) : X ∈ s, ρ∗(X)2 = − Id} is a 2-sphere of complex structures on V

preserving F .

The following characterization of the subspaces of k that induce a quaternionic structure
will be fundamental to our study.

PROPOSITION 3.3. Let s be a subalgebra of k isomorphic to su2. The following con-
ditions are equivalent:
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(a) ρ∗(s) is a quaternionic structure on V .
(b) ρ∗|s : s → so(V ) is the direct sum of standard (i.e. nontrivial 4-dimensional) real repre-

sentations of su2.
(c) There is an H ∈ s such that ρ∗(H) is a complex structure on V .

PROOF. The implication (a)⇒(b) is direct from the definition of quaternionic structure
whereas (a)⇒(c) follows from Proposition 3.2. Let us assume that there is an H ∈ s such that
ρ∗(H) is a complex structure on V ; in particular H is nonzero. Consider RH as a maximal
Abelian subalgebra of s. If θ : RH → R is defined by θ(aH) = a, for a ∈ R, then (c) means
that ±θ are the only weights of the representation ρ∗|s, and both have the same multiplicities;
henceforth, for the sake of convenience, we adopt the convention that the weights of repre-
sentations of compact Lie algebras take real values. By the classification of the orthogonal
representations of su2, we deduce that ρ∗|s is an orthogonal sum of standard representations
of su2. This shows that (c) implies (b). Finally, if (b) holds, then ρ∗|s = ⊕

i ρi , where
ρi : s → O(Vi) ∼= O4 is a standard representation of su2 and V = ⊕

i Vi is a direct sum.
Taking {X1,X2,X3} as a basis of s such that {ρ1(X1), ρ1(X2), ρ1(X3)} is a canonical basis
for a quaternionic structure on V1, we also have that {ρi(X1), ρi(X2), ρi(X3)} is a canonical
basis for a quaternionic structure on Vi , for any i = 1, . . . , 1

4 dim V , since for each i there

exists an orthogonal transformation Ai : V1 → Vi such that Aiρ1(X)A−1
i = ρi(X), for all

X ∈ s. Thus, ρ∗(s) = span{⊕i ρi (X1),
⊕

i ρi (X2),
⊕

i ρi (X3)} is a quaternionic structure
on V , proving (a). �

Let S be the collection of subalgebras s of k such that ρ∗(s) is a quaternionic structure
on V . Clearly, each element of S is isomorphic to su2 and, by Proposition 3.1, {ρ∗(s) : s ∈
S} is the set of all quaternionic structures on V that preserve F .

We now analyse the congruence problem, namely, when two quaternionic structures pre-
serving F give rise to congruent projected foliations. The basic observation is the following.

PROPOSITION 3.4. Let q1, q2 be quaternionic structures on V , HPn
1 , HPn

2 the corre-
sponding quaternionic projective spaces, and π1, π2 the associated Hopf maps.

Two foliations G1 ⊂ HPn
1 and G2 ⊂ HPn

2 are congruent if and only if there exists an

orthogonal transformation A ∈ O(V ) satisfying Aq1A
−1 = q2 and mapping leaves of π

−1
1 G1

to leaves of π−1
2 G2.

PROOF. G1 and G2 are congruent if and only if their pull-backs are congruent in S(V )

by an element A ∈ O(V ), and A descends to an isometry between HPn
1 and HPn

2 . But the
latter is equivalent to Aq1A

−1 = q2. �

We introduce an equivalence relation ∼ in the set S that parametrizes the quaternionic
structures on V preserving F . Two subalgebras s1, s2 ∈ S are ∼-equivalent if π1(F) and
π2(F) are congruent foliations on the corresponding quaternionic projective spaces; here
πi : S(V ) → HPn

i is the Hopf map associated with the quaternionic structure ρ∗(si ), for
i = 1, 2. Thus, the classification (up to congruence in HPn) of all foliations on HPn that pull
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back under the Hopf map to a foliation congruent to F is equivalent to the determination of
the moduli space S/ ∼.

Let Aut(F) be the group of automorphisms of F , that is, the group of all orthogonal
transformations of V that map leaves of F to leaves of F . Then, by Proposition 3.4, given s1,
s2 ∈ S, we have that s1 ∼ s2 if and only if there exists A ∈ Aut(F) such that Aρ∗(s1)A

−1 =
ρ∗(s2). This suggests the introduction, for each A ∈ Aut(F), of an automorphism ϕA ∈
Aut(k) of the Lie algebra k by means of the relation Aρ∗(X)A−1 = ρ∗(ϕA(X)) for X ∈ k.
Thus, we can consider the group

Aut(k,F) = {�A ∈ End(k ⊕ V ) : �A|k = ϕA, �A|V = A, A ∈ Aut(F)} .

Hence, we have

PROPOSITION 3.5. If s ∈ S, then �(s) ∈ S for all � ∈ Aut(k,F). Moreover, if s1,
s2 ∈ S, then s1 ∼ s2 if and only if there exists � ∈ Aut(k,F) such that �(s1) = s2.

Next we fix a maximal Abelian subalgebra t of k. Given any set of simple roots for the
pair (k, t), let C̄ be the closed Weyl chamber in t. We consider the sets St = {s ∈ S : s ∩ t �=
0} and SC̄ = {s ∈ S : s ∩ C̄ �= 0}. Since ρ(K) ⊂ Aut(F), it follows that (Ad ⊕ρ)(K) =
{�ρ(k) : k ∈ K} is a subgroup of Aut(k,F). Then, since for each s ∈ S there exists k ∈ K

such that Ad(k)s ∈ SC̄ ⊂ St, and Ad(k)s ∼ s, we have

PROPOSITION 3.6. S/∼ ∼= St/∼ ∼= SC̄/∼.

Similarly as in the definition of S, we consider the set J of elements X ∈ k such that
ρ∗(X) is a complex structure preserving the foliation F . On J we also consider an equiva-
lence relation ∼: given X1, X2 ∈ J , we say that X1 ∼ X2 if there is � ∈ Aut(k,F) such that
�(X1) ∈ {±X2}. Both J and this relation ∼ have been studied in [12]. Similarly as for S,
we have that J /∼ ∼= J ∩ t/∼ ∼= J ∩ C̄/∼.

Let s ∈ SC̄ . By Proposition 3.2, there is an H ∈ J ∩ C̄ ∩ s. If there are H1, H2 ∈ J ∩
C̄ ∩ s, H1 �= H2, then they must be collinear because the rank of s is one. Since both are in
J , H1 ∈ {±H2}, and thus H1 ∼ H2. This yields a well-defined map SC̄ → J ∩ C̄/∼. This
map descends to a map SC̄/ ∼→ J ∩ C̄/ ∼. Indeed, let s1, s2 ∈ SC̄ , �(s1) = s2 for some
� ∈ Aut(k,F), and Hi ∈ J ∩ C̄ ∩ si , i = 1, 2. Then �(H1) ∈ J ∩ s2 and there exists an
element k in the Lie subgroup of K with Lie algebra s2 such that Ad(k)�(H1) ∈ J ∩ C̄ ∩
s2. Since H2 and Ad(k)�(H1) lie in J ∩ C̄ ∩ s2, we deduce that H2 ∼ Ad(k)�(H1), and
thus H1 ∼ H2.

This shows the existence of a naturally defined map ι : SC̄/ ∼→ J ∩ C̄/ ∼, which maps
a class [s] with s ∈ SC̄ to the class ι([s]) = [H ], where H is the unique element in J ∩ C̄ ∩
s up to sign. Moreover:

PROPOSITION 3.7. The map ι : SC̄/∼ → J ∩ C̄/∼ defined above is injective.

PROOF. Let s1, s2 ∈ SC̄ such that ι([s1]) = ι([s2]). By conjugating one of s1, s2 by an
element of Aut(k,F) if necessary, we can assume that dim(s1 ∩ s2) ≥ 1 and that there is a
nonzero H ∈ C̄∩s1 ∩s2. By a result of Dynkin about homomorphisms from su2 to a compact
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Lie algebra k (see [35, Theorem 7]), we deduce that there is a k ∈ K such that Ad(k)s1 = s2.
Hence s1 ∼ s2. �

REMARK 3.8. Another related result by Dynkin (see [35, Theorem 8]) guarantees that
the moduli space S/ ∼ is finite, since the set of K-conjugacy classes of Lie subalgebras of
k isomorphic to su2 is finite. Geometrically, this means that, given a closed foliation F on
S4n+3, there is at most a finite number of noncongruent foliations on HPn that pull back to a
foliation congruent to F under the Hopf map. Although it was not stated in [12], this result
is also true for the complex projective space CPn. Indeed, as shown in [12, Proposition 4.2],
given H ∈ t, ρ∗(H) is a complex structure on V preserving F if and only if λ(H) ∈ {±1} for
every weight λ of the complexified representation ρC∗ : k → u(V C). Since ρ is effective, the
weights of ρC∗ span t∗, and thus the number of H ∈ t satisfying the condition is finite. The
claim follows since any complex structure on V preserving F is equivalent to one of the form
ρ∗(H) for some H ∈ t.

The following result reduces the study of quaternionic structures preserving a decom-
posable foliation to the indecomposable case. Recall that given Euclidean spaces Vi , i =
1, . . . , r , and a foliation Fi on the unit sphere of Vi for each i, the spherical join F1 ∗ · · · ∗Fr

can be described as the restriction of the foliation F̂1 ×· · ·×F̂r to the unit sphere of
⊕r

i=1 Vi ,
where F̂i is the foliation on Vi whose leaves are of the form rL, for r ≥ 0 and L ∈ Fi . A fo-
liation F on S(V ) is called indecomposable if it cannot be written as a spherical join, and it is
called decomposable otherwise. Every foliation F can be written in an essentially unique way
as a spherical join F0 ∗F1 ∗ · · · ∗Fr , where F0 consists only of zero-dimensional leaves, and
F1, . . . ,Fr are indecomposable without zero-dimensional leaves, see [17] and [31, Proposi-
tion 2.1].

PROPOSITION 3.9. Let F = F0 ∗F1 ∗ · · · ∗Fr be as above, where each Fi is a closed
foliation on the unit sphere of a Euclidean space Vi . Let K , ρ and S be as above in this
section. Then:

(a) K = ∏r
i=0 Ki for certain subgroups Ki of K , where ρ(Ki) is the maximal connected

subgroup of SO(V ) that acts trivially on the orthogonal complement of Vi in V and
preserves each one of the leaves of Fi . In particular, K0 is the trivial group.

(b) Aut(F) is the subgroup of O(V ) generated by
∏r

i=0 Aut(Fi ) and all permutations on sets
of mutually congruent Fi .

(c) Let Si be the collection of su2-subalgebras si of ki such that ρ∗(si ) is a quaternionic
structure on Vi , for i = 1, . . . , r . If s is a subalgebra of k isomorphic to su2, then s ∈ S if
and only if V0 = 0 and si ∈ Si for every i, where si is the image of s under the projection
of k onto ki . It follows that every s ∈ S can be recovered as a diagonal su2-subalgebra in⊕r

i=1 si for si ∈ Si .

PROOF. Claim (a) is easy, cf. [12, Proposition 4.1(iii)], whereas claim (b) is a conse-
quence of applying [17, Theorem 1.1] to the space of leaves V/F̂ of the product foliation
F̂ = F̂0 × · · · × F̂r .
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Next, note that S �= ∅ only if V0 = 0. So let s ∼= su2 be a subalgebra of k. Let πi : k →
ki be the projection map, for i = 1, . . . , r . For a fixed i ∈ {1, . . . , r}, take any X ∈ s and
v ∈ Vi , and write X = ∑r

j=1 Xj , where Xj = πj (X) ∈ kj . Then ρ∗(πi(X))v = ρ∗(Xi)v =
ρ∗(X)v, where the last equality follows from the fact that ρ(Kj ) acts trivially on Vi for every
j �= i. In any case πi : s → si is an isomorphism and the representations ρ∗|s : s → so(Vi)

and ρ∗|si : si → so(Vi) are equivalent, for i = 1, . . . , r . The equivalence in claim (c) now
follows from Proposition 3.3 (b).

Finally, note that any two diagonal su2-subalgebras in
⊕r

i=1 si , with si ∈ Si , are ∼
-equivalent elements of S by virtue of the fact that each si admits only inner automorphisms,
and ρ(Si) ⊂ ρ(Ki) ⊂ Aut(Fi ) ⊂ Aut(F). �

Proposition 3.7 suggests a method to determine the moduli space S/ ∼ ∼= SC̄/ ∼ for a
fixed closed foliation F on S(V ) once we know the moduli space J / ∼ ∼= J ∩ C̄/ ∼. For
each class in J ∩ C̄/∼, take a representative H ∈ J ∩ C̄ and determine if there exists a Lie
subalgebra s of k isomorphic to su2 and containing H . If so, then s ∈ SC̄ by Proposition 3.3,
and any other element in S containing H is ∼-equivalent to s; namely, ι−1[H ] = {[s]}. If not,
then ι−1[H ] = ∅ and then one should move on to a different class in J ∩ C̄/ ∼. This way,
we determine S/∼ and, equivalently, the possible foliations on HPn that pull back under the
Hopf map to a foliation congruent to F .

In [12], the first author described the set J / ∼ for all irreducible polar foliations F on
spheres, except for those inhomogeneous codimension one foliations on S31 whose hypersur-
faces have 4 principal curvatures with multiplicities (7, 8). Therefore, we can carry out the
approach described above to determine the set S/ ∼ for all irreducible polar foliations F on
spheres with the exception just mentioned. This is the aim of the next section.

4. Classification of quaternionic structures preserving polar foliations. In this
section we obtain a case-by-case classification of the quaternionic structures that preserve
polar foliations on spheres, up to congruence of the projected foliations of the quaternionic
projective space. We will do this for each one of the irreducible homogeneous polar foliations
on spheres in §4.1, and for each FKM-foliation satisfying m+ ≤ m− in §4.2.

First of all, note that most of the objects introduced in Section 3 (such as K , ρ, S and J )
depend on the fixed foliation F , although this dependence has been deleted from the notation
to simplify the exposition. It is also important to observe that, as explained in [12, §3.1], if we
take (G,K) to be an effective symmetric pair of compact type and rank higher than one, with
K connected, then K turns out to be the maximal connected subgroup of SO(V ) mapping
each leaf of FG/K to itself, where V = T[K]G/K . Thus, the notation for the isotropy group
is coherent with the definition of K in Section 3.

In the sequel we mention some arguments and ideas that will be used throughout our
classification. The first observation is that the existence of a quaternionic structure preserving
a foliation implies the existence of a complex structure preserving such foliation, as stated
in Proposition 3.2. In [12] it was shown that the only homogeneous polar foliations FG/K

that admit a complex structure preserving it are the ones induced by inner symmetric spaces
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G/K , that is, those for which rank G = rank K . Thus, S = ∅ for polar foliations induced by
non-inner symmetric spaces of rank higher than one.

Another restriction is of a dimensional nature: a foliation that admits a quaternionic
structure must live in a sphere of dimension 4n + 3, for some n ≥ 1; in particular, if it is a
homogeneous foliation FG/K , then dim G/K ≡ 0 (mod 4).

If G/K is an irreducible Hermitian symmetric space, then the center Z(k) of k is one-
dimensional. According to [12], there is exactly one element H in J ∩ Z(k) up to ∼
-equivalence, where here J parametrizes the complex structures preserving the foliation
FG/K . However, there is no Lie subalgebra of k isomorphic to su2 containing H . Thus,
ι−1[H ] = ∅. On the other hand, if G/K is an irreducible quaternionic-Kähler symmetric
space, then k has a distinguished ideal isomorphic to su2 satisfying condition (b) in Proposi-
tion 3.3 (cf. comments before Theorem 6.2); thus, this su2-factor belongs to S.

We also recall from [12] that an element H in a maximal Abelian subalgebra t of k

belongs to J if and only if λ(H) ∈ {±1} for every weight λ of the complexification ρC∗ of
ρ∗. Note that, if ρ∗ is already a complex representation, H ∈ t belongs to J if and only if
λ(H) ∈ {±1} for every weight λ of ρ∗.

Finally, the other fundamental tool we will often use refers to Dynkin’s classification
of conjugacy classes of su2-subalgebras of a compact Lie algebra. In our situation it will be
enough to consider the case of the compact Lie algebra uk . It turns out that, given an element
X in the maximal Abelian subalgebra of diagonal matrices of uk , if X belongs to a subalgebra
of uk isomorphic to su2 then the multiset of elements in the diagonal of X is invariant under
multiplication by −1. This follows from the representation theory of su2. We refer to [10,
Chapter 3] for further information.

In what follows, we will use the following notation. Given a classical Lie algebra h ∈
{sok, uk, spk} of rank r , we will denote by {e1, . . . , er} a canonical basis of the maximal
Abelian subalgebra of h. We can and will assume that the maximal Abelian subalgebra con-
sists of diagonal matrices for uk and spk , and by 2 × 2-block diagonal matrices for sok . Thus,
if h = uk , we take ej , for each j = 1, . . . , r , to be the matrix with all entries equal to zero
with the exception of the entry (j, j) which equals the imaginary unit i; if h = sok , we take
ej to be the matrix with all entries equal to zero with the exception of the entries (2j, 2j − 1)

and (2j − 1, 2j), which are equal to 1 and −1, respectively; and if h = spk , we view this
Lie algebra as a subalgebra of su2k and take ej to be the matrix with all entries equal to zero
except the entries (j, j) and (k + j, k + j), which are equal to i and −i, respectively. More-
over, we denote the dual basis of {e1, . . . , er } by {θ1, . . . , θr}. If we have a sum h = h1 ⊕ h2

of two classical algebras, we denote by {e1, . . . , er1, e
′
1, . . . , e

′
r2

} the corresponding basis of
the maximal Abelian subalgebra of h, and by θi , θ ′

j , i = 1, 2, . . . , r1, j = 1, 2, . . . , r2, the
corresponding dual elements.

For each polar foliation F , we will write NS = NS (F) to denote the cardinality of S/∼,
and NJ = NJ (F) for the cardinality of J /∼ whose values were determined in [12].

4.1. Projecting homogeneous polar foliations. In this subsection we determine the
set S/∼ for each irreducible homogeneous polar foliation FG/K , where G/K is an irreducible
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symmetric space of compact type and rank higher than one. As explained above, we can
restrict ourselves to the study of inner symmetric spaces G/K , whose isotropy representations
can be found in [36, Table 8.11.2]. We will run through the cases making use of the set J /∼
determined in [12, §5.3]. We label each case by Cartan’s notation and by the corresponding
orthogonal symmetric pair (g, k).

Type A III: (sup+q, s(up ⊕ uq)), p, q ≥ 2.
The isotropy representation is the tensor product Cp ⊗C (Cq)∗ of standard representa-

tions. Its weights are θi − θ ′
j , with 1 ≤ i ≤ p, 1 ≤ j ≤ q . The only elements in J up to

∼-equivalence are:
• − q

p+q

∑p

i=1 ei + p
p+q

∑q

i=1 e′
i ∈ Z(k),

• Xp1 = ∑p

i=1 aiei + p2−p1
p+q

∑q

i=1 e′
i , where ai = 1 + p2−p1

p+q
for i = 1, . . . , p1, ai =

−1 + p2−p1
p+q

for i = p1 + 1, . . . , p, and p = p1 + p2 with p1 ∈ {1, . . . , [p
2 ]},

• Yq1 = q2−q1
p+q

∑p

i=1 ei + ∑q

i=1 bie
′
i , where bi = 1 + q2−q1

p+q
for i = 1, . . . , q1, bi =

−1 + q2−q1
p+q

for i = q1 + 1, . . . , q , and q = q1 + q2 with q1 ∈ {1, . . . , [ q
2 ]}.

Moreover, if p = q , then Xp1 ∼ Yp1 . The element in the center does not belong to any
subalgebra of k isomorphic to su2. The element Xp1 belongs to a subalgebra of k isomorphic
to su2 if and only if p1 = p2, since it is the only case for which the coefficients of the ei

and e′
i are symmetric with respect to zero. Similarly for Yq1 . Thus, NS = 2 if p and q are

different even numbers, NS = 1 if p = q is even or if only one of p and q is even, and NS =
0 if both p and q are odd.

Type B I: (so2p+2q+1, so2p ⊕ so2q+1), p + q ≥ 3.
The isotropy representation is the tensor product R2p ⊗ R2q+1 of standard representa-

tions. We know that NJ = 1. For dimension reasons, NS = 0 if p is odd. If p = 2p′ is even,

then we can embed a subalgebra s isomorphic to su2 into
⊕p′

i=1 so4 ⊂ so2p ⊂ k in a diagonal
way. This subalgebra s contains the element

∑p

i=1 εiei ∈ J , where εi = (−1)i . Therefore,
NS = 1 if p is even, and NS = 0 if p is odd.

Type C I: (spp, up), p ≥ 2.
Since this is a Hermitian symmetric space and NJ = 1, we have that NS = 0.

Type C II: (spp+q, spp ⊕ spq), p, q ≥ 2.
The isotropy representation is the tensor product Hp ⊗H Hq of standard representations.

Any diagonally embedded sp
∼= sp1 ⊂ ⊕p

i=1 sp1 ⊂ spp belongs to S, since it satisfies the
conditions in Proposition 3.3. Similarly, for the other factor spq we obtain an sq ∈ S. If p �=
q , then there is no automorphism of k = spp ⊕ spq mapping sp to sq . If p �= q , then NJ =
2 and so NS = 2. If p = q , we know that NJ = 1, and hence NS = 1.

Type D I: (so2p+2q, so2p ⊕ so2q), p + q ≥ 4, q ≥ 2.
The isotropy representation is the tensor product R2p ⊗R2q of standard representations.

We know that NJ = 2 if p �= q and NJ = 1 if p = q . The only elements in J up to
∼-equivalence are X = ∑p

i=1 ei and Y = ∑q

i=1 e′
i , where X ∼ Y if p = q . If X belongs to a



POLAR FOLIATIONS ON QUATERNIONIC PROJECTIVE SPACES 365

subalgebra s of k isomorphic to su2, then s is contained in the factor so2p to which X belongs
(since [X, s] ⊂ so2p). The inclusion s ⊂ so2p gives rise to a representation of su2 on R2p,
with weights ±θ , where θ(X) = 1. Thus, this representation is the direct sum of standard
representations of su2. In particular, p must be even. Analogously, we deduce that Y belongs
to a subalgebra of k isomorphic to su2 if and only if q is even. We conclude that NS = 2 if
p �= q are even numbers, NS = 1 if p = q is even or if exactly one of p and q is even, and
NS = 0 if p and q are odd.

Type D III: (so2p, up), p ≥ 4.
The isotropy representation is the alternating square �2

C
p of the standard representation

of up. Its weights are θi + θj , for 1 ≤ i < j ≤ p. We know that NJ = 2. Indeed, the only
elements in J up to ∼-equivalence are 1

2 (3e1 − ∑p

i=2 ei) and 1
2

∑p

i=1 ei . The first element
cannot belong to any subalgebra s of sup isomorphic to su2, since the coefficients of the ei are
not symmetric with respect to 0. Finally, 1

2

∑p

i=1 ei ∈ Z(k) does not belong to any subalgebra
of k isomorphic to su2. Therefore NS = 0.

Type E II: (e6, su6 ⊕ su2).
The isotropy representation is �3C6 ⊗H H. Its weights are θi + θj + θk + θ ′

l , where
1 ≤ i < j < k ≤ 6, 1 ≤ l ≤ 2. Then, the only elements in J up to ∼-equivalence are
1
3 (5e1 − ∑6

i=2 ei) ∈ su6 and e′
1 − e′

2 ∈ su2. The second one corresponds to the su2-factor in
k, which therefore belongs to S. The first one, however, cannot belong to any subalgebra s of
su6 isomorphic to su2. Hence, NS = 1.

Type E III: (e6, so10 ⊕ u1).
The isotropy representation is the tensor product C16 ⊗C C of the half-spin represen-

tation of so10 and the standard representation of u1. This is a Hermitian symmetric space
and NJ = 2. Any canonically immersed subalgebra s ∼= so3 in so10 is in the conditions of
Proposition 3.3, since the restriction ρ∗|s is a direct sum of spin representations of so3. This
s yields the only element in S/∼, so NS = 1.

Type E V: (e7, su8).
The isotropy representation is [�4C8]R. Its weights are θi + θj + θk + θl , where 1 ≤ i <

j < k < l ≤ 8. Then, the only element in J up to ∼-equivalence is 1
4 (7e1 − ∑8

i=2 ei). But
this cannot belong to any subalgebra s of k ∼= su8 isomorphic to su2. Hence, NS = 0.

Type E VI: (e7, so12 ⊕ su2).
The isotropy representation is the tensor product H16 ⊗H H of a half-spin representation

of so12 and the standard representation of su2. We have that NJ = 2. The su2-factor in
k gives one element of S. Any canonically embedded subalgebra s ∼= so3 in so12 is in the
conditions of Proposition 3.3, since the restriction ρ∗|s is a direct sum of spin representations
of so3. Hence such an s ⊂ so12 yields the other element in S/∼. Thus NS = 2.

Type E VII: (e7, e6 ⊕ so2).
Since this is a Hermitian symmetric space and NJ = 1, we have that NS = 0.



366 M. DOMÍNGUEZ-VÁZQUEZ AND C. GORODSKI

Type E VIII: (e8, so16).
The isotropy representation is the half-spin representation R128 of so16. Hence, any

canonically embedded subalgebra s ∼= so3 in so16 is in the conditions of Proposition 3.3.
Since NJ = 1, we deduce that NS = 1.

Type E IX: (e8, e7 ⊕ su2).
This is a quaternionic-Kähler symmetric space, and NJ = 1. Hence S only contains the

su2-factor in k, and thus NS = 1.

Type F I: (f4, sp3 ⊕ su2).
Same as in the previous case. Thus, NS = 1.

Type G: (g2, su2 ⊕ su2).
Analogous to the previous two cases, NS = 1. Note that the restriction of the isotropy

representation to the distinguished su2-factor is 2C2, but to the other one is the symmetric
cube Sym3(C2) of the standard representation C2, so we get only one quaternionic structure.

4.2. Projecting FKM-foliations. Next we will determine the set S/ ∼ for each
FKM-foliation FP satisfying m+ ≤ m−. We start by briefly recalling some facts about FKM-
foliations, and refer the reader to [16] or to [12] for details.

A symmetric Clifford system on R2l is an (m + 1)-tuple (P0, . . . , Pm) of symmetric
matrices of order 2l satisfying the Clifford relations PiPj + PjPi = 2δij Id, for all i, j =
0, . . . ,m, where δij is the Kronecker delta. Each symmetric Clifford system determines an
FKM-foliationFP , which only depends on the (m+1)-dimensional vector space of symmetric
matrices P = span{P0, . . . , Pm}. The regular leaves of FP are hypersurfaces with g =
4 constant principal curvatures with multiplicities (m+,m−) = (m, l − m − 1). If Cl∗m+1
denotes the Clifford algebra of Rm+1 with positive definite quadratic form, it turns out that
there is exactly one equivalence class d of irreducible Cl∗m+1-modules if m �≡ 0 (mod 4), and
two equivalence classes d+, d− if m ≡ 0 (mod 4). Thus, the Clifford system (P0, . . . , Pm)

determines a representation of Cl∗m+1 on R2l which is equivalent to
⊕k

i=1 d for some k if m �≡
0 (mod 4), or to (

⊕k+
i=1 d+) ⊕ (

⊕k−
i=1 d−) for some k+, k− if m ≡ 0 (mod 4). The integer k

and the set {k+, k−} only depend on P .
In [12, §3.2] the automorphism group and the associated representation ρ∗ was calculated

for all FKM-foliations satisfying m+ ≤ m−. We will make use of this description of ρ∗, which
varies depending on m (mod 8). Thus, in order to determine the set S/ ∼ for such foliations,
we will distinguish several cases depending on m (mod 8). The moduli space of complex
structures J / ∼ has been determined in [12, §6.1]. We will denote by δ(m) half of the
real dimension of any irreducible representation of the Clifford algebra Cl∗m+1; in particular,
δ(1) = 1, δ(2) = 2 and δ(m) ≡ 0 (mod 4) for any m ≥ 3. Moreover, l = kδ(m) if m �≡
0 (mod 4), and l = (k+ + k−)δ(m) if m ≡ 0 (mod 4). We also let p be such that m + 1 = 2p

if m + 1 is even, and m + 1 = 2p + 1 if m + 1 is odd.
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Type m ≡ 0 (mod 8).
ρ∗ is the direct sum (R2δ(m) ⊗R Rk+) ⊕ (R2δ(m) ⊗R Rk−) of the tensor products of the

spin representation of som+1 and the standard representations of sok± . The weights of ρC∗ are
1
2 (±θ1 ±· · ·± θp)± θ ′+

j , j = 1, . . . , q+, and 1
2 (±θ1 ±· · ·± θp)± θ ′−

j , j = 1, . . . , q−, where
q± are given by k± = 2q± if k± is even, or by k± = 2q± +1 if k± is odd, and additionally the
weight 1

2 (±θ1 ±· · ·± θp) if k+ or k− is odd. The only elements in J up to ∼-equivalence are

2e1 ∈ som+1 and, if both k+ and k− are even, Y = ∑q+
i=1 e′+

i + ∑q−
i=1 e′−

i ∈ sok+ ⊕ sok− . The
first element always belongs to a subalgebra of som+1 isomorphic to so3 ∼= su2. If Y belongs
to a subalgebra of sok+ ⊕ sok− isomorphic to su2, this determines a representation Rk+ ⊕Rk−

of su2 with weights ±θ , where θ(Y ) = 1. Then, such representation is a sum of standard
representations. Since both Rk+ and Rk− are invariant subspaces, we deduce that k+ and k−
are multiples of 4. In this case, the existence of a subalgebra of sok+ ⊕ sok− isomorphic to
su2 and containing Y is clear. In conclusion, NS = 2 if k+, k− ≡ 0 (mod 4), and NS = 1 if
k+ or k− �≡ 0 (mod 4).

Type m ≡ 1, 7 (mod 8).
ρ∗ is the tensor productR2δ(m)⊗RR

k of the spin representation of som+1 and the standard
representation of sok . The weights of ρC∗ are 1

2 (±θ1 ± · · · ± θp) ± θ ′
j , j = 1, . . . , q , where

q is given by k = 2q if k is even, and by k = 2q + 1 if k is odd, together with 1
2 (±θ1 ±

· · · ± θp) if k is odd. The only elements in J up to ∼-equivalence are 2e1 ∈ som+1 and, if k

is even, Y = ∑q

i=1 e′
i ∈ sok . The first element belongs to a subalgebra of som+1 isomorphic

to so3 ∼= su2, whenever m > 1. If Y belongs to a subalgebra of sok isomorphic to su2, this
would determine a representation of su2 with weights ±θ , where θ(Y ) = 1, and thus such
representation would be a sum of standard representations. In particular, k would be multiple
of 4. In this case, the existence of a subalgebra of sok isomorphic to su2 and containing Y

is clear. In conclusion, NS = 2 if m > 1 and k ≡ 0 (mod 4), NS = 1 if m > 1 and k �≡
0 (mod 4), or if m = 1 and k ≡ 0 (mod 4), and NS = 0 if m = 1 and k �≡ 0 (mod 4).

Type m ≡ 2, 6 (mod 8).
ρ∗ is the tensor productCδ(m)⊗CC

k of the spin representation of som+1 and the standard
representation of uk . The weights of ρC∗ are 1

2 (±θ1 ± · · · ± θp) ± θ ′
j , j = 1, . . . , k. The only

elements in J up to ∼-equivalence are 2e1 ∈ som+1 and Yr = ∑k
i=1 εie

′
i ∈ uk, where εi = 1

for i = 1, . . . , r , εi = −1 for i = r + 1, . . . , k, and r = 0, . . . ,
[

k
2

]
. The first element always

belongs to a subalgebra of som+1 isomorphic to so3 ∼= su2. Among the vectors Yr ∈ J , the
only one that belongs to a subalgebra of uk isomorphic to su2 is Yk/2 for k even. Therefore,
NS = 2 if k is even, and NS = 1 if k is odd.

Type m ≡ 3, 5 (mod 8).
ρ∗ is the tensor product Hδ(m)/2 ⊗H Hk of the spin representation of som+1 and the

standard representation of spk . The weights of ρC∗ are 1
2 (±θ1 ± · · · ± θp) ± θ ′

j , j = 1, . . . , k.

The only elements in J up to ∼-equivalence are 2e1 ∈ som+1 and Y = ∑k
i=1 e′

i ∈ spk . The
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first element always belongs to a subalgebra of som+1 isomorphic to so3 ∼= su2, whereas Y

belongs to a diagonally embedded subalgebra sp1 of spk . Therefore, NS = 2.

Type m ≡ 4 (mod 8).
ρ∗ is the direct sum (Hδ(m)/2 ⊗H Hk+) ⊕ (Hδ(m)/2 ⊗H Hk−) of the tensor products of the

spin representation of som+1 and the standard representations of spk± . The weights of ρC∗ are
1
2 (±θ1 ± · · · ± θp) ± θ ′+

j , j = 1, . . . , k+, and 1
2 (±θ1 ± · · · ± θp) ± θ ′−

j , j = 1, . . . , k−. The

only elements in J up to ∼-equivalence are 2e1 ∈ som+1 and Y = ∑k+
i=1 e′+

i + ∑k−
i=1 e′−

i ∈
spk+ ⊕ spk− . The first element always belongs to a subalgebra of som+1 isomorphic to so3 ∼=
su2, whereas Y belongs to a diagonal subalgebra sp1 of spk+ ⊕ spk− . Hence, NS = 2.

5. Proofs of Theorems 1.1 and 1.2. The study carried out in the previous section
allows us to conclude the proofs of Theorems 1.1 and 1.2 stated in the introduction. We start
with an easy observation about the irreducibility of the foliations.

REMARK 5.1. We say that a polar foliation G on HPn is irreducible if there is no
proper totally geodesic quaternionic projective subspace HPk , k ∈ {0, . . . , n − 1}, in HPn

which is foliated by leaves of G. It is known that a polar foliation F on a sphere is inde-
composable as a spherical join if and only if it is irreducible, in the sense that there is no
proper totally geodesic subspace foliated by leaves of F . If F = π−1G is the pull-back of
a foliation on HPn, then any proper totally geodesic subspace of S4n+3 foliated by leaves of
F must be foliated as well by the fibers of the Hopf fibration π (cf. Proposition 3.9). Thus,
a polar foliation G on HPn is irreducible if and only if its pull-back π−1G is irreducible in
S4n+3. Moreover, Proposition 3.9 reduces the study of reducible polar foliations on HPn to
the irreducible case.

PROOF OF THEOREM 1.1. The first claim follows from the calculation of NS carried
out in §4.1.

Now let G be an irreducible polar foliation with codimension at least two on HPn. By
Proposition 2.1 and Remark 5.1, the pull-back π−1G of G under any Hopf map π : S4n+3 →
HPn is an irreducible polar foliation of codimension at least two on the sphere S4n+3. By
Thorbergsson’s theorem [33], π−1G is congruent to the orbit foliation FG/K of the isotropy
representation K × T[K]G/K → T[K]G/K of an irreducible symmetric space G/K . Equiv-
alently, there exists a quaternionic structure q on T[K]G/K preserving FG/K such that G is
congruent to the projection of FG/K by the Hopf map induced by q. By the study in §4.1 the
only symmetric spaces G/K that admit such a quaternionic structure are the ones in Table 1.
This proves the second claim.

Finally, the assertions about the homogeneity of the projected foliations will follow from
Theorem 6.2 in Section 6. �

PROOF OF THEOREM 1.2. The first claim summarizes the study of the quaternionic
structures preserving FKM-foliations with m+ ≤ m− developed in §4.2.
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Now let G be a polar foliation of codimension one on HPn. Let F be the pull-back of G
under any Hopf map. By Proposition 2.1, F is a polar foliation of codimension one on S4n+3.
By Münzner’s structure results for codimension one polar foliations on spheres [28, 29], all
regular leaves of F are isoparametric hypersurfaces with the same number g ∈ {1, 2, 3, 4, 6}
of constant principal curvatures, and their multiplicities satisfy mi = mi+2 (indices mod-
ulo g). If g ∈ {1, 2, 3}, the corresponding foliation is homogeneous according to Cartan’s re-
sults [6]. If g = 6, Abresch [1] showed that m1 = m2 ∈ {1, 2}. On the one hand, Dorfmeister
and Neher [13] proved the homogeneity of the foliations with (g,m1,m2) = (6, 1, 1); on the
other hand F cannot satisfy (g,m1,m2) = (6, 2, 2), since the corresponding foliation would
live in the sphere S13, and 13 �≡ 3 (mod 4). Finally, if F satisfies g = 4, the classification
results by Cecil, Chi, Jensen [7], Immervoll [24] and Chi [8] imply that F is homogeneous
or of FKM-type, except maybe if the hypersurfaces of F satisfy (g,m1,m2) = (4, 7, 8). By
Dadok’s work [11], if F is homogeneous, it is of the type FG/K for some symmetric space
G/K of rank 2.

If F is an FKM-foliation with m+ = 1, then it is homogeneous [16, §6.1]. Now, up to
congruence, there are exactly eight FKM-foliations with m+ > m− (see [16, §4.3 and §5.5]
or [12, §3.2]). However, each one of these foliations is either homogeneous or congruent to
another FKM-foliation with m+ ≤ m−, except for two examples with (m+,m−) = (8, 7).

Altogether, we have that F is homogeneous of the type FG/K , or an FKM-foliation
with 2 ≤ m+ ≤ m− or an inhomogeneous foliation on S31 whose hypersurfaces satisfy
(g,m1,m2) = (4, 7, 8). This implies the second claim in the theorem.

The last assertion of Theorem 1.2 is easy (cf. Section 6). �

6. Inhomogeneous polar foliations. In this section we derive the existence of inho-
mogeneous polar foliations on quaternionic projective spaces.

A polar foliation is homogeneous if it is the orbit foliation of a polar action. Podestà
and Thorbergsson [30] classified polar actions on quaternionic projective spaces up to orbit
equivalence. In the first part of this section, we revisit their result in our context.

An elementary observation is that each homogeneous polar foliation on HPn must be
the projection under the Hopf map of a homogeneous polar foliation FG/K on S4n+3. Our
first aim is to determine when the projection to HPn of a homogeneous polar foliation FG/K

on S4n+3 is homogeneous. We start with a basic lemma and use the notation of Section 3.

LEMMA 6.1. Let F be a closed foliation on S(V ), s ∈ S and π : S(V ) → HPn the
Hopf map associated with the quaternionic structure ρ∗(s). Let S be the connected subgroup
of K with Lie algebra s and N0

K(S) the identity connected component of the normalizer of S
in K .

Then π(F) is a homogeneous foliation on HPn if and only if the orbit foliation of the
action of ρ(N0

K(S)) on S(V ) coincides with F .
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PROOF. Each isometry [A] of HPn is induced by an isometry A ∈ O(V ) of S(V ) that
maps orbits of ρ(S) to orbits of ρ(S). Equivalently, such an A satisfies Aρ(S)A−1x = ρ(S)x

for all x ∈ S(V ). This means that the group Aρ(S)A−1 acts with the same orbits as ρ(S).
We claim that ρ(S) is the maximal connected subgroup of SO(V ) acting with the fibers

of π as orbits. Suppose the contrary. Then the larger group would act with nontrivial principal
isotropy group and yield a reduction of the ρ(S)-action (cf. [20, §2.3] or [21, §2.6]), contra-
dicting [20, Proposition 1.1]. We deduce from the claim that Aρ(S)A−1 = ρ(S), i.e. A ∈
NO(V )(ρ(S)).

Thus, the maximal connected subgroup of isometries of HPn that leave invariant each
leaf of π(F) is the identity connected component of ρ(K)∩NO(V )(ρ(S)), which is ρ(N0

K(S)).
This implies the lemma. �

It is appropriate to recall here that a Riemannian manifold of dimension 4k is called
quaternionic-Kähler if its holonomy group is a subgroup of Spk · Sp1. A symmetric space
G/K without Euclidean factor is quaternionic-Kähler if and only if it is irreducible and its
isotropy group K contains a normal subgroup isomorphic to SU2 = Sp1 whose isotropy
representation is equivalent to the representation of the normal subgroup Sp1 of Spk · Sp1
when considered with its standard action on H

k . We refer to the Lie algebra of this normal
subgroup of K as the distinguished su2-factor of k. For more details, see [5, §14.E].

We also recall that when we deal with a homogeneous polar foliation FG/K induced
by an effective symmetric pair (G,K) of compact type, with K connected, we can regard the
representation ρ as the adjoint representation Ad : K → O(p), and then ρ∗ = ad is the adjoint
representation on the Lie algebra level. Here p is the orthogonal complement of k in g with
respect to the Killing form of g. Thus, g = k⊕ p is the decomposition into eigenspaces of the
involution induced by the geodesic symmetry of G/K .

We can now provide a different approach to the proof of the classification of homo-
geneous polar foliations on HPn due to Podestà and Thorbergsson [30]. Our arguments
are based on the classification of quaternionic structures obtained in §4.1 and on the ex-
plicit description of all connected groups acting polarly on spheres (due to Eschenburg and
Heintze [14] for the irreducible case, and to Bergmann [3] and Fang, Grove and Thorbergs-
son [15] for the reducible case).

THEOREM 6.2. Let (G,K) be a compact, effective symmetric pair, (G,K) = ∏r
i=1

(Gi,Ki) its decomposition in irreducible factors, and gi = ki ⊕ pi the decomposition into
eigenspaces of the involution associated to Gi/Ki . Let q = ad(s)|p be a quaternionic struc-
ture on p = ⊕r

i=1 pi that preserves the foliation FG/K , where s ∼= su2 is a subalgebra of k.
Then, the following conditions are equivalent:

(i) The projection of FG/K to the quaternionic projective space HPn determined by q is a
homogeneous foliation.

(ii) All but maybe one of the irreducible factors of G/K have rank one, and the possible
exception Gj/Kj , for some j ∈ {1, . . . , r}, is a quaternionic-Kähler symmetric space
such that the projection of s on kj yields the distinguished su2-factor of kj .
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PROOF. Note that we can change the symmetric pairs associated to rank one factors to
those of the type (SO4pi+1, SO4pi ), where 4pi = dim pi , if necessary. Indeed, the foliation
FG/K remains the same, and s remains in S.

First suppose (ii). Let si be the projection of s on ki , for each i = 1, . . . , r . As a closed
subgroup of a compact Lie group, we have that N0

K(S) = Z0
K(S) · S. It is clear also that

Z0
K(S) = ∏r

i=1 Z0
Ki

(Si). If i �= j , then Z0
Ki

(Si) is isomorphic to Sppi
. On the other hand,

it is clear that Zkj
(sj ) = k′j , where Gj/Kj is a quaternionic-Kähler irreducible symmetric

space and kj = k′j ⊕ su2. Hence Z0
Kj

(Sj ) = K ′
j . All in all, N0

K(S) = (
∏r

i=1 Z0
Ki

(Si)) · S ∼=
((

∏
i �=j Sppi

) × K ′
j ) · S. Then, N0

K(S) acts on S(p) by the adjoint representation with the
same orbits as the adjoint action of K and, thus, Lemma 6.1 guarantees the homogeneity of
the projected foliation.

Now assume (i). By Proposition 3.9, the projection of s onto each ki , i = 1, . . . , r , is
a subalgebra si of ki isomorphic to su2, and qi = ad(si )|pi is a quaternionic structure on
pi preserving FGi/Ki . Each subalgebra si ⊂ ki determines a Hopf fibration πi : S(pi ) →
HP dimpi/4−1. The projection of each irreducible foliation FGi/Ki , i = 1, . . . , r , via the Hopf
map πi , is homogeneous as follows from the assumption. Then by Lemma 6.1, N0

Ki
(Si)

is a connected subgroup of Ki acting on S(pi ) by the adjoint representation with the same
orbits as Ki . By [14], whenever Gi/Ki has rank at least two, any connected subgroup K ′

i

of Ki whose adjoint action has the same orbits as Ki must be the whole Ki , except for a
few possibilities. After excluding cases (i), (iv) with pq odd, and (v) in [14] (because the
corresponding foliations cannot be preserved by any quaternionic structure according to our
classification in §4.1), we are left with the following possibilities:

• (Gi,Ki) = (SO10, SO2 × SO8), K ′
i = SO2 × Spin7, and Si is, up to conjugation,

a diagonally embedded Sp1 ⊂ SO8 ⊂ Ki . Then N0
Ki

(Si) = SO2 × (Sp2 · Sp1) �=
SO2 × Spin7.

• (Gi,Ki) = (SO11, SO3 × SO8), K ′
i = SO3 × Spin7, and Si is, up to conjugation,

a diagonally embedded Sp1 ⊂ SO8 ⊂ Ki . Then N0
Ki

(Si) = SO3 × (Sp2 · Sp1) �=
SO3 × Spin7.

• (Gi,Ki) = (SUp+q, S(Up × Uq)) with p �= q , p or q even, K ′
i = SUp × SUq , and

Si is, up to conjugation, a diagonally embedded SU2 ⊂ SUp ⊂ Ki if p = 2p′ is
even. Then N0

Ki
(Si) = S(((Spp′ · Sp1) ∩ Up) × Uq) �= SUp × SUq . Similarly if q is

even.
• (Gi,Ki) = (E6, Spin10 · U1), K ′

i = Spin10, and Si is, up to conjugation, a canon-
ically embedded Spin3 ⊂ Spin10 ⊂ Ki . Then N0

Ki
(Si) = (Spin3 × Spin7) · U1 �=

Spin10.

Altogether, Lemma 6.1, the result in [14] and the homogeneity assumption imply that N0
Ki

(Si)

= Ki . Hence, if Gi/Ki has rank higher than one, then Si is a normal subgroup of Ki ; since
ad(si )|pi is a quaternionic structure on pi , it follows that Gi/Ki is quaternionic-Kähler.

Now assume that there are at least two irreducible factors of G/K with rank higher than
one; let them be G1/K1 and G2/K2. Decompose Ki as a direct product Si · Li of normal
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subgroups, i = 1, 2. The group (L1 ×L2) ·S acts almost effectively on p1 ⊕p2. Then, by [15,
Lemma 9.4], its adjoint action on p1 ⊕ p2 is standard, which in this case means that (L1 ×
L2) · S has the same orbits as L1 × L2. In particular, the adjoint actions of Ki and Li on pi

are orbit equivalent, for i = 1, 2. Again, by [14], both G1/K1 and G2/K2 cannot have rank
higher than one, which contradicts our assumption. Therefore, at most one irreducible factor
Gj/Kj of G/K has rank greater than one. �

We can now analyse the existence of inhomogeneous polar foliations depending on the
dimension of the ambient quaternionic projective space. We start by restricting to the codi-
mension one case, thus obtaining the characterization stated in Theorem 1.3 in the intro-
duction. This result turns out to be completely analogous to the one derived in [12, Theo-
rem 7.4(i)] for codimension one polar foliations on complex projective spaces (cf. [18, Theo-
rem 1.1]). Although very similar arguments to the ones used in [12] would work here as well,
we prefer to include a different proof based on the classification we obtained above in this
paper.

For the proofs of Theorems 1.3 and 1.4 we will need the explicit values of the rank and
dimension of the different symmetric spaces [23, p. 518].

PROOF OF THEOREM 1.3. We start by proving the necessity. Let n ≥ 3 be odd. Con-
sider the symmetric space G/K = SUn+3/S(Un+1 ×U2). By our classification in §4.1 and by
the characterization of the homogeneity of projected foliations in Theorem 6.2, we know that
there is an irreducible inhomogeneous polar foliation G on HPn whose pull-back under the
Hopf map is congruent to FG/K . Since rank G/K = 2, the codimension of G in HPn is one.

Next we show the other implication. First, it is well-known that HP 1 ∼= S4 only admits
homogeneous polar foliations, see [6, 33] or [31]. Then let us assume that n is even and let G
be a codimension one polar foliation on HPn. We will show that G is homogeneous.

By Theorem 1.2, we know that G is the projection via some Hopf map of a homogeneous
foliation FG/K for some rank two symmetric space, or of an inhomogeneous FKM-foliation
FP with m+ ≤ m−, or we are in the open case n = 7. Actually, we cannot be in this last
case, since we are assuming that n is even.

Assume first G is the projection of a foliation FG/K for some rank two symmetric space
such that NS ≥ 1. According to our classification and to the dimensions and ranks of the
symmetric spaces, since dim G/K = 4(n + 1) with n + 1 odd, the only possibilities for G/K

are SUn+3/S(Un+1 × U2) or a reducible symmetric space S4r × S4(n−r+1) for some r =
1, . . . , n. But since in all these cases we have NS = 1, Theorem 6.2 guarantees that G =
π(FG/K) is homogeneous.

Next assume G is the projection of an inhomogeneous FKM-foliation FP with m+ ≤
m−. Since we take FP not homogeneous, we can assume that m = m+ ≥ 3 (see [16, §4.4]).
It turns out that, in this case, m+ + m− ≡ 3 (mod 4), as follows from the facts stated at the
beginning of §4.2. However, since the regular leaves of FP are hypersurfaces in S4n+3 with
four principal curvatures, two of them with multiplicity m+ and the other two with multiplicity
m−, we must also have 4(n + 1) = 2(m+ + m− + 1) ≡ 0 (mod 8). This is a contradiction
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to the assumption that n is even. Hence G cannot be the projection of an inhomogeneous
FKM-foliation. This concludes the proof. �

Finally we prove Theorem 1.4, which provides a characterization of those dimensions n

for which HPn admits some irreducible inhomogeneous polar foliation of some codimension.
Intriguingly, and similarly as for CPn, prime numbers appear again in this characterization.
However, the proof of the analogous result for CPn in [12] does not carry over directly to the
quaternionic setting.

PROOF OF THEOREM 1.4. Suppose n + 1 is not prime. Write n + 1 = pq for integers
p, q ≥ 2. Consider the irreducible symmetric space G/K = Spp+q/Spp × Spq , which is not
quaternionic-Kähler. By §4.1 we know that NS ≥ 1 for this symmetric space. Then, there is,
up to congruence in HPn, at least one polar foliation G on HPn whose pull-back under the
Hopf map is congruent to FG/K . This G is irreducible, and cannot be homogeneous due to
Theorem 6.2.

Now let n + 1 be prime and let G be an irreducible polar foliation on HPn. If G has
codimension one, then we know by Theorem 1.3 that n is odd and n ≥ 3, or G is homoge-
neous. The first case is impossible because we are assuming that n + 1 is prime. Hence, G is
homogeneous.

Let us then assume that G has codimension at least two. Since it is irreducible, it must
be obtained by projecting some homogeneous polar foliation FG/K for some irreducible sym-
metric space G/K such that rank G/K ≥ 3 and NS ≥ 1. Moreover, dim G/K = 4(n + 1)

is four times a prime number. By appealing again to §4.1 and to the dimensions and ranks of
the symmetric spaces, we are left with the following possibilities for G/K: SOn+5/SOn+1 ×
SO4 and F4/Sp3 ·SU2. But these symmetric spaces are quaternionic-Kähler and satisfy NS =
1. Hence, by Theorem 6.2, their projections must be homogeneous. Thus, G is homoge-
neous. �
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