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HIGHER DIMENSIONAL MINIMAL SUBMANIFOLDS
GENERALIZING THE CATENOID AND HELICOID

JAIGYOUNG CHOE AND JENS HOPPE
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Abstract. For each k-dimensional complete minimal submanifold M of Sn we con-
struct a (k + 1)-dimensional complete minimal immersion of M × R into Rn+2 and (k + 1)-
dimensional minimal immersions of M × R into R2n+3,H2n+3 and S2n+3. Also from the
Clifford torus M = Sk(1/

√
2) × Sk(1/

√
2) we construct a (2k + 2)-dimensional complete

minimal helicoid in R2k+3.

Introduction. A submanifold of Rn whose mean curvature vector vanishes everywhere
is called minimal. The mean curvature vector of a submanifold points into the direction in
which the volume decreases most rapidly. Therefore minimal submanifolds are the submani-
folds which are stationary with respect to volume for all compactly supported variations.

A minimal hypersurface in Rn, viewed as a graph, satisfies the quasilinear elliptic partial
differential equation:

(1 + |Du|2)�u−DiuDjuDij u = 0 .

Simons [5] showed that no entire minimal graph other than hyperplanes exists in Rn for n < 9,
and Bombieri, De Giorgi and Giusti [2] proved that in Rn, n ≥ 9, there exist entire minimal
graphs which are not hyperplanes.

In R3 the catenoid and helicoid had been known to be the only two complete embedded
nonplanar minimal surfaces with finite topology for two hundred years. It was in 1982 that
Costa [4] surprisingly found a new complete embedded minimal surface in R3. From then
on, tens of new complete minimal surfaces have been found in R3 from suitable data for the
representation formula obtained by Weierstrass.

The minimal surface with the simplest Weierstrass data is the Enneper surface. It has
the same total curvature of −4π as the catenoid and has self intersection. One quarter of the
Enneper surface can be seen as a graph over a vertical half plane. By extending this property
to higher dimension, the first named author [3] constructed the higher dimensional Enneper
surface in Rn, 4 ≤ n ≤ 7.

The catenoid is a surface of revolution in R3. The higher dimensional catenoidΣ which
is SO(n − 1)-invariant minimal hypersurface in Rn was found by solving the ODE for the
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generating curve of Σ [1]. Besides the higher dimensional catenoid and the higher dimen-
sional Enneper surface, very few examples of complete minimal submanifolds are known to
exist in Rn.

In this paper we construct many new minimal hypersurfaces and submanifolds in Rn,
and in H n and Sn as well. All these minimal submanifolds originate from complete minimal
submanifolds of Sn just like the catenoid and helicoid arise from the minimal S1 in S2 and
from the minimal S0 in S1, respectively: Given a k-dimensional minimal submanifold M of
Sn, we can construct a (k+1)-dimensional complete minimal immersion ofM×R into Rn+2.
Moreover (k + 1)-dimensional minimal immersions of M × R are constructed in R2n+3 and
in H 2n+3 and S2n+3 as well. Finally, from the Clifford torus M = Sk(1/

√
2) × Sk(1/

√
2)

we construct a (2k + 2)-dimensional complete minimal helicoid in R2k+3.

1. Higher dimensional catenoid. The catenoid is a surface of revolution. The higher
dimensional catenoid Σn−1 in Rn can be obtained from a generating curve x = f (y) in R2

by applying the SO(n− 1) action. Σ has principal vectors v1, . . . , vn−1, where v1 is tangent
to the graph of x = f (y) and v2, . . . , vn−1 are tangent to the sphere of radius x. Hence the
principal curvatures κ1, . . . , κn−1 are given by

κ1 = x ′′

{1 + (x ′)2}3/2 , κ2, . . . , κn−1 = −1

x
√

1 + (x ′)2
.

Then the mean curvature of Σ becomes

(1) H = xx ′′ − (n− 2){1 + (x ′)2}
x{1 + (x ′)2}3/2 .

Unlike Σ2 in R3, the higher dimensional catenoids lie in a slab.
In this section we construct a higher dimensional minimal submanifold by interpreting

the catenoid differently: The catenoid is not only a surface of revolution but also a surface
spanned by a family of coaxial circles of varying radii in horizontal planes, and the circles are
trivially minimal submanifolds of themselves. This observation gives the following theorem,
where the coaxial circles are replaced by the minimal submanifolds r(t)M of Sn(r(t)):

THEOREM 1. LetM be a k-dimensional complete minimal submanifold of Sn ⊂ Rn+1.
Suppose r(t), t ∈ R, satisfies the second order ODE

rr̈ − k(1 + ṙ2) = 0 .

Then the submanifold Σ ⊂ Rn+2 defined by Σ = {(r(t) p, t);p ∈ M, t ∈ R} is a complete
minimal immersion of M × R into Rn+2.

PROOF. For a fixed p ∈ M , let Cp be the generating curve of Σ defined by Cp =
{(r(t) p, t); t ∈ R}. Let x1, . . . , xn+2 be the Euclidean coordinates of Rn+2. For a fixed t ,
r(t)M denotesΣ ∩ {xn+2 = t} and Sn(r(t)) = {(x1, . . . , xn+1, t); x2

1 + · · · + x2
n+1 = r(t)2}.

Then one can easily find the principal vectors v1, . . . , vk+1 of Σ such that vk+1 is tangent
to Cp and v1, . . . , vk are tangent to r(t)M . If κ1, . . . , κk+1 are the corresponding principal
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curvatures, then

κk+1 = r̈

(1 + ṙ2)3/2
.

Since r(t)M is a minimal submanifold of Sn(r(t)),
∑k
i=1 ∇vi vi is normal to Sn(r(t)) and

parallel to {xn+2 = t}. Here ∇ denotes the connection of Rn+2. Let ν be the outward unit
normal to Sn(r(t)) and parallel to {xn+2 = t}. Then

∇vi vi · ν = −vi · ∇vi ν = − 1

r(t)
for i = 1, . . . , k .

Hence
k∑
i=1

∇vi vi = − k

r(t)
ν

and so
k∑
i=1

κi = − k

r
√

1 + ṙ2
.

Therefore the required ODE gives the minimality of Σ . �

2. Higher dimensional helicoid. The helicoid is a ruled minimal surface. It consists
of horizontal lines which are rotated as they move upward. Each horizontal line can be con-
sidered to be the cone over a minimal S0 in S1. The theorem of this section will replace the
minimal S0 with the Clifford torus to construct a higher dimensional helicoid.

For the theorem we define three rigid motions:
(i) the rotation ρtm, m = 1, . . . , k + 1, of R2k+3 along the xmxm+k+1-plane by

ρtm(x1, . . . , x2k+3) = (x1, . . . , xm−1, xm cos t − xm+k+1 sin t, xm+1, . . . ,

xm+k, xm sin t + xm+k+1 cos t, xm+k+2, . . . , x2k+3) ;
(ii) the translation τt by

τt (x1, . . . , x2k+2, x2k+3) = (x1, . . . , x2k+2, x2k+3 + t) ;
(iii) the multi-screw motion σt by

σt = ρt1 ◦ · · · ◦ ρtk+1 ◦ τt .
The rotation by 90◦ in R2 is represented by the matrix J = (

0
1

−1
0

)
. Let I be the (k +

1)× (k + 1) identity matrix and define a (2k + 2)× (2k + 2) matrix J = (
0
I

−I
0

)
written in

block matrices. Then the multi-screw motion can be simply represented by

σt (x, x2k+3) = (eJ tx, x2k+3 + t), x ∈ R2k+2 .

Given a skew symmetric matrix A, AT = −A, we will use the following facts in the proof.

(eAt )T = e−At = (eAt )−1 ,
d

dt
eAt = AeAt , AeAT = eAT A .
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THEOREM 2. Let M be the Clifford torus Sk(1/
√

2)× Sk(1/
√

2) in S2k+1 ⊂ R2k+2.
Assuming that M lies in the hyperplane {x2k+3 = 0} of R2k+3, define

Σ =
⋃
t∈R

σt (O××M) ,

where O is the origin of R2k+2 and O××M is the infinite cone over M , i.e., the union of
the rays from O over the points of M . Then Σ is a (2k + 2)-dimensional complete minimal
hypersurface in R2k+3. Σ has a 1-dimensional singular set {(0, . . . , 0, t); t ∈ R}.

PROOF. O××M has a singular set {O}. Since σa(Σ) = Σ , the singular set of Σ is the
x2k+3-axis.

Let ϕ1, . . . , ϕ2k be local coordinates on M such that m : D ⊂ R2k → M is a local
immersion defined as

m(ϕ1, . . . , ϕ2k) = 1√
2

(
m1(ϕ1, . . . , ϕk)

m2(ϕk+1, . . . , ϕ2k)

)
,

where m1,m2 are immersions on Sk . Define a local immersion X for Σ by

X(ϕ1, . . . , ϕ2k, t, r) =
(
r eJ t m(ϕ1, . . . , ϕ2k)

t

)
.

The metrics of M and Σ are

ds2
M =

2k∑
a,b=1

ḡabdϕadϕb and ds2
Σ =

2k+2∑
i,j=1

Gij dϕidϕj ,

where ϕ2k+1 := t, ϕ2k+2 := r .
Concerning (Gij ) one computes

Gab = ∂X

∂ϕa
· ∂X
∂ϕb

=
(
r eJ t ∂m

∂ϕa

0

)
·
(
r eJ t ∂m

∂ϕb

0

)
= r2ḡab ,

Ga 2k+1 = ∂X

∂ϕa
· ∂X
∂t

=
(
r eJ t ∂m

∂ϕa

0

)
·
(
r J eJ t m

1

)

= r2 ∂m
∂ϕa

· J m = r2

2

(
m1 · ∂m2

∂ϕa
− m2 · ∂m1

∂ϕa

)
:= r2z̄a,

Ga 2k+2 = ∂X

∂ϕa
· ∂X
∂r

=
(
r eJ t ∂m

∂ϕa

0

)
·
(
eJ t m

0

)
= 0 ,

G2k+1 2k+1 = ∂X

∂t
· ∂X
∂t

=
(
r J eJ t m

1

)
·
(
r J eJ t m

1

)
= r2 + 1 ,

G2k+1 2k+2 = ∂X

∂t
· ∂X
∂r

=
(
r J eJ t m

1

)
·
(
eJ t m

0

)
= 0 ,

G2k+2 2k+2 = ∂X

∂r
· ∂X
∂r

=
(
eJ t m

0

)
·
(
eJ t m

0

)
= 1.
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Therefore

(Gij ) = r2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ḡ11

·
·

ḡ2k 1

z̄1

0

·
·
·
·
·
·

·
·
·
·
·
·

ḡ1 2k

·
·

ḡ2k 2k

z̄2k

0

z̄1

·
·
z̄2k

(r2 + 1)/r2

0

0
·
·
0
0

1/r2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where

z̄a = 1

2

(
m1 · ∂m2

∂ϕa
− m2 · ∂m1

∂ϕa

)

and

(ḡab) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ḡ11

·
·

ḡk1

0
·
·
0

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

ḡ1k

·
·

ḡkk
0
·
·
0

0
·
·
0

ḡk+1 k+1

·
·

ḡ2k k+1

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

0
·
·
0

ḡk+1 2k

·
·

ḡ2k 2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is not difficult to verify that the inverse of (Gij ) is

(Gij ) = 1

r2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ḡ11

·
·

ḡ2k 1

0
0

·
·
·
·
·
·

·
·
·
·
·
·

ḡ1 2k

·
·

ḡ2k 2k

0
0

0
·
·
0
0
0

0
·
·
0
0
r2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

r2Z

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z̄1z̄1

·
·

z̄2kz̄1

−z̄1

0

·
·
·
·
·
·

·
·
·
·
·
·

z̄1z̄2k

·
·

(z̄2k)2

−z̄2k

0

−z̄1

·
·

−z̄2k

1
0

0
·
·
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where

Z =
(

1 + 1

r2
−

∑
a

z̄az̄
a

)
, z̄a =

∑
b

ḡabz̄b .

Now we need to compute the second fundamental form of M . Since M = {x2
1 + · · · +

x2
k+1 − (x2

k+2 + · · · + x2
2k+2) = 0} ∩ S2k+1, the unit normal n to M in S2k+1 is given by

n = 1√
2

(
m1

−m2

)
.

Then a normal ν to Σ in R2k+3 should be of the form

ν =
(
eJ t n
dr

)
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for some constant d . From ν ⊥ ∂X/∂t we get d = m1 · m2. Denote by (h̄ab) the second
fundamental form of M in S2k+1 with respect to ϕ1, . . . , ϕ2k and n, that is,

h̄ab = ∂2m
∂ϕa∂ϕb

· n .

And let (Hij ) be the second fundamental form ofΣ in R2k+3 with respect to ϕ1, . . . , ϕ2k, t, r

and ν/|ν|. Then

Hab = ∂2X

∂ϕa∂ϕb
· ν|ν| = 1

|ν|
(
r eJ t ∂2m

∂ϕa∂ϕb

0

)
·
(
eJ t n
dr

)
= r

|ν| h̄ab ,

Ha 2k+1 = ∂2X

∂ϕa∂t
· ν|ν| = 1

|ν|
(
r J eJ t ∂m

∂ϕa

0

)
·
(
eJ t n
dr

)

= − r

2|ν|
(

m1 · ∂m2

∂ϕa
+ m2 · ∂m1

∂ϕa

)
,

Ha 2k+2 = ∂2X

∂ϕa∂r
· ν|ν| = 1

|ν|
(
eJ t ∂m

∂ϕa

0

)
·
(
eJ t n
dr

)
= 0 ,

H2k+1 2k+1 = ∂2X

∂2t
· ν|ν| = 1

|ν|
(
r J 2 eJ t m

0

)
·
(
eJ t n
dr

)
= 0 ,

H2k+1 2k+2 = ∂2X

∂t∂r
· ν|ν| = 1

|ν|
(

J eJ t m
0

)
·
(
eJ t n
dr

)
= 1

|ν|m · (−J )n

= − m1 · m2

|ν| ,

H2k+2 2k+2 = ∂2X

∂2r
· ν|ν| = 1

|ν|
(

0
0

)
·
(
eJ t n
dr

)
= 0 .

Therefore

(Hij ) = r

|ν|

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h̄11

·
·

h̄2k 1

ȳ1

0

·
·
·
·
·
·

·
·
·
·
·
·

h̄1 2k

·
·

h̄2k 2k

ȳ2k

0

ȳ1

·
·
ȳ2k

0
− 1
r
m1 · m2

0
·
·
0

− 1
r
m1 · m2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where

ȳa := −1

2

(
m1 · ∂m2

∂ϕa
+ m2 · ∂m1

∂ϕa

)
.

But it should be remarked that since

h̄ab = ∂2m
∂ϕa∂ϕb

· n = − ∂m
∂ϕa

· ∂n
∂ϕb

= 1

2

(
−∂m1

∂ϕa
· ∂m1

∂ϕb
+ ∂m2

∂ϕa
· ∂m2

∂ϕb

)



HIGHER DIMENSIONAL MINIMAL SUBMANIFOLDS 49

we have

(h̄ab) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ḡ11

·
·

−ḡk1

0
·
·
0

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

−ḡ1k

·
·

−ḡkk
0
·
·
0

0
·
·
0

ḡk+1 k+1

·
·

ḡ2k k+1

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

0
·
·
0

ḡk+1 2k

·
·

ḡ2k 2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally we can compute the mean curvatureH of Σ in R2k+3 as follows.

H =
∑
i,j

GijHij = 1

r|ν|
( ∑
a,b

ḡabh̄ab

)
+ r

|ν|Z
∑
a,b

h̄abz̄
a z̄b

+ r

|ν|Z
∑
a

z̄a
(

m1 · ∂m2

∂ϕa
+ m2 · ∂m1

∂ϕa

)

:=H0 +H1 +H2.

Clearly H0 = 0 since M is minimal in S2k+1. On the other hand,

H2 = r

|ν|Z
∑
a,b

ḡab
1

2

(
m1 · ∂m2

∂ϕb
− m2 · ∂m1

∂ϕb

) (
m1 · ∂m2

∂ϕa
+ m2 · ∂m1

∂ϕa

)

= r

2|ν|Z
∑
a,b

ḡab
(

m1 · ∂m2

∂ϕb
m1 · ∂m2

∂ϕa
− m2 · ∂m1

∂ϕb
m2 · ∂m1

∂ϕa

)
,

H1 = r

4|ν|Z
∑
a,b,c,d

(∓ḡab) ḡac
(

m1 · ∂m2

∂ϕc
− m2 · ∂m1

∂ϕc

)
ḡbd

(
m1 · ∂m2

∂ϕd
− m2 · ∂m1

∂ϕd

)
,

where the negative sign in ∓ḡab occurs if 1 ≤ a ≤ k and the positive sign if k + 1 ≤ a ≤ 2k.
Hence by the block-diagonality of ḡab

H1 = r

4|ν|Z
∑
c,d

ḡcd
(

m1 · ∂m2

∂ϕc
m1 · ∂m2

∂ϕd
− m2 · ∂m1

∂ϕc
m2 · ∂m1

∂ϕd

)
.

Therefore the theorem will follow from the following lemma.

LEMMA.
1

2

∑
a,b

ḡabm1 · ∂m2

∂ϕa
m1 · ∂m2

∂ϕb
= 1

2

∑
a,b

ḡabm2 · ∂m1

∂ϕa
m2 · ∂m1

∂ϕb
= 1 − (m1 · m2)

2 .

Proof of Lemma. k+1 vectors m1, ∂m1/∂ϕ1, . . . , ∂m1/∂ϕk form a basis for Rk+1 ⊃ Sk .
Hence

m2 = (m2 · m1)m1 + 1

2

∑
a,b

ḡab
(

m2 · ∂m1

∂ϕa

)
∂m1

∂ϕb
.
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Then

1 = |m2|2 = (m1 · m2)
2 + 1

2

∑
a,b

ḡab m2 · ∂m1

∂ϕa
m2 · ∂m1

∂ϕb
.

Interchanging the roles of m1 and m2 yields the proof. �

�

3. Higher codimension. We have seen in Section 1 that if one expands a minimal
submanifold M of Sn into r(t)M ⊂ Sn(r(t)) as time t changes, with r(t) as in Theorem 1,
then the set Σ swept out by r(t)M is the higher dimensional catenoid. The minimality of Σ
results from the fact that the principal curvatures arising from the submanifoldM of Rn+1 are
balanced by the principal curvature of the generating curve Cp = {(r(t)p, t);p ∈ M, t ∈ R}.
In other words, the expansion ofM gives a balancing curvature toM . We have another natural
method, the rotation, which can also create a balancing curvature through the centrifugal
force. In this section we will combine an expansion by a factor of r(t) and a rotation by an
angle of θ(t): we will rotate r(t)M from one Rn+1 to another independent Rn+1 in R2n+3 to
construct a minimal immersion of M × R into R2n+3.

THEOREM 3. Let M be a k-dimensional complete minimal submanifold of Sn locally
defined by the immersion m(ϕ1, . . . , ϕk). Define X : M × R → R2n+3 by

X(ϕ1, . . . , ϕk, t) =
⎛
⎝ r(t) cos θ(t)m(ϕ1, . . . , ϕk)

r(t) sin θ(t)m(ϕ1, . . . , ϕk)

t

⎞
⎠ .

Then X is a complete minimal immersion, provided r(t) and θ(t) satisfy

(2) ṙ2 + L2

r2 −
(
r

r0

)2k

= −1

and

(3) r2θ̇ = L,

where r0 and the angular momentum L are constants.

PROOF. Let ds2
M = ∑k

a,b=1 ḡab dϕa dϕb be the metric of M such that ḡab = ∂m/∂ϕa ·
∂m/∂ϕb and ḡ = det(ḡab). If Σ denotes the image of the immersion X, then the metric of Σ
can be written as

ds2
Σ =

k∑
a,b=1

gab dϕa dϕb + gk+1 k+1dt
2

such that

gab = r2ḡab, gk+1 k+1 = |Ẋ|2 .
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Here we used the property that Ẋ · ∂X/∂ϕa = 0. If
√

g dϕ1 · · · dϕk dt denotes the volume
form ofΣ , then g = r2k|Ẋ|2ḡ . Now

Ẋ =
⎛
⎝ (ṙ cos θ − rθ̇ sin θ)m
(ṙ sin θ + rθ̇ cos θ)m

1

⎞
⎠ ,

hence by (3) and (2)

|Ẋ|2 = ṙ2 + r2θ̇2 + 1 = ṙ2 + L2

r2
+ 1 =

(
r

r0

)2k

and

g = r4k

(r0)2k
ḡ .

Differentiating (2) and (3) with respect to t yields

(4) r̈ − L2

r3 = kr2k−1

(r0)2k
,

and

(5) 2ṙ θ̇ + rθ̈ = 0,

respectively. Recall that given a smooth function f on a Riemannian manifold (N, ds2
N =∑

GABdψAdψB) with G = det(GAB), we have

�Nf = 1√
G

∑ ∂

∂ψA

(√
GGAB

∂

∂ψB
f

)
.

To prove that X is a minimal immersion, it suffices to show �Σxi = 0, where X(ϕ1, . . . ,

ϕk, t) = (x1, . . . , x2n+3)
T . First

�Σx2n+3 =�Σt = 1√
g
∂

∂t
(
√

ggk+1 k+1)

=
(
(r0)

k

r2k
√

ḡ

)
∂

∂t

(
(r0)

k
√

ḡ
)

= 0 .

Second, for i = 1, . . . , n+ 1, assuming mT = (m1, . . . ,mn+1), we have

�Σxi = �Σ(r cos θ mi)= (r0)
k

r2k
√

ḡ

k∑
a,b=1

∂

∂ϕa

{
r2k√ḡ
(r0)k

ḡab

r2

∂

∂ϕb
(r cos θ mi)

}

+ (r0)
k

r2k
√

ḡ
∂

∂t

{
r2k√ḡ
(r0)k

( r0
r

)2k ∂

∂t
(r cos θ mi)

}

= cos θ

r
√

ḡ

k∑
a,b=1

∂

∂ϕa

(√
ḡ ḡab

∂

∂ϕb
mi

)
+

( r0
r

)2k
(
∂2

∂t2
(r cos θ)

)
mi
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= − k cos θ

r
mi +

( r0
r

)2k
(r̈ cos θ − 2ṙ θ̇ sin θ − rθ̈ sin θ − rθ̇2 cos θ)mi

(because �Mm + km = 0)

= − k cos θ

r
mi +

( r0
r

)2k
(
r̈ − L2

r3

)
cos θ mi (by (5) and (3))

= 0. (by (4))

Similarly for xi+n+1 = r sin θ mi, i = 1, . . . , n+ 1, we have

�Σxi+n+1 = 0 .

�

REMARK. When L = 0 in Theorem 3, M is just the higher dimensional catenoid of
Theorem 1.

4. Non-Euclidean spaces. The minimal immersion of M in Sn can be extended to
the minimal immersion of M × R in H 2n+3 and in S2k+3 as well as in R2n+3.

THEOREM 4. Let M be a k-dimensional complete minimal submanifold of Sn locally
defined by the immersion m(ϕ1, . . . , ϕk). Also let H 2n+3 = {x2

1 +· · ·+x2
2n+3 −x2

2n+4 = −1}
be the hyperbolic space embedded in Minkowski space L2n+4 with the metric x · y = x1y1 +
· · · + x2n+3y2n+3 − x2n+4y2n+4. Define X : M × R → H 2n+3 ⊂ L2n+4 by

X(ϕ1, . . . , ϕk, t) =

⎛
⎜⎜⎝
r(t) cos θ(t)m(ϕ1, . . . , ϕk)

r(t) sin θ(t)m(ϕ1, . . . , ϕk)√
r2 + 1 sinh s(t)√
r2 + 1 cosh s(t)

⎞
⎟⎟⎠ .

Then X is a complete minimal immersion, provided r(t) and θ(t) satisfy

(6) ṙ2 + L2

r2 − r2k − r2k+2 = −c ,

(7) r2θ̇ = L

and

(8) ṡ =
√
c − L2

r2 + 1
,

where c and L are constants.

PROOF. Let ds2
M, ḡab, ḡ, Σ, ds2

Σ, gab,
√

g be the same as in the proof of Theorem 3.
Then

Ẋ =

⎛
⎜⎜⎝

(ṙ cos θ − rθ̇ sin θ)m
(ṙ sin θ + rθ̇ cos θ)m

(rṙ/
√
r2 + 1) sinh s + √

r2 + 1 ṡ cosh s
(rṙ/

√
r2 + 1) cosh s + √

r2 + 1 ṡ sinh s

⎞
⎟⎟⎠ ,
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and hence by (6), (7), (8),

gk+1 k+1 = |Ẋ|2 = ṙ2 + r2θ̇2 − r2ṙ2

r2 + 1
+ (r2 + 1)ṡ2 = r2k

and

g = r4k ḡ .

Differentiating (6) and (7) gives

(9) r̈ = L2

r3
+ kr2k−1 + (k + 1)r2k+1

and

(10) 2ṙ θ̇ + rθ̈ = 0 .

Therefore for i = 1, . . . , n+ 1, we have

�Σxi =�Σ(r cos θ mi)

= 1

r2k
√

ḡ

[
∂

∂ϕa

{
r2k

√
ḡ

ḡab

r2

∂

∂ϕb
(r cos θ mi)

}
+ ∂

∂t

{
r2k

√
ḡ

1

r2k

∂

∂t
(r cos θ mi)

}]

= cos θ

r

1√
ḡ
∂

∂ϕa

{√
ḡ ḡab

∂

∂ϕb
mi

}
+ 1

r2k (r̈ cos θ−2ṙ θ̇ sin θ−rθ̈ sin θ−rθ̇2 cos θ)mi

= −k cos θ

r
mi +

{
k

r
+ (k + 1)r

}
cos θ mi (by (7), (9), (10))

= (k + 1)xi.

Similarly for i = n+ 2, . . . , 2n+ 2, we have

�Σxi = �Σ(r sin θ mi) = (k + 1)r sin θ mi = (k + 1)xi .

Now the derivative of (8) is

(11) s̈ = −2
√
c − L2 rṙ

(r2 + 1)2
.

Hence

�Σx2n+3 =�Σ

√
r2 + 1 sinh s = 1

r2k
√

ḡ
∂

∂t

{
r2k

√
ḡ

1

r2k

∂

∂t

(√
r2 + 1 sinh s

)}

= 1

r2k

∂

∂t

(
rṙ√
r2 + 1

sinh s +
√
r2 + 1 ṡ cosh s

)

= 1

r2k
√
r2 + 1

[{
ṙ2 + rr̈ + (r2 + 1)ṡ2 − r2ṙ2

r2 + 1

}
sinh s

+
{

2rṙ ṡ + (r2 + 1)s̈
}

cosh s

]

= (k + 1)
√
r2 + 1 sinh s (by (9), (11))

= (k + 1)x2n+3.
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Similarly, we have
�Σx2n+4 = (k + 1)x2n+4 .

�

THEOREM 5. Let M be a k-dimensional complete minimal submanifold of Sn locally
defined by the immersion m(ϕ1, . . . , ϕk). Define X : M × R → S2n+3 ⊂ R2n+4 by

X(ϕ1, . . . , ϕk, t) =

⎛
⎜⎜⎝
r(t) cos θ(t)m(ϕ1, . . . , ϕk)

r(t) sin θ(t)m(ϕ1, . . . , ϕk)√
1 − r2 cos s(t)√
1 − r2 sin s(t)

⎞
⎟⎟⎠ .

Then X is a complete minimal immersion, provided r(t) and θ(t) satisfy

(12) ṙ2 + L2

r2 − r2k + r2k+2 = −c ,

(13) r2θ̇ = L

and

(14) ṡ =
√
c + L2

1 − r2 ,

where c and L are constants for which, if nonzero, (12) has a positive periodic solution
r(t) < 1.

PROOF. The only part of the proof which is different from that of Theorem 4 is the
following:

(15) r̈ = L2

r3 + kr2k−1 − (k + 1)r2k+1 ,

(16) s̈ = 2
√
c + L2 rṙ

(1 − r2)2
.

Therefore for i = 1, . . . , n+ 1, we have

�Σxi =�Σ(r cos θ mi)

= 1

r2k
√

ḡ

[
∂

∂ϕa

{
r2k

√
ḡ

ḡab

r2

∂

∂ϕb
(r cos θ mi)

}

+ ∂

∂t

{
r2k

√
ḡ

1

r2k

∂

∂t
(r cos θ mi)

}]

= cos θ

r

1√
ḡ

∂

∂ϕa

{√
ḡ ḡab

∂

∂ϕb
mi

}

+ 1

r2k (r̈ cos θ − 2ṙ θ̇ sin θ − rθ̈ sin θ − rθ̇2 cos θ)mi

= −k cos θ

r
mi +

{
k

r
− (k + 1)r

}
cos θ mi (by (13), (15))
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= −(k + 1)xi.

Finally, we have

�Σx2n+3 =�Σ

√
1 − r2 cos s = 1

r2k
√

ḡ
∂

∂t

{
r2k

√
ḡ

1

r2k

∂

∂t

(√
1 − r2 cos s

)}

= 1

r2k

∂

∂t

( −rṙ√
1 − r2

cos s −
√

1 − r2 ṡ sin s

)

= 1

r2k
√

1 − r2

[{
−ṙ2 − rr̈ − (1 − r2)ṡ2 − r2ṙ2

1 − r2

}
cos s

+{
2rṙ ṡ − (1 − r2)s̈

}
sin s

]

= −(k + 1)
√

1 − r2 cos s (by (15), (16))

= −(k + 1)x2n+3 .

�
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