Open Access
Translator Disclaimer
2013 K3 surfaces with an automorphism of order 11
Matthias Schütt
Tohoku Math. J. (2) 65(4): 515-522 (2013). DOI: 10.2748/tmj/1386354293

Abstract

This paper concerns $K3$ surfaces with automorphisms of order 11 in arbitrary characteristic. Specifically we study the wild case and prove that a generic such surface in characteristic 11 has Picard number 2. We also construct $K3$ surfaces with an automorphism of order 11 in every characteristic, and supersingular $K3$ surfaces whenever possible.

Citation

Download Citation

Matthias Schütt. "K3 surfaces with an automorphism of order 11." Tohoku Math. J. (2) 65 (4) 515 - 522, 2013. https://doi.org/10.2748/tmj/1386354293

Information

Published: 2013
First available in Project Euclid: 6 December 2013

zbMATH: 1290.14028
MathSciNet: MR3161431
Digital Object Identifier: 10.2748/tmj/1386354293

Subjects:
Primary: 14J28
Secondary: 14G10 , 14J27 , 14J50

Keywords: $K3$ surface , Lefschetz fixed point formula , wild automorphism

Rights: Copyright © 2013 Tohoku University

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.65 • No. 4 • 2013
Back to Top