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1. The purpose of this paper is to state the general ergodic theorems

which are the extensions of those of J. L. Doob [ ip, E. Hopf [3] and A.

Khintchine [4]. The idea of the proofs, which appeal to the representation

into an infinite product space, is due to Doob [1J.

2. Let (XjϊB,μ) be the measure space such that X is an abstract set,

S3 is a Borel field of subsets of X, and μ is a σ-finite measure on 23.

Throughout this paper, unless otherwise stated, m, n will be any positive

integers, h any non-negative integer, (nh n2, , nm) any finite sequence of

positive integers with nτ < nΛ< < nm, and (nh n2, ) any infinite

sequence of positive integers with nx<nλ<

DEFINITION 1. A sequence of measurable functions {//#)};•=1,2,... is said to

have the homogeneity property (which we denote by h. p.) provided that, for

any Borel set A in w-dimensional space, μ({x; (fnι+h(x),fnZ+h(x), , fnm+h(x)>

€ A}) is independent of h.
DEFINITION 2. Two sequences of measurable functions {/*;(#)}.,•=1)2,... and

{gj{x)}j=ιy2,... are said to have the combined homogeneity property (which we

denote by c. h. p.) provided that, for any Borel set A in 2/w-dimensional space,

μ{{%'> (fni+h(x), Qm+jlx), . . . . ,fnm+h(x), 9nm+h{x)) <Ξ A}) is independent of h.

DEFINITION 3. Two sequences of measurable functions {/j(̂ )}/=i,2,... and

i&j(x)}j=i,*,•-• are said to have the weak combined homogeneity property (which

we denote by w. c. h. p.) provided that there exists a constant K such that,

for any Borel set A in 2w-dimensional space and for any positive integer k7

1 n-l

lim SUP — 2 μ(ίX ί (fni+hJcM, gm+hk(x), , fnm+?nl%), 9nm+hΊc(x)) € A})
71 7i ϋ

x; (fnι(χ), gnι(χ), . . . ., fnm(x\ gnjx)) € A}).

The following fundamental properties are easily seen.

1°. If the sequences {/*/#)} and {gj(x)} have c.h. p., they have w. c. h.p.
and each of them has h. p.

2°. If the sequence {f/x)} has h. p., then two sequences {/)(#)} and {1}
have c. h. p.

3°. If the sequences {/}(#)} and {gj(x)} have c. h. p., then the measure
theoretic property of fι(x)[gι(x)] implies the same property of every f/x)

[every gj(x)}: for example, when fx{x) is μ-integrable, so does every fj{x), and

when gx(x) > 0 for μ-almost every x € X, so does every gό(x)

4°. For a single valued, measurable, μ-measure preserving2) transfor-

1) Numbers in square brackets refer to the references at the end of this paper.
2) A single valued transformation T oί X into itself is called measurable if the

inverse transformation T~ι transforms every set of S3 to a set of 93, and a measurable
transformation T is called μ-vneasure preserving if μ{T-W) = μ(Y) for every Y € 33.
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mation T of X into itself and for any measurable functions f(x) and g(x)
we put

fj{x) =fXV-lx), gj(x) = g(V~H) (x € X; / = 1,2, . . . . ) ,

then the sequences {fj(x)} and {#/#)} have c. h'p.
Our main theorem reads as follows:
THEOREM 1. Let {fj(x)} and {#/#)} be two sequences of measurable functions

CO

with c. h.p. such thatfι(x) is μ-integrable and gλ(x) > 0, 2 m i n

μ-almost every x € X w#& respect to some positive k. Let p{j) and q(j)
be two periodic functions defined on the positive integers such that q(j) > 0 for
all j . Then the limit

exists and is finite for μ-almost every x £Ξ X.
•

In particular, if p(j) = q(j) = 1 /or α//y, the assumption that^min

^} = -f- oo z*5 replaced by the assumption that 2 #/#) = + °°.

The proof of Theorem 1 appears in section 3.
By 2° and Theorem 1 we get
COROLLARY 1.1. (Doob's ergodic theorem). Let {/}(#)} be a sequence of

measurable functions with h. p. such that f\(x) is μ-integrable. Then the limit

3=1

exists and is finite for μ-almost every x €Ξ X.
By 4° and Theorem 1 we get
COROLLARY 1.2. {Hopfs ergodic theorem). Let T be a single valued, μ-measure

preserving transformation of X into itself. Let fix) be any μ-integrable function,
CO

and let g(x) be any measurable function such that g(x) > 0, 2 g(Tjx) = 4-00

for μ-almost every x ^ X3). Then the limit

3) If T is single valued, measurable, ^-measure preserving and μ-incompressible
(that is, Γ <Ξ 53 and T~ιY ZDY imply μiT-Ύ-Y) = 0) and if g(x) is any measurable

function such that g(x) > 0 for μ-aJmost every x €Ξ X, then ^P g(TJχ) = + 00 for μ-

almost every x £ X (See [3,2].)
We note here that if μ is finite and if T is single valued, measurable and μ-

measure preserving, then T is ^-incompressible.
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lim -i=g-

exists and is finite for μ-almost every x € X
By 4° and Theorem 1 we get
COROLLARY 1.3. (Khintchine's ergodic theorem). Let T be a single valued,

measurable, μ-measure preserving transformation of X into itself. Let f(x) be
any μ-integrable function, and let p(j) be any periodic function defined on the
positive integers. Then the limit

exists and is finite for μ-almost every x € X
In case the measure μ is finite, Theorem 1 may be moreover generalized

as follows:
THEOREM 2. Let μ be finite. Let {/)(#)} and {#/#)} be two sequences of

measurable functions with w.c.h.p. such that every f>(x) is μ-integrable and
every gj(x) is positive for μ-almost every x £ί X. Let p(j) and q(j) be two
periodic functions defined on the positive integers such that q(J) > 0 for all j .
Then the limit

exists and is finite for μ-almost every x € X
The proof of Theorem 2 appears in section 4.
It is easy to see that Theorem 2 contains the following result which is

a part of the theorem of Ryll-Nardzewski [5,6],
COROLLARY 2.1. Let μ be finite. Let T be a single valued, measurable

transformation of X into itself with respect to which there exists a constant
K such that for any Y € 23

1 t l
lim sup — 2 KT'hY) ^ K μiX).

n i —n

Let fix) be any μ-integrable function. Then the limit
»-l

lim —Σ/<T ; *)
n n j=o

exists and is finite for μ-almost every x € X.
3. In this section we shall prove Theorem 1.
If we put

fi*(x) = max ifj(x), 0}, fjix) = max { - / /* ) , 0},
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P+(j) = max {£(/), 0}, p-(j) = max{ - p(j), 0},

then {//(#)} and {#;(#)} Wjix)} and {#/#)}] has c. h. p. and

lim -i=i! - lim - ^ + lim . 3=ι

n n n

- lim ^ 1 - lim 2|?

whenever four limits in the right hand side exist, so that in the sequel we
may assume that fj(x) ^ 0 for /^-almost every x € X and for all / and that
p(j) ^ 0 for all /.

Let ί2 be the space of all one-sided infinite sequences of real numbers,
where we denote a point of ί l by ω = (ξl: ξ3 ). Let A be any Borel set in
w-dimensional space. If we put for given nv, n2, ,nm

A = {(?i, f2, .. .) (?»!, fn,, .. -., f»J € A},
then Λ is an ω-set. Let 39Ω(wi,w2, ,wm) be the Borel field determined by

such ω-sets for given nτ, n2, ,nm, let 33'̂  denote the field \^J %5a(nι,
(wi1W2 )...,nW4)

n2, , nm), and let SΩ be the Borel field generated by the sets of 33̂ . Further,
let Fj(x)'s be the functions defined by

F,j.τ(x) ^fj(x)pU), F3J(ΛΓ) = gj(x)Q(j) (x € X; j = 1, 2, . . . . ) ,
and let <£> be the transformation of X into O defined by

£># - (Ft(#), F2(Λ;), . . . . ) (Λ: € .X).
We now define α: by

α(Λ) = M^-'A) (Λ € S°Ω).

Then α is a non-negative, finitely additive set function on 33Q such that <x
is a measure on each S5Ω(^I, w2, ..:, nm). Further, if

oo

Λ € 23°Ω, Λ» € 33°o, Λ » f l Λ β = 0 (» * i » ) , Λ = \J An,
n=i

then

Hence, by well known extension theorem4>, the definition of a can be extended

on all sets of 23Ω: precisely speaking, if we define a by

4) It is usually proved under the assumption that αr(n) = 1, but it remains true
in case a(a) = + 00.
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(1) α(Λ) = inf f 2«(A.) A« € S9&, Λ c Q A.

then a is a measure on 33Ω such that

(2) 5(A) = Λ(A) (Λ € 33Ω).
Let ί be the least common multiple of both periods of the periodic

functions p'j) a i i q'j), and let S ba the transformation of ί l onto itself defined
by

Sω = ωr,

where

ω = (f,,&,....), */ = (&,&....), f; = fi«(y = i,2,....).

Then S is single valued (but not one to one), measurable and satisfies

(3) a(S-ιA) = a(A) (Λ € 39°Ω).
In fact, if we put for every Λ ^ 33Ω(WI, W2, , ^.0

-4 = {(fwi, f/i2> . , |?nrΛ) ,* (?ι, fa, , f/»i, . . ., ̂ 2) > ζnm, . . . .) ^ A}),
then A is a Borel set in ̂ -dimensional space, and

α(A) = μ[φ~iA) = ̂ ({* ; (FΛl(x), Fm{x\ . . . . , F

on account of c. h. p. of {//*)} and {gj(x)}.
Next, note that to every covering of Λ with the sets An 's there cor-

responds a covering of S-1Λ with the sets S~λAn 's, but the converse is not
necessarily valid, since S is not one to one. Thus, by (3), we have

(4) a(A) = inf \^a(An); An € S°Ω, Λ

- inf f 2«(S-'Λ») A, € S&, Λ c

> inf ί 2«(AD A; € 33?,, S"JΛ C

Let us now put
β(A) = lim 5(S-WΛ)

Then /? has the following properties:

(5) β(A)^a(A)

(6) βiS-^A) - β(A)

(7) /5(Λ) = 5(A) = a(A)

(8) If A* is of finite c^measure, then β(A f] A*) is a measure on S3Ω as the
set function of A.

The properties (5) and (6) are evident, and (7) is an immediate con-
sequence of (2) and (3). By use of (5), the property (8) follows from the
facts that β is a non-negative, finitely additive set function on SΩ and that

(Λ

( A €

( Λ €

( Λ €

€S3a).

««).

33 Ω ) ;

SB");
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cc(A Π A*) is a finite measure on 33Ω as the set function of A.
Let Λ^ 's be the ω-sets defined by

K = {(ft, ft, . . . . , ξzm-i,....); lft»-iI 2: 1/Λ},
then

A^ € 33Ω, Λ(A») = α(Ai) < oo,
since every F2m-i(x) is μ,-integrable. Let us put

oo oo

Ωo = Ω - \J AS, Ωo = \Js-hίl0, Ω = Ω - Ωg.
n,m-l h=0

Then Ωo is an invariant set: that is, S ' Ώ Q = Ωo,
 a n d further Ω is an in-

variant set which is the sum of cDuntably many sets, of 33α, of finite a-
measure. Suppose that

< oo, nn n a» = o

We define 7 by

7(A) = 2 yβ(Λ Π Ω.) + α(Λ Π So) (A € So).

Then 7 has the following properties:

(9) 7(Λ)^

(10) 7 is a measure on 35Ω such that Ω is the sum of countably many sets,
of SΩ, of finite 7-measure :

(11) y(S-iA) = 7(Λ) (Λ€SΩ, A cr Ω) ;

(12) If A € 39Ω, 7(A) - 0, then a(A) = 0.

The property (9) is evident, and (10) follows immediately from (8) and
(9). We shall now prove (11). NDte that every S^Ω*, with ΩΛ, is of finite
^-measure, then by use of (6) and (8) we have

7(Λ) = 2 (
00 00

Σ Σ Λ n s-'Ω n ΩJ = 2 Σ ^ 1 A n s-̂ « n Ω J

= 2 β(s~iA n Ώ-) = TίS-'Λ) (Λ € S9n, Λ c Ω).
m = l

For the proof of (12) it is sufficient to show that if A 6 33Ω, A cr Ω and a

(A) > 0, then 7(A) > 0. It is no toss of generality to assume that a(A) < 00

and that, in the right hand side of (1), An f] Am = 0 (n Φ m). Hence, by the

definition of α, there exist the sets Λ '̂s such that

A, € So, A. n Λ™ = 0 (n Φ m), Λ c \ j A n , ~ά(\JΛn) = ^a(An) < <χ>.

By (5), (8) and (7)
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7(Λ) = Σ/3(Λ fl β.) = β(A) = / Ϊ ( Ό Λ , ) - /?(0 Λ " - Λ )
w=i N. n=i ' ^ w«i '

£ £ (OΛ») - «(OΛ» - Λ) = Σ/»(ΛJ - feαίA.) -

= α(A) > 0,
as was to be proved.

Let ^j(ω)?s be the functions defined by

fi(ω) = f j ,

where f; is the j-th coordinate of ω. Then it is easy to see that if ψ is any
Borel function defined in ^-dimensional space, then

( 1 3 ) a({ω Ψ(ξni(ω), ξni(ω), . . .., ξnjω)) < A})

= μ({x Ψ(Fni(x), Fn%(x), . . . . , FWmW) < A»
for any real k.

By the assumption of the theorem, F^_τ (x) is /^-integrable and F2j(x) > 0,

^F%j(x) > minqίjϊ 'Σgj(x) = +°Q for μ,-almost every ΛΓ € X, so that by

(13) and (9) we have that (ξι(ω) + ξ,(ω) + . . . . + ?2f-i(ω)) is γ-integrable and
oo

(fa(ω) + ?4(ω) + + ?2ϊ(ω)) > 0, ^ ^ ( ω ) = +co for 7-almost every ω € O.

Here we note that ξj(Shώ) = ĵ+a/iίCω) for all ω € ί l and for all / ^ and that

S is 7-measure preserving as the transformation of Ώ onto itself on account

of (11). Hence we have, by Hopf Js ergodic theorem,5) that the limit

(14)

exists and is finite for 7-almost every ω C ίl. On the other hand, it is easy
to see that the limit (14) exists and vanishes for all ω €Ξ ίϊ0, so that the limit
(14) exists and is finite for γ-almost every ω ^ ί2. By use of (12) and (13)
we get that the limit

(15)

exists and is finite for μ-almost every x € X.
Let g)(x) denote the min{#/Λ;), k}. Then, by virtue of c. h. p. of {fj(x)y

5) It is originally proved for the one to one transformation (see [3]), but it holds
generally even for the single valued transformation. (See [2: Theorem 2].) We use
here the general case.
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and {#/#)}, two sequences {/}(#)} and {jg){x)y have c. h. p.. Further, by the
oo

assumption^ the theorem, fx{x) is μ,-integrable and g\(x) > 0, 2 ΰ%x) = +°°

for μ-almost every x € X. Particularly, let p(j) = $(/) = 1 for all /, then
t = 1. Thus, by (15), we get that the limit

(16) lim^y

J = l

exists and is finite for μ-almost every x ^ X. Let C denote the max^(y)/min
j J

with respect to p(j) and q(j) given in the theorem, then by (15) and (16)
we have that for any integer I with l £ / < ί

nt+l (n+l)t

'Σfi(χ)Pϋ) Σ fKχ)
(17) limsup -^ <; C lim

limsup^i^ - ^ lim

2 '̂̂ ) Σ^) " Σ
J.I J-l J-l

i)t nt

= 0
L " Σ Φ) How J

J-i J-i

for μ-almost every x € X.
Thus, by (15) and (17), we get that the limit

exists and is finite for μ-almost every
Finally it is to be noted that if p(j) = q(j) = 1 for all j , (15) is the re-

quired one, and that in the course of the proof of (15) it was superfluous

to assume that Σ m m iβj(χ)> k} = +°° ' since, in fact, we used only that
.7 = 1

oo

= + °° Hence we complete the proof.

4. In this section we shall sketch the proof of Theorem 2.

We define ίl, So(wi,w2, ....w»), 93Q, ^Ω,FJ(X), φ, a,a,t and S as in the
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proof of Theorem 1. Then a is a finite measure of 33Ω, since

ά(ίl) = a(Ω) = μίφ~ιΩ) = /*(;£) < oo.
By w. c. h. p. of {/}(#)} and {#/#)} there exists a constant if such that

(1) l i n \ s u P - ^ Σ ^ ( S " Λ Λ ) S /&tf(Λ) (Λ € S3
h-ΰ

In fact, if we define a Borel set A for every Λ € 33Ω(^I, W2, , nm) as
in the proof of Theorem 1, then

lim sup — 2 a(S'hA) = lim
Λ-0
n-l

= lim sup —

Next, let pm be the transformation of Ω, onto m-dimensional space defined
by

PmO = (f 1, ?2, , f»),
where ω = ίfi,fa, •••.)• Let Λ be any set of 3SΩ. If we put Am =
then

<2) ΛOT€33°Ω, Δ i = ) A a 3 . . . . , Λ =

«o that

<3) lim a(AJ = ά(A).
m

By (1) and (2)
1 w~1 _ 1 w " 1 _

lim sup ^ 2 ^(S"/4Λ) ^ lim sup — 2 « ( S - * A J ^

5O that, by (3),

1 Λ " ι _ _
lim sup — 2 α(S*"AΛ) ^ ΛΓ α(A).

Then there exists a finite invariant measure 7 defined on S3Ω such that 7(Λ)

<; a(A) for every Λ € 33Ω, and Λ(A) = 0 for every Λ € S Ω with 7(Λ) = 0.
<Seef5,6],) Thus S is 7-measure preserving and further, 7-incompressible,

so that if we define ξj{ω) as in the proof of Theorem 1, then 2 ?2j(ω) = -f

<χ> for 7-almost every ω € Ω . (See footnote 3).) Hence we may prove the
remaining part of the proof by the same way as in the proof of Theorem 1.
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