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1. The purpose of this paper is to state the general ergodic theorems
which are the extensions of those of J.L.Doob [1]”, E.Hopf [3] and A.
Khintchine [4]. The idea of the proofs, which appeal to the representation
into an infinite product space, is due to Doob [1].

2. Let (X,B,u) be the measure space such that X is an abstract set,
% is a Borel field of subsets of X, and p is a o-finite measure on .

Throughout this paper, unless otherwise stated, s, » will be any positive
integers, % any non-negative integer, (n,, 7., ....,n,) any finite sequence of
positive integers with #; <7< .... <M, and (n, 7., ....) any infinite
sequence of positive integers with 7, < 7. < .....

DErFmITION 1. A sequence of measurable functions {fj(%)};=1,»,... is said to
have the homogeneity property (which we denote by h.p.) provided that, for
any Borel set A in m-dimensional space, u({%; (fuq+n(®),fugsn(®), - - .., Sap+n(%))
€ A}) is independent of h.

DEFmNITION 2. Two sequences of measurable functions {f:(%)}j-1,,... and
195(%)}j=1,2,... are said to have the combined homogeneity property (which we
denote by c. h. p.) provided that, for any Borel set A in 2m-dimensional space,
POE; Fuan®), Gusn®), . Suysn(®), Grmea(®) € A}) is independent of 7.

DEFINITION 3. Two sequences of measurable functions { fj(%)}j-1,»,... and
{95(%)}s-1,2,... are said to have the weak combined homogeneity property (which
we denote by w.c.h.p.) provided that there exists a constant K such that,
for any Borel set A in 2m-dimensional space and for any positive integer %,

n-1

. 1
llmnsup ” 2 p x5 Frgrna(®), Guren(®), <« ooy Srgrral %), Gngran(2)) € A})

=0
= Kop({25 (fan®), 9n(®), - ..., Sup(%), gnn(%)) € AD).
The following fundamental properties are easily seen.
1°. If the sequences {f,(%)} and {g;(x)} have c.h.p., they have w.c.h.p.
and each of them has h.p. ;
2°. If the sequence {fjx)} has h.p., then two sequences {fj(x)} and {1}
have c. h.p.;
3¢, If the sequences {fj(x)} and {g;(x)} have c.h.p., then the measure
theoretic property of fi(x)[¢g.(x)] implies the same property of every fix)
[every gs(x)]: for example, when f(x) is p-integrable, so does every f,(x), and
when g¢,(x) > 0 for u-almost every x € X, so does every g,(x);
4°, For a single valued, measurable, y-measure preserving? transfor-

1) Numbers in square brackets refer to the references at the end of this paper.
2) A single valued transformation 7" of X into itself is called measurable if the
inverse transformation 7-! transforms every set of B to a set of 5, and a measurable
transformation T is called u-measure preserving if W(T-1Y) = w(Y) for every Y € B.
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mation T of X into itself and for any measurable functions f(x) and g(x)
we put

fKx) =f(T%), gi(x) = g(TV~1x) xe€eX;7=12,....),

then the sequences {f;(x)} and {g,(x)} have c.h.p.
Our main theorem reads as tollows:
THEOREM 1. Let {fy(x)} and {g;(x)} be two sequences of measurable functions

with c. h.p. such that (%) is u-integrable and g,(x) > 0, 2 min {g;(x), K} = +
j=1

Sfor p-almost every x € X with respect to some positive k. Let p(j) and q(7)

be two periodic functions defined on the positive integers such that q(j) > 0 for

all j. Then the limit

PNLEYL0)

lim /=2
n n .
> 95x)al)
j=1
exists and is finite for p-almost every x € X.

In particular,if p(j) = Q( 7) =1 for all j, the assumption thathin {g(x),

J=1

E} = + o is replaced by the assumption that 2 g3(%) = + oo,
Jj=1
The proof of Theorem 1 appears in section 3.
By 2° and Theorem 1 we get
COROLLARY 1.1. (Doob’s ergodic theorem). Let {fi(x)} be a sequence of
measurable functions with h.p. such that fi(x) is p-integrable. Then the limit

1<
harzn n'gfj(x)

exists and is finite for p-almost every x € X.

By 4° and Theorem 1 we get

COROLLARY 1. 2. (Hopf’s ergodic theorem). Let T be a single valued, u-measure
preserving transformation of X into itself. Let f(x) be any p-integrable function,

and let g(x) be any measurable function such that g(x) >0, 2 9g(T'x) = + o
Jj=0

for p-almost every x € X*. Then the limit

3) If T is single valued, measurable, u-measure preserving and w-incompressible
(that is, Y € B and T-1Y DY imply w(7-Y-Y) = 0) and if ¢g(x) is any measurable

function such that g(z) > 0 for u-almost every x € X, then 2 g(Tz) = + oo for p-

J=0
almost every x € X. (See [3,2].)

We note here that if u is finite and if 7 is single valued, measurable and u-
measure preserving, then 7" is u-incompressible.
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n-1
2ATx)
tim 3=
9(T'x)
J=0
exists and is finite for p-almost every x € X.
By 4° and Theorem 1 we get
CorOLLARY 1.3. (Khintchine's ergodic theorem). Let T be a single valued,
measurable, u-measure preserving transformation of X into itself. Let f(x) be
any p-integrable function, and let p(j) be any periodic function defined on the
positive integers. Then the limit

R S,
lim - gf(T-"‘x)P(j)

exists and is finite for u-almost every x € X.

In case the measure u is finite, Theorem 1 may be moreover generalized
as follows:

THEOREM 2. Let w be finite. Let {fy(x)} and {g;(x)} be two sequences of
measurable functions with w.c. h.p. such that every fix) is p-integrable and
every gj(x) is positive for u-almost every x € X. Let p(j) and qQj) be two
periodic functions defined on the positive integers such that q(7) >0 for all j.
Then the limit

250p()
linm it
> 94(x)a(s)
Jj=1
exists and is finite for p-almost every x € X.
The proof of Theorem 2 appears in section 4.
It is easy to see that Theorem 2 contains the following result which is
a part of the theorem of Ryll-Nardzewski [5, 6].
COROLLARY 2.1. ZLet p be finite. Let T be a single valued, measurable

transformation of X into itself with respect to which there exists a constant
K such that for any Y € B
1 n-=1
lim sup - - > UT-Y) < K-w(Y).
n =0
Let f(x) be any w-integrable function. Then the limit

n-1

lim — SAT %)
Ly

exists and is finite for p-almost every x € X.
3. In this section we shall prove Theorem 1.
If we put

ﬁ+(x) = max {f}(x)) 0}: f;_(x) = max { - ff(x): 0}:
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p*() = max {p(5),0}, p~(j) = max{— p(j), 0},
then {f}(x)} and {g,(%)} [{/; (%)} and {g;(x)}] has c.h.p. and

>0 > () > fr@0-G)
m 2l =lim Sl +lim S

> gix)aQ) > g.x)a() > g5(xali)
Jj=1 Jj=1 Jj=1

2 @p() > xpr()

—lm 7~ . —lim 4=
> g9ixald) > gi(x)a()
i=1 J=1

whenever four limits in the right hand side exist, so that in the sequel we
may assume that fi(x) =0 for u-almost every x € X and for all j and that
() =0 for all 5.

Let Q be the space of all one-sided infinite sequences of real numbers,
where we denote a point of ) by w = (&, &.....). Let A be any Borel set in

m-dimensional space. If we put for given #,, %, ...., %n
‘/\ = {(Eli E27 e -); (E”Iy E""_’: e eey E"m) S A},
then A is an e-set. Let Bo(n,, 0y, .. .., n,) be the Borel field determined by
such w-sets for given n, 7., .. .., 2., let B}, denote the field U Bo(n,
(n1,mg,...,7,,)
N, .. .., Ny), and let Vg be the Borel field generated by the sets of BY,. Further,
let Fy(x)’s be the functions defined by
Fuja(x) = f5(00p(7), Fos(x) = 9(x0)a(5) xeX;7=12....),
and let @ be the transformation of X into £ defined by
@x = (Fi(x), Fu(x), ....) (x € X).
We now define a by
a(A) = p(@p~'A) (A € BY).
Then « is a non-negative, finitely additive set function on B such that «
is a measure on each Ba(#n, n,, ...., ny). Further, if

AEBY, Ai€BY, Au N An=0m=m), A=\_JA,
n=1

then
gla(l\n) = glﬁ(fp‘lAn) = M(Q <P"An> = p[q)‘l(gm.ﬂ = p(pIA) = a(A).

Hence, by well known extension theorem?®, the definition of « can be extended
on all sets of By : precisely speaking, if we define a by

4) It is usually proved under the assumption that «(Q) = 1, but it remains true
in case a(Q) = + oo.
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o) &(A) = inf { Sa(An); A€ BY A UA,.} (AE€By),
n=1 n=1

then o is a measure on Bq such that:

2) a(A) = a(A) (A € BY).
Let ¢t be the least common multiple of both periods of the periodic

functions p{f) aad q’j), and lat S b= the transformation of Q onto itself defined
by

Sw = o,
where
o= (E,8E,....), o =(E,E, ....), E} =& (7=1,2,....).
Then S is single valued (but not one to one), measurable and satisfies
3 a(S™1A) = a(A) (A € BY).
In fact, if we put for every A € Ba(ny, %3, .. .., %)

A={Enm, Engy ooy En)s; ELEs vy Enyy oo Engy oovny Enpy oo o.) €AY,
then A is a Borel set in m-dimensional space, and
a(A) = pp™'A) = p{%; (Fu(%), Fag(%), - - ., Fa, (%)) € A})

= p({x; (Fue2e(®), Fugen(®), .. .., Fp e2e(%) € A}) = plp(S7A)] = a(S71A)
on account of c.h.p. of {f,(x)} and {g;(x)}.
' Next, note that to every covering of A with the sets A, ’s there cor-
responds a covering of S-1A with the sets S~*A,’s, but the converse is not
necsssarily valid, since S is not one to one. Thus, by (3), we have

4  a(A)=inf {Za(An) AneBy, Ac\JAa }
n=1 n=1

= inf{ DS A); A€ B, A UA,.}
n=1

n=1
= inf{ Sa(A); A, €BY, STAC UA;L} = a(S-'A) (A € By).
n=1 n=1

Let us now put

B(A) = lizn a(S—"A) (A € By).
Then 2 has the following properties :
®) B(A) < a(A) (A € Ba);
®) B(S™IA) = B(A) (A € Bg);
7 BA) = a(A) = a(A) (A €BY);

(8) If Ax is of finite a-measure, then B(A (] A¥) is a measure on B, as the
set function of A.

The properties (5) and (6) are evident, and (7) is an immediate con-
sequence of (2) and (3). By use of (5), the property (8) follows from the
facts that B is a non-negative, finitely additive set function on B, and that
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a(A N A*) is a finite measure on By as the set function of A.
Let A% ’s be the w-sets defined by

A%:{(gl’ EZ’.) ey gzm—l; "'-); lfzm"'l, gl/n}i
then
An €8, a(An) = a(Al) < o,
since every Fi,-i(x) is p-integrable. Let us put
m=0-\J A a=_/sm0, 0=-0-0.
h=0

n,m=1
Then 50 is an invariant sst: that is, S-1Q, = Q, and further Q is an in-

variant set which is the sum of countably many sets, of Bg, of finite a-
measure. Suppose that

€D, AQ)<o, QWNQu=0 (ntm), O =\
n=l

We define v by
y(A) = S BA N Q) + a(A N Q) (A € By).

Then  has the following properties :
C) v(A) S a(h) (A € Bo);

(10) ¢ is a measure on By such that Q is the sum of countably many sets,
of By, of finite y-measure :

1 Y¥(S1A) = y(A) (AEBo, A = Q);
(12) IfA € B, y(A) =0, then a(A)=0.

The property (9) is evident, and (10) follows immediately from (8) and
(9). We shall now prove (11). Note that every S—'Q,, with Q,, is of finite
a-measure, then by use of (6) and (8) we have

Y(A) = 2BANQ) = S B[S (ANQ)]

= S BSA N S0 N Q) = 2 2BESTA N S0, N )

n=lm=1 m=1n=1

= 2 BSA N Q) = ¥(SA) (A € Ba, A= 0).

m=1

For the proof of (12) it is sufficient to show that if A € Ba, A < Q and a

(A) >0, then y(A) >0. It is no Ioss of generality to assume that a(A) < o
and that, in the right hand side of (1), As N Aw =0 (# % m). Hence, by the
definition of «a, there exist the sets Ax’s such that

A €BY AN An =0 (7% m), ACUA,., &(UA,.) = Ea(An) < oo.
n=1 n=1 n=1
By (5), (8) and (7)
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7A) = EBU\ N Q) = B = B(UA )- B(C]An oy
2 8(\JA) - a(UA —A) = S - (Saan - aw)

n=1 n=1 n=1

= a(A) >0,
as was to be proved.
Let £(w)’s be the functions defined by

Ef@v) Ef:
where &; is the j-th coordinate of w. Then it is easy to see that if \ is any
Borel function defined in m-dimensional space, then

(13) E({‘U ;‘I’(Sm(ﬂ’)y Eﬂz(m): v E”m(w)> < k})

= /“({x ; ‘I"(Fm(x)y Fuz(x): ceeey "m(x)) < k})
for any real k.
By the assumption of the theorem, Fi;_;(x) is p-integrable and F.y(x) > 0,

21?2,-(36) gminq(j)-z_q,(x) = +oo for p-almost every x € X, so that by

J=1 J=1

(13) and (9) we have that (&(w) + Ex(w) + .... + Ex-1(w)) is y-integrable and

(Exw) + Efw) + .... + En(w)) >0, Zle,(w) = +oo for -almost every o € Q.
j=1

Here we note that £(S'w) = Ejsum@) for all » € O and for all j, % and that

S is y-measure preserving as the transformation of 6 onto itself on account
of (11). Hence we have, by Hopf’s ergodic theorem,® that the limit

i n-1
2E0s-i(o) SE(S ) + E(S"0) + ... + Eur(S'0)]
W  lm o = lim

&) " SES ) + E(S ) + ... + Eul(S'w)]

=0
exists and is finite for -almost every o € ). On the other hand, it is easy
to see that the limit (14) exists and vanishes for all o € ), so that the limit
(14) exists and is finite for y-almost every w € Q. By use of (12) and (13)
we get that the limit

D (005 ZFw-mx)
@15) lim-4—— = lim-J——

Sswaei) ZFH(@
J=1

exists dnd is finite for p-almost every x € X.
Let g%(x) denote the min{g,(x), £}. Then, by virtue of c.h.p. of {f (%)}

5) It is originally proved for the one to one transformation (see [3]), but it holds
generally even for the single valued transformation. (See [2: Theorem 2].) We use
here the general case.
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and {g,(x)}, two sequences {f;(x)} and {g%(x)} have c.h.p.. Further by the
assumptioniof the theorem, fi(x)is u-integrable and g¥(x) >0, 2 g5(x) =

for p-almost every x & X. Particularly, let p(j) = q(j) =1 for all 7, then
t =1. Thus, by (15), we get that the limit

Zf (%)
Zgj €5)

exists and is finite for u-almost evary x € X. Let C denote the max )/ mm q(7)

with respect to p(j) and q(j) glv.yn in the theorem, then by (15) and (16)
we have that for any integer ! with 1<I< ¢

(16) hm

nt+1l (n+1)t
pNIE6)) > fox)
17) lim sup 25 < C-lim sup—%
: > 9x(x)q() > gkx)
J=1 Jj=1

(m+1)t

r S A D@+ ke > (%) }

. j=1 J=1 . Jj=1
=C-. lll’I}ZSUD m+Dt : it - —lim —F——

L 2 g4(%) Zg;=<x> TS
J=1
(n+1)t

i 2 fi(x) Zfi(x) :l
J =0

. =1
=Ce| lim —Grr—— — lim

L DN 6)) 29}‘(:6)

Jj=1

for p-almost every x € X.
Thus, by (15) and (17), we get that the limit

Zf,(x)pm

J= 1

ngx)q(i)
i=1
exists and is finite for p-almost every x< X.
Finally it is to be noted that if p(j) = q(j) = 1 for all j, (15) is the re-
quired one, and that in the course of the proof of (15) it was superfluous

oo

lim
n

to assume that zmin {gs(x), k} = +oo, since, in fact, we used only that
j=1

zgj(x) = -+ oo. Hence we complete the proof.

4. In this section we shall sketch the proof of Theorem 2.
We define Q, Bo(n, n, ....0), Bh, Be, FAx), @, a,a,t and S as in the
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proof of Theorem 1. Then « is a finite measure of By, since

aAQ) = aA(Q) = pp1Q) = w(X) < oo,
By w.c.h.p. of {f;(x)} and {g9s(x)} there exists a constant K such that

n-1

M lim sup - Sa(S-*A) < K-ai(A) (A € BY).

In fact, if we define a Borel set A for every A € Bo(n, N, .. .., Nn) as
in the proof of Theorem 1, then
n-~-1 n-1
lim sup— 3 a(S-*A) = lim sup- - a(S-"A)
n n 5 n [y
n-1

= lim sup ‘}T Z}L({x 3 (Frys 2n6(%), Frgaone(%), .. .., F, nm+znt(x)) € A})
n h=0
< Kou({% ; (Fay(%), Fng(%), .. .., Fa, (%)) € A}) = K-a(A) = K-a(A).
Next, let p,, be the transformation of () onto m-dimensional space defined
by '
p'm(l’ = (gl’fm ce "Em)y

where w = (£,&;,....). Let A be any set of Bg. If we put Aw = ;! P,
then

@ C Am€B, ADAD ..., A= [)An
m=1

so that

3) lim a(An) = a(A).

By (1) and (2)

N=1 n-1
. 1 IQ-h s _l_ Q=N Sy
lim nsup w lgo a(S"*A) < hmnsup ” Ea(s "Am) < Kea(Ap),
so that, by (3),

n-1

lim sup % > a(S-*A) < Keal(A).
n h=0

‘Then there exists a finite invariant measure  defined on Bg such that y(A)

< a(A) for every A € By, and a(A) =0 for every A € By with (A) = 0.
{See[5,6],) Thus S is y-measure preserving and further, -incompressible,

so that if we define £w) as in the proof of Theorem 1, thenz Eu(w) = +
=1

oo for -almost every w € . (See footnote 3).) Hence we may prove the

remaining part of the proof by the same way as in the proof of Theorem 1.
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