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HIGHER DIMENSIONAL MINIMAL SUBMANIFOLDS
GENERALIZING THE CATENOID AND HELICOID

JAIGYOUNG CHOE AND JENS HOPPE
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Abstract. For each k-dimensional complete minimal submanifold M of $" we con-
struct a (k 4 1)-dimensional complete minimal immersion of M x R into R"t2 and (k+1)-
dimensional minimal immersions of M x R into R?" 3 H2"+3 and §2"+3_ Also from the
Clifford torus M = Sk(l/ V2) x Sk(l/ V/2) we construct a (2k + 2)-dimensional complete
minimal helicoid in R2+3.

Introduction. A submanifold of R” whose mean curvature vector vanishes everywhere
is called minimal. The mean curvature vector of a submanifold points into the direction in
which the volume decreases most rapidly. Therefore minimal submanifolds are the submani-
folds which are stationary with respect to volume for all compactly supported variations.

A minimal hypersurface in R”, viewed as a graph, satisfies the quasilinear elliptic partial
differential equation:

(14 |Dul*)Au — DiuDjuDjju =0.

Simons [5] showed that no entire minimal graph other than hyperplanes exists in R" forn < 9,
and Bombieri, De Giorgi and Giusti [2] proved that in R", n > 9, there exist entire minimal
graphs which are not hyperplanes.

In R the catenoid and helicoid had been known to be the only two complete embedded
nonplanar minimal surfaces with finite topology for two hundred years. It was in 1982 that
Costa [4] surprisingly found a new complete embedded minimal surface in R3. From then
on, tens of new complete minimal surfaces have been found in R3 from suitable data for the
representation formula obtained by Weierstrass.

The minimal surface with the simplest Weierstrass data is the Enneper surface. It has
the same total curvature of —4s as the catenoid and has self intersection. One quarter of the
Enneper surface can be seen as a graph over a vertical half plane. By extending this property
to higher dimension, the first named author [3] constructed the higher dimensional Enneper
surfacein R", 4 <n <7.

The catenoid is a surface of revolution in R®. The higher dimensional catenoid X which
is SO (n — 1)-invariant minimal hypersurface in R" was found by solving the ODE for the
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generating curve of X' [1]. Besides the higher dimensional catenoid and the higher dimen-
sional Enneper surface, very few examples of complete minimal submanifolds are known to
exist in R".

In this paper we construct many new minimal hypersurfaces and submanifolds in R",
and in H" and S" as well. All these minimal submanifolds originate from complete minimal
submanifolds of §” just like the catenoid and helicoid arise from the minimal S' in §? and
from the minimal S in S!, respectively: Given a k-dimensional minimal submanifold M of
$", we can construct a (k+ 1)-dimensional complete minimal immersion of M x R into R"Z,
Moreover (k + 1)-dimensional minimal immersions of M x R are constructed in R¥"*+3 and
in H*'*3 and §2"*3 as well. Finally, from the Clifford torus M = S$*(1/+/2) x S¥(1/4/2)
we construct a (2k + 2)-dimensional complete minimal helicoid in R*+3,

1. Higher dimensional catenoid. The catenoid is a surface of revolution. The higher
dimensional catenoid X! in R" can be obtained from a generating curve x = f(y) in R?

by applying the SO (n — 1) action. X has principal vectors vy, ..., v,—1, where v is tangent
to the graph of x = f(y) and va, ..., v,_1 are tangent to the sphere of radius x. Hence the
principal curvatures k1, . . ., k,—] are given by
x" -1
K1 K2, ..., Kpn—1 =

= {1+ (x)2P2”

1T+ @2
Then the mean curvature of X' becomes
_xx' = (n =21+ (x)?)

(D {1+ (2P

Unlike X2 in R?, the higher dimensional catenoids lie in a slab.

In this section we construct a higher dimensional minimal submanifold by interpreting
the catenoid differently: The catenoid is not only a surface of revolution but also a surface
spanned by a family of coaxial circles of varying radii in horizontal planes, and the circles are
trivially minimal submanifolds of themselves. This observation gives the following theorem,
where the coaxial circles are replaced by the minimal submanifolds r (1) M of 8" (r(¢)):

THEOREM 1. Let M be a k-dimensional complete minimal submanifold of S C R"t1.
Suppose r(t),t € R, satisfies the second order ODE

ri —k(1+i%) =0.

Then the submanifold ¥ C R™? defined by ¥ = {(r(t) p,t); p € M, t € R} is a complete
minimal immersion of M x R into R"*2.

PROOF. For a fixed p € M, let C), be the generating curve of X' defined by C, =

{(r(t) p,t);t € R}. Let xq, ..., x,42 be the Euclidean coordinates of R"t2, For a fixed t,
r(t)M denotes X N {x,4> =t} and S"(r(¢)) = {(x1, ..., Xpt1,1); x% +-. .- —i—xﬁH =r(1)?).
Then one can easily find the principal vectors vy, ..., vg+1 of X such that vi4 is tangent

to Cp and vy, ..., v are tangent to 7(¢)M. If k1, ..., kx41 are the corresponding principal



HIGHER DIMENSIONAL MINIMAL SUBMANIFOLDS 45

curvatures, then

i
(147232
Since r(t)M is a minimal submanifold of $"(r(t)), Zle Vv,- v; is normal to 8" (r(¢)) and
parallel to {x,4> = t}. Here V denotes the connection of R"*2. Let v be the outward unit
normal to §” (r(¢)) and parallel to {x,+> = ¢}. Then

Kkl =

Vv v=—v; - Vyv=——— fori=1,... k.
’ ’ r(t)

Hence

ST =k

= r(t)
and so

— k
Therefore the required ODE gives the minimality of X o

2. Higher dimensional helicoid. The helicoid is a ruled minimal surface. It consists
of horizontal lines which are rotated as they move upward. Each horizontal line can be con-
sidered to be the cone over a minimal S° in S!. The theorem of this section will replace the
minimal S° with the Clifford torus to construct a higher dimensional helicoid.

For the theorem we define three rigid motions:

(i) the rotation p/,,m = 1,...,k + 1, of R?**3 along the X, X,-+x+1-plane by
t .
P (X1, oy X2%43) = (X1, + oo, Xim—1, X COST — Xppk1 SINE, Xpppg1, - ..,
Xtk > Xm SINE + Xyppk+1 COSE, Xipk425 -+ - » X2k43) 5

(ii) the translation 7; by

Tr(X1, - X2k 2, X2k43) = (X1, -0 X242, X243 1) 5
(iii) the multi-screw motion o; by
oy =piO-~0,0,t€+1OTz-
The rotation by 90° in R? is represented by the matrix J = (9 ). Let I be the (k +

1) x (k 4 1) identity matrix and define a (2k 4 2) x (2k + 2) matrix J = ((I) _01 ) written in

block matrices. Then the multi-screw motion can be simply represented by
01 (X, x2k43) = (e7'X, xok43 + 1), x € R*H2,

Given a skew symmetric matrix A, AT = — A, we will use the following facts in the proof.

(eAl)T — e—At — (eAt)—l , ieAt — AeAt , AeAT — eATA .
dt
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THEOREM 2. Let M be the Clifford torus S¥(1/+/2) x S¥(1/+/2) in §%k+1 ¢ R*+2,
Assuming that M lies in the hyperplane {x2x+3 = 0} of R**3, define

r= Uo,(OxM),
teR

where O is the origin of R**? and O xM is the infinite cone over M, i.e., the union of
the rays from O over the points of M. Then X is a (2k + 2)-dimensional complete minimal
hypersurface in R*13. % has a 1-dimensional singular set {(0,...,0,1);t € R}.

PROOF. O x M has a singular set {O}. Since 0,(X) = X, the singular set of X' is the

X2k3-axis.
Let ¢1, ..., @2 be local coordinates on M such that m : D C R?* — M is a local

immersion defined as

1 ...
m(<ﬂ1,...,g02k)=ﬁ< m](@], ’(Pk) > ’

mo (Qk1, - -5 P24k)

where m;, m; are immersions on S*. Define a local immersion X for X by

re]’m(wl,..-,fpzk))

X(wl,--.,wzk,t,f”)=< .

The metrics of M and X' are

2k 2k+2
dsyy = Y Gabdgadpy and dsy = Y Gijdeide;
a,b=1 ij=1

where g1 =1, Qg2 =T
Concerning (G;;) one computes

Jt dm Jt om
Gab:%.%z re 0¢a . re App =r2§ab’
dpa  Opp 0 0
90X 09X [reltimN /pyelipg
Gaok+1= — = I¢a | .
dp, Ot 0 1
9 2 9 9
=r2 mJ :r_<m1 m2_m2. ml) =7‘2§a,
aﬁaa 2 8('0“ 8(pa
X 09X P oJ'm
G = —_— = d‘pa . — O’
a2k+2 T ( 0 ) < 0 )
0X 09X r Je-]t m r Je.]t m
G2k+12k+1=¥'ﬁ=< ] : : =r?+1,
aX BX r J eJt m e.’t m
G2k+12k+2=¥'5= | 1 =0,
G _AX X _ (ef'm) (ef'm\
U222 = o = 0 0 =
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Therefore
g - 12k 21 0
Gi:) = r? B B B : ,
(@) 9Pk 1 " G2k 2k 22k 0
2oz PP+t 0
0 -- 0 0 1/r?
where
_ 1 omyp omy
= — mg - —m -
Za B 1 a(/)a 2 a(/)a
and
gi1 - - gk 0 o0
- gkl - gk O 0
b) = - -
(Gab) 0 -+ 0 Grgtk+1 -+ Grt12k
0 - 0 Gokrs1 - Gok2k

It is not difficult to verify that the inverse of (G;) is
11, leZk _Zl 0

gll . ngk 00 71z

(GY) = r_2 §2k1 . §2k2k 00 + E ZZkzl . (22/()2 _Z2k ol
0 -- 0 00 -zt =10
0 -- 0 0r2 0 0 0 0

where

1 = za -a —ab=

Z:<1+r_2_ zaz>, Z =Xb:g b -
a

Now we need to compute the second fundamental form of M. Since M = {xl2 4+
— (¥}, + -+ x3 ) =0} N S the unit normal n to M in $2**! is given by

()
n=— )
V2 \—my
Then a normal v to X in R%**3 should be of the form

edin
= (%)

2
Xi+1
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for some constant d. From v L 9X /0t we get d = m; - my. Denote by (hap) the second

fundamental form of M in §2¢+1

And let (H;;) be the second fundamental form of X in R%3 with respect to ¢1,

and v/|v|. Then

92X

with respect to ¢y, .

.., 2k and n, that is,
9%m

= -n
09490p

hab

cs 2%, L, T

Jir _3*m Jt _
ab = '1=i<re 3%3‘4’h>~<e n>=Lhabv
0.0y v |v] 0 dr [v]
X v 1 (rJeltim el'n
Haok1 = P = — 0a ) .
@0t |v| [v] 0 dr
r omy omj
=—5—|m- +my - )
2|v 9¢q 99q
92X v 1 [t im el'n
Hookyo=F—— 75 = 1 0¢a ) . =0,
A, 0r |v| [v] 0 dr
- X v 1 (rJ*T'm\ (el'n _0
AU+ 2+l = 7 T 0 ar =9
32X v 1 (Jel'm el'n 1
H = —_ = . = —m- (— n
D12kt = S o < 0 dr ] =J)
_ mp - mp
vl
X v 1 /0 el'n
H =—— . = : =0.
U242 = 7 o Tl <0) ( dr )
Therefore
hiy - hiok y! 0
YTl hokt - bk 3 0 ’
yhooo 3% 0 —lm.-m
0 0 —imm 0
where
—a 1 omyp omj
yYoi=—zm 2 .
2 3¢y 3¢y
But it should be remarked that since
P 9’m om dn 1 ( om; om; 9my 8m2)
bh = -n=— D — —_ . .
T dpa0gp d0a dgp 2\ dga dgp  dga  Ogp
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we have
-gin--—gk 0 - 0
_ — G - - —D 0o .. 0
(hap) = k1 Gk )
0 -+ 0 Gkwik+t1 - k12
0 -+ 0 Gkkt1 - k2%

Finally we can compute the mean curvature H of X in R%*+3 as follows.
p 1 b r r -
H= Z G H;; = ol ( Z gahhah> + iz Z hapz97°
a,b a,b

iJ
r _ omy omy
+ Z¢ <m1 : +m; - )
lv|Z Xa: 99q 9¢q

= Hy+ H| + H>.

Clearly Hy = 0 since M is minimal in S§Zk+1 On the other hand,

—ab 1 < omp omy ) ( omp omj )
—{m:-——mp - — mj - +m2.
p 2 IPp IPp ¢, 0¢Qa

r _ab omp omp om; om;
= > g (mi— m —my - —— my- ;
2|Z ~ dep I¢a dep I¢a

H>, =

lv|Z
a

om; omp\ _,y omy om
H = (Fgab) 5 <m1 —my- )g my - -—my-— |,
4|v|Z bzd ‘ d¢e d¢e pa d¢a

where the negative sign in Fg,p occurs if 1 < a < k and the positive signif k + 1 < a < 2k.
Hence by the block-diagonality of g,

om om om om
ZQCd< 2 m = —my 1mz-—1>.
4IVIZ doc ¢4 doc 0¢q

Therefore the theorem will follow from the following lemma.

LEMMA.

1 _ab omyp omyp cab omy omy 2

=) ¢"my- m - = . m - —— =1-—(m; -mp)~.

2 ;} 9¢a Opp Z 0¢a 9op

Proof of Lemma. k+1 vectorsmi, dm; /d¢y, ..., dm;/d¢, form a basis for Rkt 5 Sk,
Hence

1 —ab om;\ om
my = (mp -my)m; + — ga (mz- )—
2 ;; 00a ) d¢p



50 J. CHOE AND J. HOPPE

Then
1 _ omy omy
1=m>=m -m)?+ =) §°m,- m - —.
2 ;} 0¢q oy
Interchanging the roles of m; and m; yields the proof. d

d

3. Higher codimension. We have seen in Section 1 that if one expands a minimal
submanifold M of S” into r(t)M C S"(r(¢)) as time ¢ changes, with r(¢) as in Theorem 1,
then the set X' swept out by 7 () M is the higher dimensional catenoid. The minimality of X
results from the fact that the principal curvatures arising from the submanifold M of R"*! are
balanced by the principal curvature of the generating curve C, = {(r(t)p,1); p € M, t € R}.
In other words, the expansion of M gives a balancing curvature to M. We have another natural
method, the rotation, which can also create a balancing curvature through the centrifugal
force. In this section we will combine an expansion by a factor of r(¢) and a rotation by an
angle of 0(r): we will rotate r ()M from one R"*! to another independent R"*! in R>"*3 to
construct a minimal immersion of M x R into R?"*3.

THEOREM 3. Let M be a k-dimensional complete minimal submanifold of 8" locally
defined by the immersion m(¢1, .. ., ). Define X : M x R — R*"*3 by

r(t)cosO(t)m(py, ..., k)
X(@1,... 06, t) = | r(@®)sinf(@) m(ey, ..., or)
t

Then X is a complete minimal immersion, provided r(t) and 0 (t) satisfy

L2 r\ 2

) r‘2+—2—<—> =—1
r ro

and

(3) 20 =L,

where ro and the angular momentum L are constants.

PROOF. Let dslzw = Zz’bzl Jab d@a dop be the metric of M such that g,, = om/d¢, -
om/dgp and g = det(gup). If X' denotes the image of the immersion X, then the metric of X
can be written as

k

sy = Y gardpa dpy + ger1kr1dr®
a,b=1

such that

2- v12
Gab =T"Gab, Gk+1k+1 = |X]|".
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Here we used the property that X 0X/0p, = 0. If /9de1 - --dor dt denotes the volume
form of X, then g = r2k|X|2§. Now

(7 cosO — ré sinf)m
X=| (sin6+rfcosd)m | ,

1
hence by (3) and (2)
. . L2 2k
XP =P+ +1=/"+ +1= <L>
r ro
and
B pok
9= G 7
Differentiating (2) and (3) with respect to ¢ yields
12 2kl
4 gL _
4) =3 (ro)2*
and
() 270 +rf =0,

respectively. Recall that given a smooth function f on a Riemannian manifold (N, ds12V =
Z Gapdyadyrp) with G = det(G 4p), we have

1 0 0
Af=—Y — <¢GGAB—f> )
76 2 v 0Vs
To prove that X is a minimal immersion, it suffices to show Ayxx; = 0, where X (¢y, ...,

@k 1) = (x1, ..., x2043) 7. First

1 0
Apxyp3=Ayxt = \/_gg(ﬁng Kty
(ro)k \ 9 _
- <r2k0ﬁ> 5((’"0)](\/3)
=0.

Second, fori = 1,...,n + 1, assuming m? = (my,..., Mmpu+1), we have
(ro)* i o [r*VG

o)t 8 [r*VG o\ 9 _
+r2kﬁ5{ o~ ( ) E(rcos@ml)}

k
cos 6 3 —_p 0 ro 2k<a2 )
=— ) i) + ()7 (550 cos0) ) my
r\/g = a(pa (\/Eg awbml> r 8t2 (rC S ) nm;

a,b=1

0
Axxi = Ayx(rcosfm;) = (rcos@mi)}

ro)* 2 gy

r
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k cos0 ro\2k .. La e 52
=— mi—i—(—) (Fcos@ —2r@sinf —rlsinf — r6~ cos0) m;
r r
(because Aym + km = 0)
kcos 6 2k L?
—_reosY 4 (F—O) <F - —3> cos@m; (by (5) and (3))
r r r
=0. (by (4))
Similarly for xj 4,41 =rsinfm;, i =1,...,n+ 1, we have

AxXxitn+1 =0.
O

REMARK. When L = 0 in Theorem 3, M is just the higher dimensional catenoid of
Theorem 1.

4. Non-Euclidean spaces. The minimal immersion of M in §” can be extended to
the minimal immersion of M x R in H*"*3 and in $?**3 as well as in R?"*3.

THEOREM 4. Let M be a k-dimensional complete minimal submanifold of S" locally
defined by the immersionm(g1, . . ., pi). Also let H*"3 = {xl2 4+ +x§n+3 - x%n+4 =—1}
be the hyperbolic space embedded in Minkowski space L¥'** with the metric x - y = x1y] +
c A X3 Yon43 — XonsdYonid. Define X : M x R — H¥'3 ¢ L>" py

r(t)cosO(t) m(ey, ..., o)
r()sinf() m(eq, ..., k)

X(@1, ..., 0, 1) = .
(g1 ¢k 1) /1?2 4+ 1 sinhs(¢)
/7?2 4+ 1 coshs(z)
Then X is a complete minimal immersion, provided r(t) and 0 (t) satisfy
LZ
(6) l'"2+—2—r2k—r2k+2=—c,
r
(7 =1L
and
®) o Yoo L
§=—,
r24+1

where ¢ and L are constants.

PROOF. Let ds,zw, Jabs G, X, ds>2:, Jab, /g be the same as in the proof of Theorem 3.
Then
(7 cos® — ré sinf)m
% - (7sin0 + r6 cos 6)m
| ¢7#/+/r? +1)sinhs + +/r2 4+ 1§ coshs
(ri/r?2 + 1)coshs + +/r2 + 15 sinhs
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and hence by (6), (7), (8),

2:2
. . . rerv .
Girkpr =X =2+ 207 — —— + (P + DIt =
re+1

and
g= F4k

Differentiating (6) and (7) gives

LZ
©) F== 4k 4 e+ D!

r
and
(10) 2/ +rf =0.
Therefore fori = 1,...,n + 1, we have

Axxi =Ax(rcost m;)

1 0 1
2"[ |:8<p {21‘\/_ 72 9 (rcos@m,)} + 5{ 2k g —+ 3% (rcos@m)H

01 9 1 . . .
:C": T {fg“b—m,} m(i"cosé—%@sin@—r@sin@—r@ZCOSG)mi
kcos6 k
i— + {; + (k + l)r} cosfm; (by (7),(9), (10)
= (k + l)xi.

Similarly fori =n+2,...,2n + 2, we have
Axxi = Ax(rsind@m;) = (k+ Drsin@m; = (k+ 1)x; .

Now the derivative of (8) is
. 5 rr
(1D f= oo 12 ol

Hence

Asxomis=Asy/r2 + Lsinhs = (\/r2 1 sinhs)}

2%
2kf Bt{ \/_ 2% 3,
sinhs + vr2+ 1§ coshs

. 1 9 rr

R\
2 2 2 r’r?
. . D2

[{r +ri+ (rc+1)s o

1 .
G o

+ {2ri$ - 1)5} coshsi|

=(k+ 1Dvr2+1sinhs (by (9), (11))
= (k + Dxop43.
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Similarly, we have
Axxonta = (k+ 1)x2p44.
O

THEOREM 5. Let M be a k-dimensional complete minimal submanifold of S" locally
defined by the immersion m(gy, . .., pi). Define X : M x R — §?"t3 c R*"t* by

r(t)cosO(t)m(py, ..., @)
r()sinf () m(eq, ..., k)

X(@1,..., 01, 1) =
(o1 ks 1) /1 —r2 coss(t)
V1 —r2sins(t)
Then X is a complete minimal immersion, provided r(t) and 6 (t) satisfy
LZ
(12) i,2+_2_r2k+r2k+2:_c’
r
(13) 20 =1L
and
L2
(14) =X
—-r

where ¢ and L are constants for which, if nonzero, (12) has a positive periodic solution
r(t) < 1.

PROOF. The only part of the proof which is different from that of Theorem 4 is the
following:

L2
(15) F= = 4k — e+ DA
r
(16) 5= 2\/C+L2ﬁ
—r2
Therefore fori = 1,...,n + 1, we have

Azx,' = AE(}”COSQM')
1

Zkf[aw {21‘[ —(rcos@m,)}
{ Zk\/_ 3 3 (rcos@m)}i|

cosf 1 9 —_ap O }
= —= —m;
" \/E a(pa {\/Eg i

+ﬂ('r' cos® — 270sinf — rfisin® — ro> cos ) m;

kcos6 k
=— . mi—l—{;—(k—i—l)r}cos@mi (by (13), (15))
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=—(k+ Dx;.

Finally, we have

1
Asxop43=AxV1—r2coss =

2k

<z — (/12 )
= or {r \/Erzk a7 r< coss
1 0 —rr
_ - = o _ _ 2- .
=% (mcoss v1i—r ssms>
2:2

1 ) P (1 2).2 rer
—— | =i =1 =75 - cos s
r2k/1 —r2 1—r2

+{2ris — (1 = r)s5} sins:|

S

=—(k+DvV1-— r2 coss (by (15), (16))
=—(k+ Dxp43.
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