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Abstract. In this article we give an extension of the Lê-Greuel formula to the general
setting of function germs (f, g) defined on a complex analytic variety X with arbitrary singular
set, where f = (f1, . . . , fk) : (X, 0) → (Ck, 0) is generically a submersion with respect to
some Whitney stratification onX. We assume further that the dimension of the zero set V (f ) is
larger than 0, that f has the Thom af -property with respect to this stratification, and g : (X, 0)
→ (C, 0) has an isolated critical point in the stratified sense, both on X and on V (f ).

Introduction. We know from Milnor’s book [28] that if f is a holomorphic map-germ
in Cn+1 defining an isolated hypersurface singularity at the origin, then its Milnor number
μ(f ) can be computed as:

μ(f ) = dimC

On+1,0( ∂f
∂z1
, . . . ,

∂f
∂zn+1

) .
Soon after Milnor’s book was published, H. Hamm proved in [18] that every isolated

complete intersection singularity germ (an ICIS for short) also has a well-defined Milnor
number, defined as the rank of the middle homology of the corresponding Milnor fibre. It was
thus natural to search for an algebraic expression for this invariant in the case of ICIS germs.

In 1970, motivated by earlier conversations with G. Tyurina, Lê Dũng Tráng gave such a
formula in a seminar in Göttingen: If f1, . . . , fk and g are holomorphic map germs (Cn+k, 0)
→ (C, 0) such that f = (f1, . . . , fk) and (f, g) define isolated complete intersection germs,
then their Milnor numbers are related by:

μ(f )+ μ(f, g) = dimC

On+k,0
(f, Jack+1(f, g))

,

where Jack+1(f, g) denotes the ideal generated by the determinants of all (k + 1) minors of
the corresponding Jacobian matrix.

This formula appeared first quoted in K. Saito’s paper of the 1972 Cargèse meeting
(see [29]), though the actual proof by Lê, which was of a topological nature, was published
till 1974, in [21]. In the meantime, in 1973, G.-M. Greuel gave in [16] an algebraic proof
of this same formula, and so it has become known as the Lê-Greuel formula for the Milnor
number.
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We remark also that B. Teissier made in [33] a deep study of the topology of hypersur-
face singularities by taking slices by general linear planes. This led to the celebrated Teissier
sequence of numbers, which are the Milnor numbers of the corresponding complete intersec-
tion germs one gets by taking linear slices of various dimensions; and he proved for these,
interesting results which are reminiscent of the Lê-Greuel formula.

The goal of this article is extending the Lê-Greuel formula to the general setting of func-
tions defined on a complex analytic varietyX with arbitrary singular set. Of course we need to
impose some conditions on these functions in order to have Milnor type, or rather Milnor-Lê
type, fibrations. We ask f = (f1, . . . , fk) : (X, 0) → (Ck, 0) to be generically a submersion
with respect to some Whitney stratification on X, the dimension of its zero set V (f ) must be
larger than 0, and f must have the Thom property with respect to this stratification. And we
ask g : (X, 0) → (C, 0) to have an isolated critical point in the stratified sense, both onX and
on V (f ).

Notice that in this general setting neither one has the concept of a Milnor number, nor the
algebraic invariant on the right hand side of the Lê-Greuel formula is necessarily preserved
as we move away from the special fiber over 0. Hence a first step towards generalizing that
theorem is expressing it in terms that make sense in the general setting we envisage here. This
is done as follows.

WhenX is Cn+k and f defines an ICIS germ, we know from [18] that its Milnor fibre Ff
is a bouquet of μ spheres of middle dimension, where μ is the Milnor number, and similarly
for (f, g). Also, in this case, the term on the right can be thought of as being the number
c(g|Ff ) of critical points of the restriction g|Ff of g to a Milnor fibre of f , counted with their
local multiplicities.

Hence the Lê-Greuel formula can be expressed as:

χ(Ff ) = χ(Ff,g )+ (−1)n c(g|Ff ) ,

where the first two terms are Euler characteristics of the corresponding Milnor fibers. Fur-
thermore, the number (−1)n c(g|Ff ) actually equals the GSV-index IndGSV(g, 0, f ) of the
gradient vector field of the restriction of g to the hypersurface V (f ) defined by f . This in-
variant, the GSV-index, is defined for all vector fields on isolated complete intersection germs
and provides an extension for singular varieties of the classical Poincaré-Hopf local index for
vector fields on manifolds (see [3] for details). We thus get:

χ(Ff ) = χ(Ff,g )+ IndGSV(g, 0, f ) .

That is the formulation we extend to the general setting described above.
Our work uses the theory of indices of vector fields on singular varieties, as we explain

below. LetX be a complex analytic variety of pure dimension n+ k in an open set containing
the origin 0 in some complex space Cm, and let f : (X, 0) → (Ck, 0) be a holomorphic
function which is generically a submersion with respect to some Whitney stratification {Sα}
of X. We assume further that the zero set V (f ) has dimension greater than 1 and f has the
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Thom af -property with respect to the above stratification. Denote by Ff the corresponding
Milnor fibre.

If X is non-singular, then the GSV-index of g on V (f ) is, by definition, the total Poincaré-
Hopf index of an extension of ∇g to the Milnor fiber Ff . In the general setting the Milnor
fibre Ff is itself singular, hence such a definition makes no sense because the Poincaré-Hopf
index is defined only for vector fields on smooth manifolds. We use instead the Schwartz (also
called radial) index of vector fields and define the GSV index of g on V (f ) to be the total
Schwartz index of an extension of ∇g to the Milnor fibre, see Section 2 for details. Then we
prove (Theorem 3.1):

THEOREM (Generalized Lê-Greuel formula). Let g : (X, 0) → (C, 0) have an iso-
lated critical point at 0 in the stratified sense, both in X and also in V (f ), and let Ff,g be
the Milnor fibre of the holomorphic map-germ (f, g). Let us equip Ff with the stratification
obtained by intersecting this variety with the strata of X, and denote by IndGSV(g, 0, f ) the
total GSV-index of g on the Milnor fiber Ff . Then one has:

χ(Ff ) = χ(Ff,g )+ IndGSV(g, 0, f ) .

In Section 1 of this article we set down the foundations of what we need in the sequel
concerning Milnor type fibrations. And in Section 2 we develop the machinery we need about
indices of vector fields. In Sections 3 and 4 we prove Theorem 3.1.

We notice that J. Damon in [7, Section 9] also gives a Lê-Greuel type formula which
applies to the singular Milnor fiber of an almost free divisor in the smooth Milnor fiber of
a non-isolated complete intersection singularity. We notice too that in [8] the authors use
stratified Morse theory to give a Lê-Greuel type formula in the same setting we envisage in
this paper, and they use that formula to prove the analogous statement for the local Euler
obstruction of functions on singular varieties. This is an invariant introduced in [2], which
provides an extension of the notion of the Milnor number to the case of functions on singular
varieties. In Section 5 we discuss relations of our work with those articles, as well as with the
Milnor number defined by J. W. Bruce and R. M. Roberts in [4].

We also remark that in [6], the authors adapted the techniques of this article to study the
topology of real analytic map-germs, and they prove the analogous Lê-Greuel formula in that
setting. And in the recent article [27, Theorem A5], Nuño-Ballesteros, Oréfice and Tomazella
considered the case where (X, 0) is an Isolated Determinantal Singularity. They proved in
that setting a formula similar to our Theorem 3.1.

In Section 6 we consider the invariant appearing in the right hand side of Theorem 3.1
and look at it from an algebraic point of view. This explains how Theorem 3.1 leads to the
classical Lê-Greuel formula. In that setting one has the well-known equality:

dimC

On+k,0
(f, Jack+1(f, g))

= c(g|Ff ) ,

where the term on the right denotes the number of critical points of a Morsification of g on
Ff , which essentially coincides in this case with the corresponding GSV-index. Our formula
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in this article expresses the difference χ(Ff ) − χ(Ff,g ) in terms of the corresponding GSV-
index; and we know from [8] that this invariant is determined by the number of critical points
in the various strata of the Milnor fibre Ff of a Morsification of g , together with the Normal
Morse data of the strata.

Of course it would be interesting to find an algebraic interpretation of this invariant, the
corresponding GSV-index, in the general formula of Theorem 3.1. Alias, we do not know
how to do that, not even in the apparently simpler case when the ambient space X is Cm. As
we notice in Section 6, in that setting one has that generically, the critical points of g on Ff
are isolated, and in that case the invariant in Theorem 3.1 can be expressed algebraically as,

dimC

Om,0

(f − t, Jack+1(f, g))
,

where f = t defines the Milnor fibre Ff . It is then natural to “specialize” this invariant to the
fiber over 0 and this should yield to an expression for c(g|Ff ) in terms of the local algebra of
f and g at 0. This works fine in the classical setting of the Lê-Greuel formula. The problem
in general is that even if g has finitely many critical points on Ff , if the germ of V (f ) at 0
has non-isolated singularities, then one has

dimC

On+k,0
(f, Jack+1(f, g))

= ∞ ,

and we do not know if one can compute this invariant solely in terms of the local algebras of
f, g at 0.

The authors are grateful to professors Lê Dũng Tráng, Bernard Teissier and Mutsuo Oka,
for very helpful conversations. They are also grateful to the Centro de Ciências Exatas e
da Natureza, Universidade Federal da Paraíba, Brazil, to Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, Brazil, to Instituto de Biociências, Letras e
Ciências Exatas, Universidade Estadual Paulista, Brazil, and to Instituto de Matemáticas at
Cuernavaca, Universidad Nacional Autónoma México, for their support and warm hospitality
while working on this article.

1. Milnor-Lê fibrations on singular varieties. Throughout this article, X will de-
note a complex analytic singular variety of dimension n + k in an open set containing the
origin 0 in some complex space Cm, and f : (X, 0) → (Ck, 0) is a holomorphic function
which is generically a submersion with respect to some complex analytic Whitney stratifica-
tion {Sα} of X. We assume further that the zero set V := V (f ) has dimension more than 0
and f has the Thom af -property with respect to the above stratification.

We recall (see for instance [15]) that a point x ∈ X is a critical point of f , in the
stratified sense, if the restriction of f to the corresponding stratum has a critical point at x.
These are the points such that Jack(f )(x) = 0, where Jack(f ) denotes the ideal generated
by the determinants of all the k minors of the Jacobian matrix of the restriction of f to the
corresponding stratum.
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We denote by Crit(f ) the critical locus of f , which is the union of all its critical points.
The points in its complement are the regular points of f , and we denote by�f := f (Crit(f ))
the discriminant of f . This is an analytic subset of Ck .

Given ε > δ > 0 sufficiently small, we denote by N(ε, δ) the tube

N(ε, δ) := [B(ε) ∩X] ∩ f−1(Dδ) ,

where B(ε) is the ball of radius ε around 0 in Cm and Dδ is the ball in Ck of radius δ around
0.

THEOREM 1.1. Let g : (X, 0) → (C, 0) be holomorphic, with an isolated critical
point at 0 in the stratified sense, both in X and also in V . Then for every ε > ε′ > 0
sufficiently small, there exists δ > 0 small enough with respect to ε′ such that:

(1) One has a locally trivial fibration:

f : N(ε, δ) \ f−1(�f ) −→ Dδ \�f .
(2) Each fiber Ft = f−1(t)∩Bε , t ∈ Dδ \�f inherits a Whitney stratification from that

in X, by intersecting Ft with the strata of X.
(3) The critical points of g in each fiber Ft are all contained in the interior of the ball

Bε′ .

PROOF. The proof of the first statement is standard, essentially imitating the arguments
in [22]. In fact, choose ε > 0 sufficiently small, so that every sphere in Cm centered at 0 and
contained in the ball Bε meets transversally every stratum in V (f ), i.e., Sε is a Milnor sphere
for V . The fact that such an ε exists follows from Bertini-Sard’s theorem in [36].

Since f has the Thom property, this implies that every fiber f−1(t) sufficiently near V
also meets Sε transversally. So the fact that one has the fibration in statement (i) is just a
relative version of the classical Ehresman’s fibration lemma. In fact, by [34] every Whitney
stratification on a complex analytic space is Whitney strong, so in a neighbourhood of each
fiber Ft one can use Proposition 4.6 in [36] to lift vector fields in Ck to stratified, rugose vector
fields on X, thus getting the topological product structure about each fiber.

The second statement in this theorem follows easily from [36] because f is a submersion
at each point in Ft .

Now let g : (X, 0) → (C, 0) be a holomorphic germ with an isolated critical point at 0
in the stratified sense (see [15]). We assume further that g also has an isolated critical point
at V . In other words, we can assume g is the restriction to X of a holomorphic function g̃ in
a neighbourhoodU of 0 in Cm, whose gradient ∇ g̃ vanishes only at 0, and such that for each
z ∈ X, the projection of ∇ g̃(x) to the corresponding stratum is non-zero, unless z = 0.

Since f has the Thom property with respect to this stratification, one has that for every
z ∈ V \ {0}, there is a neighbourhoodNz such for each point w in it, the projection of ∇ g̃(w)

to the stratum of the fiber f−1(f (w)) that contains w is non-zero. This implies the third
statement in the theorem above. �
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We remark that it is essential in the theorem above to demand that f has the Thom
property, for otherwise there may not be a Milnor fibration as shown by the famous example
of Lê (see for instance [31, p. 23]; see also [12]).

From now on, given X and f as above, we call the fibration in Theorem 1.1 the Milnor-
Lê fibration of f , and denote its fiber by Ff .

In the sequel we will consider too a holomorphic map-germ g : (X, 0) → (C, 0) with an
isolated critical point at 0, both on X and also on V (f ) (for the given Whitney stratification).
This implies that away from 0 the kernel of dg is transversal to the corresponding stratum. It is
thus an exercise to show that this implies that the map-germ (f, g) also satisfies the Thom af -
condition with respect to the given stratification. Thence one also has a Milnor-Lê fibration
corresponding to the map-germ (f, g). We denote the corresponding fiber by Ff,g .

2. Indices of vector fields on singular varieties. Let X, f and g be as before.

DEFINITION 2.1. Let Br be a closed ball in Cm such that each stratum in X meets
transversally the boundary sphere Sr = ∂Br . Then we say that the intersectionXr := X ∩Br

is a singular variety with boundary ∂Xr := X ∩ Sr .

In this case the interior ofX∩Br is a complex analytic singular variety in the usual sense,
and the boundary is itself a real analytic (possibly singular) variety, which inherits a Whitney
stratification from that in X.

Recall that a stratified vector field onX means a section v of the bundle TM|X, whereM
is a complex manifold with a Whitney stratification adapted toX, such that for each x ∈ X the
vector v(x) is tangent to the corresponding stratum. We further assume that all vector fields
in this article are continuous.

We now recall the concept of the Schwartz index of a vector field. This index was intro-
duced by H. King and D. Trotmann [19] under a different name. This was also studied by W.
Ebeling and S. Gusein-Zade in several articles (e.g. [9]) where they call it the radial index.
The presentation we make here basically comes from [3] where this is called the Schwartz
index. Much of the presentation below is inspired also by the work of W. Ebeling and S.
Gusein-Zade about the radial index for vector fields and for 1-forms (see for instance [10]).

Let v be a stratified vector field on Xr with isolated singularities. We want to define the
Schwartz index of v at these points. Since the question is local, we focus on a neighborhood
of a singular point xo.

Let us denote by Vα the stratum containing xo. If the vector field v is transversal to every
small sphere in Cm centered at xo, then we say that v is radial. We denote such a vector field
by vrad. In this case we define its Schwartz index to be 1.

Now let v be any stratified vector field on Xr with an isolated singularity at a point xo.
We consider two balls Bε, Bε′ centered at xo, with ε > ε′ > 0 without other singularity of v
and small enough so that their boundaries are transverse to all strata. Inside the smaller Bε′
we consider a stratified radial vector field vrad with center xo and pointing outwards the ball.
On the boundary ∂Bε of the larger one, we consider the vector field v.
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Let us consider the cylinder Kε,ε′ = (Bε \ IntBε′) ∩ Xr . On the parts Sε′ = ∂Bε′ and
Sε = ∂Bε of the boundary of Kε,ε′ one has a vector field w defined by vrad and v respec-
tively. One can always extend w in Kε,ε′ by the classical radial extension process of M. H.
Schwartz [30] (see for instance [3, Chapter 2, Section 3]). One has that at each singular point
of the extension, the index in the stratum coincides with the index in the ambient space:

IndPH(w, pj ;Vβ) = IndPH(w, pj ;Cm) ,
where Vβ is the stratum containing pj .

DEFINITION 2.2. The difference of v and vrad is defined as:

d(v, vrad) =
∑
β

∑
j

IndPH(w, pj ;Vβ) ,

where the sum on the right runs over the Poincaré Hopf indices at the singular points of the
restriction of w to each stratum Vβ in Kε,ε′ .

One has ([3, p. 38]) that this integer does not depend on the choice ofw (cf. [10, p. 441])
provided this extension is done by radial extension. Notice also that d(vrad, vrad) = 0 and we
can write

indSch(v, xo;X) = 1 + d(v, vrad) .

Then we have a definition for the Schwartz (or radial) index of a vector field v in a natural
way:

DEFINITION 2.3. LetX be a complex analytic singular variety, equipped with a Whit-
ney stratification, and let v be a continuous, stratified vector field on X with isolated singular-
ities x1, . . . , xs . Then:
i) The Schwartz index of v at each xi ∈ X is defined as:

indSch(v, xi;X) = 1 + d(v, vrad) .

ii) The total Schwartz index of v on X is the sum of its local indices at the singular points.

The proof of the following theorem is exactly as that of Theorem 2.1.1 in [3] and we
leave the details to the reader.

THEOREM 2.4. Let Xr be a compact, complex analytic variety with boundary in Cm

(or more generally in some complex manifold M), which is equipped with a Whitney stratifi-
cation adapted to X. Let v be a continuous, stratified vector field defined on a neighborhood
of the boundary ∂Xr in Cm, with no singularities. Then:

1. It can also be extended to a stratified vector field on Xr with isolated singularities
x1, . . . , xs , and its total Schwartz index in Xr is independent of the choice of the
extension.

2. If v is transversal to the boundary ∂Xr everywhere, then:

χ(Xr) =
s∑
i=1

IndSch(v, xi;Xr) ,
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where χ(Xr) is the Euler-Poincaré characteristic.

We now consider another index of vector fields, the GSV-index. Classically (see [14])
one considers a hypersurface (or a complete intersection) germ (V , 0) defined by a holomor-
phic function f : (Cn+1, 0) → (C, 0) with an isolated critical point at 0. Then, given a vector
field v on V with isolated singularity at 0, one can always extend it to a vector field w on
the Milnor fiber F = Ff of f , with no singularities near the boundary. The total number of
these singularities in F , counted with their local Poincaré-Hopf indices, is independent of the
extension, and this number is, by definition, the GSV-index of v at 0. That is:

IndGSV(v, 0;V ) := IndPH(w;F) ,
where the term on the right is the total index.

This definition was extended in [3, Chapter 3] to the more general setting where V can
have non-isolated singularities, but the ambient space still is non-singular. Following that line
of ideas, one may further extend this concept as follows. We let X, f and g be as in Section 1
above. That is, (X, 0) is a complex analytic variety of dimension n+ k in Cm with a singular
point at the origin 0; f : (X, 0) → (Ck, 0) is a holomorphic function which is generically
a submersion with respect to some Whitney stratification {Sα} of X, and such that its zero
set V := V (f ) has dimension more than 0. We assume that f has the Thom af -property
with respect to this stratification. Finally, g : (X, 0) → (C, 0) is a holomorphic map with an
isolated critical point at 0 in the stratified sense, both in X and also in V .

Let us describe now the construction in [2] of a stratified vector field on V , denoted by
∇V (g). Let us denote by ∇ g̃(x) the gradient vector field of g̃ : U → C at a point x in the
neighborhoodU of 0 in Cm with g̃ |X = g , defined by

∇ g̃(x) :=
(
∂ g̃

∂x1
, . . . ,

∂ g̃

∂xm

)
,

where the bar denotes complex conjugation. Consider V with Whitney stratification obtained
by intersecting this variety with the strata of X, denoted by {Vα}, and denote by Vα(x) the
stratum containing x. Since g : (X, 0) → (C, 0) has an isolated singularity at 0, the projection
of ∇ g̃(x) on TxVα(x) , denoted by ζ̂α(x), is not zero. Gluing together the vector fields ζ̂α,
obtain a stratified vector field on V , denoted by ∇V (g). This vector field is homotopic to
∇ g̃ |V (the justification for this can be seen in [2, Section 2]). Now consider g restricted to
Milnor fiber Ff with the Whitney stratification obtained by intersecting this variety with the
strata ofX. Just in the same way, obtain a stratified vector field on Ff using, for each x ∈ Ff ,
the projection of ∇ g̃(x) on the tangent space to each stratum of Ff containing x, denoted by
∇Ff (g). This vector field is homotopic to ∇ g̃|Ff .

Now we define (compare with Definition 3.4.1 of [3]):

DEFINITION 2.5. The GSV-index of g on V relative to the function f is, by definition,
the total Schwartz index of the conjugate gradient vector field ∇Ff (g) on the Milnor fiber Ff :

IndGSV(g, 0; f ) := IndSch(∇Ff (g);Ff ) .
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It is clear that the same definition adapts easily to define the corresponding index for
1-forms, in the vein of [10, 11]. In fact in that case the definition is actually simpler because
one does not need to extend vector fields from the singular variety to the Milnor fibre, but we
only need to consider the restriction of the 1-form dg to the boundary of Ff .

3. The Lê-Greuel formula. We consider again X, f and g as before. So that f :
(X, 0) → (Ck, 0) defines V = V (f ); X is equipped with a Whitney stratification {Sα} with
respect to which f is generically a submersion and it has the Thom property, and g has an
isolated critical point in X and in V , with respect to this stratification. As before, we assume
V (f ) has dimension ≥ 2.

We know from Section 1 that f has a Milnor-Lê fibration; we denote by Ff the corre-
sponding fiber. Notice that the fact that g has an isolated critical point in V implies that (f, g)
is also generically a submersion with the Thom property with respect to the stratification {Sα},
and one has that the variety V (f, g) has dimension at least 1. So, by the same arguments as in
Section 1, the map (f, g) also has a Milnor-Lê fibration. We denote by Ff,g the corresponding
Milnor fiber. We have:

THEOREM 3.1 (The Lê-Greuel formula). One has:

χ(Ff ) = χ(Ff,g )+ IndGSV(g, 0; f ) .
In order to prove Theorem 3.1, the first step is choosing appropriate representatives of

the Milnor fibers Ff and Ff,g . For this we consider first a Milnor sphere Sε for X and V (f )
at 0, and the Milnor-Lê fibration of f given by Theorem 1.1.

Since g has an isolated critical point in V := V (f ), by [22], there exists δ′ > 0 such that
if we let D2

δ′ be the disc in C of radius δ′ about 0 and set

NV (ε, δ
′) = g−1(D2

δ′) ∩ V (f ) ∩ Bε ,

then

g : NV (ε, δ′) \ V (g) −→ D
2
δ′ \ {0} ,

is a locally trivial fiber bundle, where V (g) := g−1(0). Choose a typical fiber g−1(so)∩V (f )
of this fibration, so so 	= 0 with |so| ≤ δ′.

Now consider ε′ > 0 small enough, so that the ball Bε′ in Cm does not meet the fiber
g−1(so). We use Theorem 1.1 again, to choose a Milnor fiber Ff := f−1(to)∩Bε for f , such
that the restriction of g to Ff has no critical points away from Bε′ . Then the hypersurface
g−1(so) meets Ff transversally and therefore the intersection Ff,g := Ff ∩ g−1(so) serves as
a model for the Milnor fiber of the Milnor-Lê fibration of (f, g).

From now on we set Ff,g := Ff ∩ g−1(so) with Ff = f−1(to) ∩ Bε , and we equip
Ff and Ff,g with the Whitney stratifications obtained by intersecting these varieties with the
strata of X. We have:

LEMMA 3.2 (Main Lemma). There exists a continuous, stratified vector field v on Ff
with the following properties:
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1. Restricted to a neighbourhood of its boundary ∂Ff , it is transversal to the boundary,
pointing outwards.

2. It is tangent to the hypersurface Ff,g .
3. Within the ball Bε′ , v is the vector field ∇V (g).
4. Away from Bε′ , v has only isolated singularities, all contained in Ff,g , and at each of

these singular points, the vector field is transversally radial to the stratum containing
the singular point of v (that is, v is transversal to the boundary of every tubular
neighbourhood of the stratum).

Notice that property 4 implies that the Schwartz index of v at each singularity in Ff,g
equals the local Poincaré-Hopf index at that point, of the restriction of v to the stratum.

Theorem 3.1 follows easily from this Lemma. In fact, the first property implies that the
total Schwartz index of v in Ff is χ(Ff ), by Theorem 2.4. Similarly, properties 1 and 2,
together with Theorem 2.4, imply that the total Schwartz index of v in Ff,g is χ(Ff,g ). Thus,
again by Theorem 2.4, together with property 4, we get that the difference χ(Ff )− χ(Ff,g )

equals the sum of the Schwartz indices of v away from Ff,g , and this is the GSV-index of
∇V (g) by property 3, since v has no other singularities away from Ff,g but those in Bε′ ,
where v coincides with ∇V (g).

4. Proof of the main lemma. Lemma 3.2 and its proof are very much inspired by
[1] and [2], where the authors prove similar statements to get Lefschetz type theorems for the
local Euler obstruction. This lemma is in fact an immediate consequence of the three lemmas
below.

LEMMA 4.1. Let η′ > 0 be small enough with respect to δ′, so that the disc Dη′(so) ⊂
C centered at so, is contained in the interior of Dδ′ and g−1(Dη′(so)) does not intersect Bε′ .
Then, there exists a stratified vector field wr on Ff satisfying:

1. Its restriction to g−1(Dδ′)∩ Sε is tangent (stratified) to all the fibers g−1(s), and it is
transversal to Sε , pointing outwards.

2. It is tangent to the fiber g−1(so), where it has only isolated singularities, and at each
singularity, wr is transversally radial in g−1(so), to the stratum that contains that
zero of wr .

3. It is tangent to each fiber g−1(s), for s ∈ Dη′(so).

PROOF. First we observe that we can use the classical method of Schwartz to construct
a vector field r on g−1(so) satisfying the item 2, as done in the proof of [1, Lemma 3.4],
see also [2, Lemma 4.1]. This method consists of constructing the vector fields by induction
on the dimensions of the strata. Therefore we obtain a vector field r which is tangent to
g−1(so), where it has only isolated singularities and at each singularity it is transversally
radial in g−1(so), to the stratum that contains that singularity. As g−1(so)meets f−1(to)∩Bε

transversally, wr := r|f−1(to)∩Bε satisfies the same property.
From the choice of the appropriate representatives of the Milnor fibers Ff and Ff,g we

see that g determines a locally trivial fibration of g−1(Dδ′)∩f −1(to)∩Bε\g−1(0) overDδ′ \{0}.
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FIGURE 1. The vector field wr .

This induces, in particular, a trivial fibration over Dη′ (so). Hence wr can be extended, as a

product, to all fibers g−1(t) ∩ f−1(to) with t ∈ D
η

′ (so), satisfying statement 3.
To show the item 1, we first choose ε′′, with ε′ � ε′′ < ε such that the restriction of g

to g−1(Dδ′) ∩ f−1(to) ∩ (Bε\Int Bε′′) is a trivial fibration. Since Dδ′ retracts to Dη′(so), the
vector field wr can be extended to Sε∩g−1(Dδ′)∩f−1(to) being tangent to the fibers of g and
transversal to the sphere Sε , pointing outwards. Using a suitable partition of unity, we can ex-
tend wr as zero in the complement of a neighborhood of

(
g−1(Dδ′)∩f−1(to)∩(Bε\Int Bε′′)

)
∪ (g−1(Dη′(so)) ∩ f−1(to)

)
. �

LEMMA 4.2. There exists a stratified vector field u defined on Ff ∩ g−1(Dδ′) minus
the interior of the ball Bε′ , satisfying the following:

1. u is tangent to Sε;
2. its zero set is g−1(so), and u is transversally radial to g−1(so) in Ff ;
3. u is transversal to Ff ∩ g−1(∂Dδ′), pointing outwards;
4. restricted to Ff ∩ ∂Bε′′ it coincides with the gradient vector field ∇g|Ff .

PROOF. Let {Vα} be Vα := Sα ∩ Ff a Whitney stratification of Ff , where {Sα} is
a Whitney stratification of X as above. Since g has isolated critical point in X and V (f )
with respect to stratification {Sα} and g−1(so) meets Ff := f−1(to) ∩ Bε transversally, the
restriction of g to every stratum Vα (other than {0} itself) is regular. Therefore, the kernel of
dg has codimension 1 in Vα.

The Hermitian metric on Cm induces a metric on Vα and defines a splitting of the tangent
bundle T Vα as the sum of the tangent bundle to the fiber and the normal bundle. The derivative
dg , restricted to the normal bundle, is an isomorphism. Hence, we can lift every vector field
on Dδ′ as a vector field tangent to Vα and orthogonal to the fibers g−1(t). Let us denote by ξ
the vector field on Dδ′ , radial from so, and by uα the lifting of ξ to Vα.

Just as in the definition of the vector field ∇ g̃|Ff , the Whitney conditions allow us to glue
the different uα in a stratified vector field u defined on g−1(Dδ′) ∩ f−1(to) ∩ (Bε\Int Bε′) =
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FIGURE 2. The vector field u.

(
Ff ∩ g−1(Dδ′)

) \Int Bε′ and satisfying the first three conditions of the lemma. The last state-
ment follows as in the proof of Lemma 3.2 in [2, p. 69]. �

LEMMA 4.3. Let w be a stratified vector field on Ff ∩ g−1(∂Dδ′), which is transverse
to both Ff ∩ Sε and Ff ∩ g−1(∂Dδ′), pointing outwards. Then there exists an extension of
w to a stratified vector field on Ff \ g−1(Dδ′), which is transverse to ∂Ff = Ff ∩ Sε and
pointing outwards.

If in this statement we replace Ff by V (f ), then the lemma is a special case of Theo-
rem 2.3 in [1]. Lemma 4.3 then follows from this and the fact that f has the Thom property.

5. Remarks on the general setting.
5.1. Damon’s Lê-Greuel formula. J. Damon in [7, Section 9] gives a Lê-Greuel type

formula which applies to the singular Milnor fiber of an almost free divisor in the smooth
Milnor fiber of a non-isolated complete intersection singularity.

More precisely, consider almost free divisors Vi ⊂ Cn, 1 ≤ i ≤ k and define V =⋂k
i=1 Vi and Ṽ = ⋂k−1

i=1 Vi , such that both V and Ṽ are almost free complete intersections.
For sufficiently small t and s with |t| � s, Damon constructs in [7, p. 80] the smooth Milnor
fiber Ṽt,s for Ṽ , the singular Milnor fiber Vk,t for Vk and defines the relative Euler character-
istic of the pair (Ṽ , V ) by

χ̃(Ṽ , V ) := χ(Ṽt,s ∩ Bε, Ṽt,s ∩ Vk,t ∩ Bε) .

Then by [7, Theorem 9.4] one has that χ̃(Ṽ , V )=(−1)n−k+1 dimCD(Ṽ , V ),whereD(Ṽ , V )
is a determinantal module given as a quotient module of Op

Ṽ ,0
by a set of generators of

Derlog(V ′
i ) and

{
∂ϕ
∂x1
, . . . ,

∂ϕ
∂xn

}
. When V is an ICIS one has a “module version” of the Lê-

Greuel formula:

μ(Ṽ )+ μ(V ) = dimC

Op

Ṽ ,0

OṼ ,0

{
∂ϕ
∂x1
, . . . ,

∂ϕ
∂xn

} .
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5.2. The Lê-Greuel formula of Dutertre-Grulha. In a recent paper, N. Dutertre
and N. G. Grulha Jr. prove a Lê-Greuel formula which holds in the same general setting we
envisage in this article, Theorem 4.5 in [8]. They express the difference χ(Ff ) − χ(Ff,g )

appearing in Theorem 3.1 as a sum:

χ(Ff ) − χ(Ff,g ) =
∑

(−1)dα
∑

μij
(
1 − χ(lkC(Sα,X)

)
,

where the first sum on the right runs over the strata Sα in the Milnor fibre of f , the number
dα being the dimension of the stratum; the μij are certain multiplicities that can be described
as the number of critical points, in each stratum of the Milnor fibre Ff , of a Morsification
of g , and χ(lkC(Sα,X)) is the Euler characteristic of the complex link of the corresponding
stratum.

Using this formula together with our Theorem 3.1 one gets an interpretation of the in-
variant IndGSV(g, 0; f ) as:

IndGSV(g, 0; f ) =
∑

(−1)dα
∑

μij
(
1 − χ(lkC(Sα,X)

)
.

In other words, when the fiber Ff is smooth, then it is well known that the GSV-index of the
gradient vector field of g on the hypersurface defined by f , IndGSV(g, 0; f ), is up to sign the
number of critical points of a Morsification of g on Ff . The above expression generalizes that
interpretation of IndGSV(g, 0; f ) to the case when the Milnor fibre Ff is itself singular.

We notice too that in [24] the authors introduced certain polar invariants (or multiplici-
ties) that detect the local Euler obstruction of a singular variety at each point. A similar study
was done in [32] to express the local Euler obstruction of a function on a singular variety.
In the setting we envisage here, we can also think of the index IndGSV(g, 0; f ) as a polar
invariant (cf. [8, Section 5]).

5.3. Bruce-Roberts’ Milnor number. In [4], J. W. Bruce and R. M. Roberts intro-
duced a Milnor number for function germs on singular varieties. To recall this, let W be a
sufficiently small representative of a reduced germ (W, 0) in Cn and g : (Cn, 0) → (C, 0) a
map with an isolated critical point. Let I (W) be the ideal in On,0 consisting of the germs of
functions vanishing on W , and let n,0 be the On,0-module of germs of holomorphic vector
fields on (Cn, 0). Denote by W those vector fields that are tangent to W , that is:

W = {ψ ∈ n : dh = ψh ∈ I (W) ∀h ∈ I (W)} .
Then the Bruce-Roberts Milnor number of g with respect to W is defined as

μBR(g,W) = dimC

On

dg(W,0)
.

This number is finite if and only if g is RW -finitely determined. Given any point x ∈ U , we
denote by W(x) the linear subspace of TxU generated by the vectors δ(x) with δ ∈ W,x .
A complex analytic stratification {Wα} of W is called logarithmic if for each x ∈ Wα one has
that the tangent space TxWα coincides with W,x . The germ (W, 0) is said to be holonomic
if, for some neighborhood U of 0 in Cn, there is a logarithmic stratification (with finitely
many strata). In this case, by [4, Proposition 1.10], in a sufficiently small neighborhood of
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the origin, this stratification is Whitney regular. In this case, the logarithmic subvariety of W
is defined as LC(W) := ⋃

α C(Wα), where C(Wα) is the conormal space of Wα, that is, the
subspace of T ∗Cn given by all forms vanishing on the tangent bundle TWα.

Now we consider g and V as before and suppose that (V , 0) is holonomic for the loga-
rithmic stratification {Vα} of (V , 0). Consider the induced stratification {Vα ∩ Ft } in V ∩ Ft ,
which is also logarithmic. If LC(V ∩ Ft ) is Cohen-Macaulay at (0, d(g|Ft )(0)) then, by [4,
Corollary 5.8], we obtain

μBR(g, Ft ) =
∑
Vα∩Ft

nαcα ,

where nα is the multiplicity of the component C(Vα ∩ Ft ) and ca is the number of critical
points of a Morsification of g in Ff that are contained in that stratum. Thus we see that the
GSV-index of g and the Bruce-Roberts invariant are both defined by the number of critical
points of a Morsification of g . From the results by N. Grulha in [17] we get also a relation
between these invariants and the Euler obstruction of g .

6. The classical setting. Consider map-germs f := (f1, . . . , fk) : (Cn+k, 0) →
(Ck, 0) and g : (Cn+k, 0) → (C, 0) as before. We assume further thatX is non-singular away
from 0. The above discussion implies that if f has the Thom af -property and g has an isolated
singularity in X and in V (f ), then f and (f, g) have associated Milnor-Lê fibrations, and
their corresponding Euler characteristics are related by Theorem 3.1. This formula involves
the number of critical points of a Morsification of g on the Milnor fibre Ff . We now say a
few words about this latter invariant.

Let C(f, g) be the union of Crit(f ), the critical points of f , and the points inX\{Crit(f )}
where the fibers of f are tangent to those of g . In other words, using the language of René
Thom in [35], away from Crit(f ), we are looking at the contacts of the foliations F and G
defined by the fibers of f and g , respectively.

For instance, if g were a general linear form, the set C(f, g) would be a classical polar
variety.

In general C(f, g) is the set of critical points of the map (f, g) : (Cn+k, 0) → (Ck+1, 0) ,
so it is always complex analytic, defined by the determinants of all (k+1)× (k+1)minors of
the Jacobian matrix of (f, g). Clearly one has that the critical points of g in Ff are the points
in the intersection C(f, g) ∩ Ff .

Let xo be a point in C(f, g) ∩ Ff . Notice that xo is a regular point of f . Let us choose a
local chart U for X around x, so that the bundle Tf tangent to the fibers of f is holomorphi-
cally trivial on U , and let ξ1, . . . , ξn be holomorphic vector fields in U that span the bundle
Tf . Then C(f, g) ∩ U is defined by the equations 〈∇g, ξi 〉 = 0, i = 1, . . . , n, where ∇g is
the gradient of g and 〈 , 〉 is the usual Hermitian product. These are 2n real analytic equa-
tions, hence generically C(f, g) has real codimension 2n, and it is complex analytic. Thus
generically it has complex dimension k and C(f, g) ∩ Ff consists of isolated points.

For instance, if k = 1, then C(f, g) is a complex curve in X passing through the origin.
This curve necessarily has an isolated singularity at 0 and each branch of this local germ meets
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transversally each Milnor fibre Ff at a finite number of points. The curve is reduced precisely
when the contacts of the foliations F and G are all generic, i.e., when the critical points of
g|Ff are all Morse critical points.

Notice that if x ∈ C(f, g) ∩ Ff is an isolated critical point of g|Ff , where the fibre Ff
is f−1(t) ∩X ∩ Bε for some regular value t , then the local contribution of x for the invariant
c(g|Ff ) is given by the algebraic invariant:

dimC

OX,0

(f − t, Jack+1(f, g))
,

where Jack+1(f, g) denotes the ideal generated by the determinants of all the (k + 1) minors
of the corresponding Jacobian matrix.

Assume now that X is C
n+k and the germs f and (f, g) are both ICIS, i.e., isolated

complete intersection singularities.
Let us recall now some algebraic background as developed in [13]. Let X ⊂ Cn+k ×Ck

be the analytic space defined by X := V (f1 − t1, . . . , fk − tk), where t1, . . . , tk denote the
variables in Ck . Let π2 : Cn+k × Ck be the projection into the second factor, and denote its
restriction to X by p. Since X is a complete intersection it is Cohen-Macaulay and hence p
is flat because all the fibers are equidimensional of pure dimension n.

Now consider the free module Ok+1
X of (k + 1)-tuples of C-valued functions on X .

Let M := JM(f1, . . . , fk, g) ⊆ Ok+1
X be the Jacobian module of f1, . . . , fk, g . That is,

JM(f1, . . . , fk, g) is the OX -module generated by the columns of the corresponding Jaco-
bian matrix.

Let S := Supp
(Ok+1

XM
)

be the support of the OX -module
Ok+1

XM , that is, S is the subvariety
of X defined by Jack+1(f, g). In our case, the induced map

p : S → C
k ,

is a finite surjective morphism, since by hypothesis g has an isolated critical point at V (f ) and
f has the Thom property. This implies that the moduleM defines a finite colength submodule
M(t) in Ok+1

X(t), for each t ∈ Ck, where X(t) denotes the fiber of p : X → Ck at t .
Thus one may define the total Buchsbaum-Rim multiplicity e(t) as:

e(t) =
∑
x∈X(t)

eBR(M(t),Ok+1
X(t),x) ,

where

eBR(M(t),Ok+1
X(t),x) = lim

d→∞

[
(n+ k)!
dn+k

dimC

(Symd(Ok+1
X(t),x)

Reesd(M(t))

)]
is the usual Buchsbaum-Rim multiplicity as defined for example in [20].

Since p : X −→ C
k is flat, X(t) is Cohen-Macaulay for each t ∈ C

k, p : S → C
k

is surjective, and M is generated by n + (k + 1)− 1 elements, we have, by [13, Proposition
1.5], that e(t) is constant. Theorem 2.4 and Corollaries 4.3 and 4.5 by Buchsbaum and Rim
in [5] imply:
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(1) e(t) =
∑
x∈X(t)

dimC

OCn+k,x
(f1 − t1, . . . , fk − tk, Jack+1(f, g))OCn+k,x

where (f1 − t1, . . . , fk − tk, Jack+1(f, g))OCn+k ,x denotes the ideal in OCn+k,x generated by
f1 − t1, . . . , fk − tk, Jack+1(f, g).

Hence the right hand side of (1) is independent of t . This, together with Theorem 3.1,
says that in this case one has

χ(Ff ) = χ(Ff,g )+ (−1)n dimC

On+k,0
(f, Jack+1(f, g))

,

or equivalently:

μ(f )+ μ(f, g) = dimC

On+k,0
(f, Jack+1(f, g))

,

which is the classical Lê-Greuel formula.
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