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A CLASSIFICATION OF IMMERSED HYPERSURFACESIN SPHERES
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Abstract. In this paper, we give a complete sdfication of all immersed hypersur-
faces in the unit sphere with parallel Blaschkasors. For this classification, two kinds of
new examples are constructed.

1. Introduction. Let §"(r) be then-dimensional standard sphere of radiusnd
S§" = §"(1) in then-dimensional Euclidean spa€¥. Let H"(c) be then-dimensional hy-
perbolic space of constant curvature: 0 defined by

H" () = {y = (yo, y1) € R{™™ (y,y)1=1/c, yo > 0},
where for any integer > 2, R} = Ry x R"!is then-dimensional Lorentzian space with the
standard Lorentzian inner produget-); given by
(v, ¥)1=—yoyo+y1-v1, y=o,y), ¥ = o y) €R],
and “’ denotes the standard Euclidean inner producRtn'.
Denote byS’ the hemisphere i8" whose first coordinate is positive. Then there are
two conformal diffeomorphisms : R" — S"\{(-1,0)} andz : H"(-1) — S’} defined as
follows:

1—|ul®>  2u
1.1 = , , R",
(1) o (1+|u|2 1+|u|2) ‘e

(1.2) T(y) = (i, E) , y=0o0y) € H CcR™.
Yo Yo

Now suppose that : M™ — S$™*P is an immersed submanifold i *7 without um-
bilic points. We recall that there are four basic Mdbius invariants given by Wang in [17],
which are the M6bius metrig, the Mobius forme, the Blaschke tensot and the Mdbius
second fundamental for®. Study of these invariants is closely related to Willmore hypersur-
faces (in particular, Willmore surfaces) and other interesting topics in conformal differential
geometry. In recent years, many interesting and important results have been obtained in re-
lated areas; see, for example, [1, 2,5-7, 9-dg references thereidmong these results,
there are some interesting classification theorems of submanifolds with particular Mdbius in-
variants, such as classification of surfaces wahishing Mébius form [13], classification of
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Mobius isotropic submanifoldgl5], and classification of hypersurfaces with Blaschke ten-
sors that are linearly dependent on the Mdbius metrics and the second Mdbius fundamental
forms [12, 16]. Also, Hu and Li [6] recently proved a classification theorem of all immersed
hypersurfaces is™+1 with parallel M6bius second fundamental forms, which can be stated
as follows.

THEOREM 1.1 (HuandLi[6]). Let x : M™ — S"t1 m > 2, be an immersed
umbilic-free hypersurface with parallel Mébius second fundamental form. Then x is locally
Mobius equivalent to one of the following hypersurfaces.

(1) A standard torus S¥1(r) x §"™*1(y/1 —r2) in §™*1 for some r > 0 and positive
integer kj.

(2) Theimage under the conformal diffeomorphism o of a standard cylinder S¥1(r) x
R"™~* jn R™*1 for somer > 0 and positive integer k1.

(3) Theimage under the conformal diffeomorphism = of a standard cylinder S¥1(r) x
H"%(=1/(1+ r?)) in H"*1(—1) for some r > 0 and positive integer k1.

(4) CSY(p, q,r) for some constants p, ¢, r, asindicated in Example 3.1.

Thus, it is natural to study submanifolds in the unit sph€tevith particular Blaschke
tensors. It is easily seen that a submanifoldsfnwith vanishing Blaschke tensor also has
a vanishing Moébius form, and therefore is a special Mébius isotropic submanifold. By the
argument of [15], we can conclude that each submanifold”irwith vanishing Blaschke
tensor is locally Mébius equivalent to the image under the conformal diffeomorphism
R* — S$"\{(—1,0)} of a minimal submanifold in the Euclidean spagé. On the other
hand, by Theorem 1.1, it is interesting to find a classification of immersed submanifolds with
parallel Blaschke tensors.

In this direction, the most important area is the study of hypersurfaces. In this paper, we
give a Mébius classification of all immersed hypersurfaces”irfit with parallel Blaschke
tensors. In pursuing this, we find two kinds of immersed hypersurfaces that have parallel
Blaschke tensors but have non-parallel Mobius second fundamental forms (for details, see
Examples 3.2 and 3.3). The main theorem of this paper is the following.

THEOREM 1.2. Letx : M™ — §"*1 m > 2, bean immersed hypersurface without
umbilics. If the Blaschke tensor A of x isparallel, then one of the following holds.
(1) x isM©obiusisotropic and istherefore locally Mobius equivalent to:
(@) aminimal immersed hypersurfacein S”*1 with constant scalar curvature; or
(b) theimageunder o of aminimal immersed hypersurfacein R” 1 with constant
scalar curvature; or
(c) the image under T of a minimal immersed hypersurface in H”+1(—1) with
constant scalar curvature.
(2) xisof parallel Mdbius second fundamental form B and istherefore locally Mobius
equivalent to:
(a) astandard torus S¥1(r) x §"*1(v/1 = r2) in §”*1 for somer > 0 and posi-
tive integer kq; or
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(b) theimage under o of a standard cylinder S¥1(r) x R"~*1 in R™*! for some
r > 0and positive integer k1; or

(c) theimage under 7 of a standard cylinder S¥1(r) x H™ %1 (—=1/(1 + r?)) in
H™+1(—1) for somer > 0 and positive integer k1; or

(d) CSS(p,q, r) for some constants p, g, r.

(3) x isnon-isotropic with a non-parallel Mdbius second fundamental form B and is
locally Mobius equivalent to:
(a) one of the minimal hypersurfaces asindicated in Example 3.2; or
(b) one of the non-minimal hypersurfaces as indicated in Example 3.3.

REMARK 1.3. Itis directly verified that each of the immersed hypersurfaces without
umbilics stated in the above theorem has a parallel Blaschke tensor.

2. Preliminaries. Letx : M™ — S$™P be an immersed submanifold without um-
bilic points, andn = m + p. Denote byh the second fundamental form efand H =
(1/m) tr h the mean curvature vector field. Define

m 1/2
(2.1) o= <—(|h|2—m|H|2)> , Y=p@x).
m—1

ThenY : M™ — R’l”r2 is an immersion o™ into the Lorentzian spadi&"l“r2 and is called
the canonical lift (or the Mobius position vector) of The functionp given by (2.1) may be
called the ‘Mdbius factor’ of the immersion We define

Cit=1{Y = (Y0,Y) e Ru x R"™; (¥,¥)1 =0, Yo > 0}.

Let O(n + 1,1) be the Lorentzian group of all elements @L(n + 2; R) preserving
the standard Lorentzian inner prodyet-)1 on R’1’+2, andO*(n + 1, 1) be a subgroup of
O(n+1,1) given by

(2.2) Otn+1,)=(T e 0m+11); T(C ccrtly.

Then the following theorem is well known.

THEOREM 2.1 (Wang [17]). Two submanifolds x, ¥ : M™ — S™+P with Mobius
position vectors Y, Y, respectively, are Mébius equivalent if and only if thereisa T <
Ot (n+1,1) suchthat Y = 7(Y).

By Theorem 2.1, the induced metric= Y*(-, )1 = p2dx - dx defined byY on M™
from the Lorentzian produgt, -)1 is a Mdbius invariant Riemannian metric (cf. [3,4 17]), and
is called the M6bius metric of. Using the vector-valued function and the Laplacian of
the metricg, we can define another important vector-valued funcNonM™ — R’l”r2 by

1 1
2.3 N =——AY — —(AY, AY)1Y .
(2.3) - o2 )1
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Then it is verified that the Mobius position vectrand the Moébius biposition vecta¥y
satisfy the following identities [17]:
(2.4) (AY,Y)1=—m, (AY,dY)1=0, (AY,AY)1=1+m’,
(2.5) (Y,Y)1=(N,N)1=0, (Y,N)1=1,
wherex denotes the normalized scalar curvature of the Mobius metric

LetV — M™ be the vector subbundle of the trivial Lorentzian buntlét x R:*2 de-
fined to be the orthogonal complemenRif & RN @Y, (T M™) with respect to the Lorentzian

product(-, -)1. ThenV is called the M6bius normal bundle of the immersianClearly, we
have the following vector bundle decomposition:

(2.6) M" xRIF2=RY @RN ® Y.(TM™) ® V.
Now, let 7M™ be the normal bundle of the immersian: M™ — ™+l Then the
mean curvature vector field of x defines a bundle isomorphisfh: T-M" — V by
(2.7) f(e)=(H-e,(H-e)x+e¢) foranyee TtM™.
It is easily seen thaf preserves the inner products as well as the connectioffis-af” and
V (see [17]).
To simplify notation, we make the following conventions on the ranges of induces used

frequently in this paper:
(2.8) 1<i,j,k,---<m, m+1l<apB,y,---<n.

For a local orthonormal frame fiel@;} for the induced metridx - dx with dual{6’} and
for an orthonormal normal frame field, } of x, we set

(2.9) Ei=ple, o =p0", Eq=f(ea).
Then{E;} is a local orthonormal frame field for the Mébius metyidw'} is the dual of E;},

and{E,} is a local orthonormal frame field of the M&bius normal bundle> M. By [17]
and [15], the basic M6bius invariangs, A and B have the following local expressions:

(2.10) @:qul‘?‘wiEa, A:ZA,-ja)ia)j, B:ZBf‘jwiija,
where

(2.12) o = —p—Z(Hf;‘ + ) (hf — HY8;j)e; (log p>) :
Ajj =— PZ(HeSdeOg p) —ei(logp)e;(logp) — H“h?j)
(2.12) L
— 5P (dlogpl? — 1+ |HI?)3; .
(2.13) Bfy = p~(hiy — H8y)).

in which the subscripti* denotes the covariant derivative with respect to the induced metric
dx - dx and in the directiom;.
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REMARK 2.2. By definition, the Modbius forn® and the Mébius second fundamental
form B are V-valued differential forms. However, if we identify with 7M™ via the
canonical bundle isomorphisih : T-M™ — V, then® and B are identified, respectively,
with f~1(®), f~1(B). Therefore, (2.10) can be written as

[H@)y=p) dfblen. A=p?) Ayo'el, fTHB)=p%) Bf6'0 e
Denote byD the Riemannian connection of the Mdbius meyicThen, with respect to

the frame field{E;}, the component®;;;, R;; of the Riemannian curvature tensor and the
Ricci tensor are defined, respectively, by

Dg, Dg, Ei — Dg,Di Ei — Digg gnEi = Y RijuEj,  Rij =)  Riwj.
J k
Then by [17], we have

1 m—1 1
(2.14) trAzﬁ(l—i—mZ/c), trB = ZB“ E, =0, |B]? Z(B“)2

(2.15) Riju = Z(Bff S — Bk Bj) + Audji — Aikdji + Ajidi — Ajl(Sik~
We should remark that (2.15) has the opposite sign to (2.31) in [17] due to the different
defining equations of the Riemannian curvature tensor. Furthermarg, ift; ., B/%, denote

respectively the components with respect to the frame figiglsand { £, } of the covarlant
derivatives of®, A, B, then the following Ricci identities hold [17]:

(2.16) =Y (B Ay — B{jAw) ,
(2.17) Aijk - Aikj = Z(B'  — B9,
(2.18) & — BY =8, — 5, dY .

By taking a trace in (2.15) and (2.18) one obtains

(2.19) =— > BYBY +8itr A+ (m—2)Aj;,
(2.20) (m—1DoF =—> "B,

By (2.14), (2.19) and (2.20), if is a hypersurface and > 3, then the M&bius forn® and the
Blaschke tensoA are determined by the Mdbius metgcand Mobius second fundamental
form B. Thus, it is easily seen that the following theorem holds.

THEOREM 2.3 (Wang [17]). Two hypersurfaces x : M"™ — §"*land ¥ : M™ —
§m+1 m > 3, are Mobius equivalent if and only if there exists a diffeomorphism¢ : M” —
M"™ preserving the M6bius metric and the Mébius second fundamental forms.

3. Examples. Before proving the main theorem, we present some concrete immersed
hypersurfaces is”+1 with parallel Blaschke tensors.

EXAMPLE 3.1 (HuandLi[6]). LetR" be the half line of positive real numbers. For
any two natural numbers, ¢ satisfyingp + ¢ < m and a real number € (0, 1), consider
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the imbedded hypersurfage: S”(r) x $9(v/1—r2) x Rt x R"~P=471 . R"*1 defined
byu = (tu', tu”, u"), where

u' e SP(r) C Rp+1’ u" e S1V1-r2) C Rq+1’ te R+, W e Rm—p—a-1

Thenx = o ou : SP(r) x S9(vV1—r2) x Rt x R"P~7~1 _, ¢"*1 defines an immersed
hypersurface irs” 1 without umbilics, which is denoted in [6] b§SS(p, ¢, r). By a direct
calculation, one easily finds th@6S(p, ¢, r) has exactly three distinct Mobius principal cur-
vatures and has parallel M6bius second fundamental form, see [6] for details. Then it follows
from the arguments in the main theorem of [6] tBat S(p, q, r) also has a parallel Blaschke
tensor.

ExAMPLE 3.2. For any integers andk; satisfyingm > 3 and 2< k1 <m — 1, let
§1: M1 — SAtl() ¢ RMF2 be an immersed minimal hymirface without umbilics and
with constant scalar curvature

- mki(k1 — 1) — (m — D)r?
S1 =

3.1 bl

3.1 2

and

(3:2) § = (o, j2) : H"*1(=1/r%) — Ry 4T

be the canonical embedding. Set

(3.3) M™ =M1 x H" (=1/r%), ¥ = (o, J1, 72)

ThenY : M" — R is an immersion satisfying?, ¥)1 = 0 and has the induced Rie-
mannian metric
g =(dY,dY¥)1 = —d3¢ +di% + dy3.

Obviously,
(3.4) (M", g) = (M1,d5}) x (H"M(=1/r%, (d, d5)1)
as a Riemannian manifold. Define
(3.5) =l 5=2 f=(i).
Yo Yo

Theni? = 1 and% : M™ — §"*+1 defines an immersed hypersurface without umbilics and
hasY as its Mébius position vector, see (3.7). Clearly, we have
dyo, . . 1 .
— (1, ¥2) + —d (1, y2) .
Yo Yo
Therefore, the induced metric= dx - dx is related tog by
7= 3o dFGT + 79 + 5o 23 + d33) — 255> dFo(Frd i1 + F2dT2)
(3.7 = o 2 d6 + 52d5F + d55) — 2552 3

= o 2(—dFE + d3? + d73) = 559

(3.6) di = —
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If 711 is the unit normal vector field of; in S¥1+1(r) c R412, thenii = (711, 0) € R" 2 is a
unit normal vector field ok. Consequently, by (3.6), the second fundamental forof % is
related to the second fundamental fokrof y; as

(3.8) h = —dii -d% = =35 (diy - di1) = o 'h.

Let{E;;1 <i < ky} (resp{E;; k1 + 1 <i < m}) be alocal orthonormal frame field
on (M1, d3?) (resp. onH™~*1(—1/r?)). Then{E;;1 < i < m} gives a local orthonormal
frame field on(M™, g). Pute; = yoE;,i =1,...,m. Then{e; ; 1 < i < m} yields a local
orthonormal frame field oM™, §). Thus we obtain

- h(ei,ej) = Jeh(E;i, E;) = Joh(Ei, Ej) = Johi;, when1<i,j <k,
(3.9) hij = : )
0, wheni > ky orj > k1,

which implies, by the minimality of1, that the mean curvaturg of & vanishes. Therefore,
by definition, the Mdbius factof of x is determined by

k1
2 m =2 72y M 2 2 _ =2
p _m<§ .:hij_m|H|)—m_1yo'z :lhij_yo’
ij i,j=

where we used the Gauss equation and (3.1). Hgneejo and thus’ is the Mébius position
of . Consequently, the Mébius metric &fis defined by(dY,dY)1 = g. Furthermore, the
Mobius second fundamental form ofis given by

ki
(3.10) B = ﬁ_lZ(ﬁU — H&ij)wiw-j = Z /’l,'ja)ia)j ,
i,j=1
where{w'} is the local coframe field o™ dual to{E;}.
On the other hand, by (3.4) and the Gauss equatiofis afidy, one finds that the Ricci
tensor ofyg is given as follows:

k-1 &
(3.11) Rij = a1 - 5 8ij — Zhikhkj , fl<i, j<k,
r k=1
—k1—1 .
(3.12) =TT O TS fk+l<ij<m,

,
(3.13) Rj=0, fl<i<k,ki+1l<j<m or ki+1<i<m,1=<j<ks,

which implies that the normalized scalar curvature @ given by

m(ky(ky — 1) — (m — k) (m — k1 — 1)) — (m — 1)r?
m2(m — 1)r? '

(3.14) K =

Thus, we have
_kitk1—=1) — (m —k))(m — k1 — 1)
- 2(m — 1r? ’

(3.15) %(1 + m?k)
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Sincem > 3, it follows from (2.19) and (3.10)—(3.15) that the Blaschke tensor isf
given byA = 3" A;;0' 0/, where

1 .
(3.16) Ajj = ?‘SU , IFl1<i,j<kq,

(3.17) Aij = j. ifki+l<ij<m,

~53
(3.18) A;;=0, ifl<i<ki,ki+1<j<m or ki+1<i<m,1<j<ks.

Clearly, A is parallel and has two distinct eigenvalues
(3.19) A= —A2= 52
ExampPLE 3.3. For any integers: andk; satisfyingm > 3 and 2< k1 < m — 1,
lety = (Jo,31) : M1 — HMHL(-1/r2) C R’f*z be an immersed minimal hypersurface
without umbilics and with constant scalar curvature
- mky(ky — 1) + (m — L)r?

(3.20) S1= 5 ,
mr
and
(3.21) F2: 8" () - R
be the canonical embedding. Set
(3.22) M" = My x "), Y = (Jo, 1, §2)

ThenY : M™ — R} is an immersion satisfying?, Y)1 = 0 and has the induced Rie-
mannian metric
g =(dY¥,dY)1 = —d53 +d5? + dy3.

Obviously,

(3.23) (M™, g) = (M1, (d5.,d5)1) x (S"7*(r), d5)

as a Riemannian manifold. Define

(3.24) Fl=2, B=22, F=(f i)
Yo Yo

Theni? = 1 andx : M™ — §"*! defines an immersed hypersurface without umbilics and
hasY as its Mébius position vector, see (3.26). Similarly, as in Example 3.2, we have

. dyo, . . 1
(3.25) i = =221, 52) + —(dir. d2),
Yo Yo
and the induced metrig = dx - dx is related tog by
(3.26) 7= 3o 2(—d3§ + d5% + d33) = 55 9.

If (i, 711) is the unit normal vector field of in Hx1t1(—1/r2) ¢ R’l’”z, then it is easy to see

that

i = (i1, 0) — figk € R™+2
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is a unit normal vector field of. Hence, by (3.25), we have
di -d% = (dii1, 0) - d% — figdi?
(3.27) = —(3g 2dFo)dii1 - 51+ Jg - dit - d§1 — fioFy (—dFG + dFF + d53)
= o X(~diiodo + dii1 - dF1) — noyg 29 .
where the third equality comes from the fact that
(3.28) 524+ 55 =-1/r?, —ioyo+i1 -1 =—iodjo+ii1-dj1=0.

Consequently, the second fundamental farof 3 is related to the second fundamental form
h of 3 and the metrig as

(3.29) h = —dii - d% = =55 Hd o, 7i1), d7)1 + nofg °g = yo *h+ nojg 29 -

Let{E;;1<i <ki}(resp{E;; k1+1<i < m})bealocal orthonormal frame field on
(M1, d7%) (resp. onS"™—k1(r)). Then{E; ;1 < i < m} is a local orthonormal frame field on
(M™, g). Pute; = yoE;,i =1,...,m. Then{e; ; 1 < i < m}is alocal orthonormal frame
field on(M™, §). Thus

[ #teiej) = 55h(EI. Ej) = Soh(Ei. Ej) + fiog (Ei. E;)
(3.30) hij = = yohij +nodij, Wwhen 1<i, j <k,

ﬁo(sij, wheni > kjorj > k1,

which implies, by the minimality of, that the mean curvature &fis
1 Jo <
(3.31) H:ZZhii=Z2hii+ﬁ0=ﬁo.
1=

Therefore, by definition, the Mdbius factgrof x is determined by

2 m 72 2y M -2 2 _ =2
p —m(zhu—mlfﬂ)—m_lyozhu—y()a
i,j L]

where we used the Gauss equation and (3.20). Hgneejg and thusy’ is the Mébius posi-
tion of ¥. Consequently, the Mébius metric ®fis defined by(dY, dY)1 = g¢. Furthermore,
the Mdbius second fundamental formiofs given by

k1
(3.32) B =5t — Hoipo'e’ =Y hjo'e’
ij=1

where{w'} is the local coframe field oM™ dual to{E;}.
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On the other hand, by (3.23) and the Gauss equatiofsaridy, one finds that the Ricci
tensor ofg is given as follows:
k1 —1 k
(3.33) Rij = —r—25ij - Zhikhkj . ifl<i, j <k,
k=1
m—ki—1
2
(335 R;j=0, ifl<i<kp,ki+1<j<m or ki+1<i<m,1<j<k,

(3.34) Rij = 5,']', if k1+1<i, j<m,

which implies that the normalized scalar curvatureg @ given by

m((m —ky)(m — kg — 1) — ka(kg — 1)) — (m — 1)r?

(3.36) K= o
Thus,

1 2 (m—k)(m—ki—1)—ki(k1—1)
(3.37) %(1+ mek) = 2om — D2 .

Sincem > 3, it follows from (2.19) and (3.32)—(3.37) that the Blaschke tensor isf
givenbyA = )" A;j0' 0/, where

1 ,
(3.38) Aij = —ﬁ&j, if 1 <i,j<k,
r
1 ,
(3.39) Ajj = ﬁ‘sij, fhkr+1<i, j<m,
r
(3.40) A;; =0, fl<i<hki,ki+1l<j<m or ki+1<i<m,1=<j<k,

which, once again, implies that is parallel and has two distinct eigenvalues

1

3.41 M=—A=——5.
( ) 1 2 2,2

4. Proof of the main theorem. To make the argument simpler, we divide the proof
into several lemmas. First, we recall a theorem proved by Liu et al. [15].

THEOREM 4.1 (Liu etal. [15]). Any Mobius isotropic submanifold immersed in S”
must be locally Mébius equivalent to one of the following immersions.

(1) Aminimal immersionx : M — S" with constant scalar curvature.

(2) Theimage under o of a minimal immersion with constant scalar curvature.

(3) Theimage under T of a minimal immersion with constant scalar curvature.

Now, letx : M™ — §™*1 pe an immersed hypersurface without umbilics.

LeEmMA 4.2. If the Blaschke tensor A is parallel, then the Mdbius form @ vanishes
identically; in particular, by (2.18), B issymmetric for all indicesi, j, k.

PROOF For any given poinpp € M™, take an orthonormal frame fielcE;} around
p with respect to the Mobius metrig, such that the corresponding componeBjs of the
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Mobius second fundamental forB are diagonalized at, that is, B;; (p) = B;é;;. Let {w'}
be the dual of E;}, and write

A=) Ajoe’, &= 0.
Then it follows from (2.17) that
(4.2) Ajjik — Ajkj = Bix®j — Bij Py .
SinceA is parallel,A;;x = O for anyi, j, k. Thus, at the given point, we have
(4.2) Bi(3ix®;(p) — 8ijPx(p)) = 0.

By (2.14), there are different indicés, i such thatB;, # 0 andB;, # 0. Then for any
indicesi, j, we have

(4.3) 8ijPi(p) —8;1i@j(p) =0, 8;,jPi(p) —8i,i®;(p) =0.
If i = i1, putj =ip;if i # i1, putj =iy. Thenit follows from (4.3) tha®; (p) = 0. By the
arbitrariness of and p, we obtain thatb = 0. |

LEmmMA 4.3. If A isparallée, then all eigenvalues of the Blaschke tensor A of x are
constant on M™.

PROOF  SinceA is parallel, there exists, around each point, a local orthonormal frame
field {E;} such that

(4.4) Aij = Aidij .
Substitute (4.4) into the equality
0= Z Aijrok = dA;j — Agjof — Aikw]; ,
where{w'} is the dual of( E;} anda)j. are the connection forms of the Levi-Civita connection
of g. Then it follows easily that
(4.5) dAisij — (Ai — Apal =0,
which implies that
(4.6) dA; =0, o), =0 inthecasethal; #A;. o
LEMMA 4.4. If (4.4) holds, then B;; = Ointhecasethat A; # A;.

ProOOF. Itfollows from (2.16) and Lemma 4.2 that By Axj — AixBrj = @ij —Pji =
0. Since (4.4) holds, we hawg; (A; — A;) = 0. =

Now, letz be the number of the distinct eigenvaluesAafandi, ..., A, denote the
distinct eigenvalues ofi. Fix a suitably chosen orthonormal frame figl;} for which the
matrix (4;;) can be written as
4.7 (Ajj) = Diag(A1, ..., A1, A2, ooy A2, oy Ay ey Ap)

—_— —m—m,—

—_——
k1 ko ki
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or, equivalently,
(4.8) Al=--=Ap =7, o Apgegby i1 = - = Ay = Ar .

LEMMA 4.5. Supposethat > 3. If, with respect to an orthonormal frame field { E;},
(4.7) holds and at a point p, B;; = B;é;;, then

(4.9) B; = B; inthecasethat A; = A; .

PrROOF By Lemma 4.3, for any, j satisfyingA; # A;, we havew; = 0. Differentiat-
ing this equation, we obtain from (2.15) that

0= Rijji = BiiBjj — Bl-zj + Aji — Ajjdij +Ajj — Ajjdij .
Thus atp, it holds that
(4.10) BiBj+A;i+A;=0.

If there exist indices, j such thatA; = A; but B; # B;, then for allk satisfying
Ay # A;, we have

(4.11) BBy +A; +Ar=0, B;jBi+A;+A;=0.

It follows from (4.11) that(B; — B;)B; = 0, which implies thatB; = 0. Thus, by (4.11),
we obtainA; = —A; = —A;. This implies that = 2, contradicting the assumption of the
lemma. O

COROLLARY 4.6. Ifr > 3,thenthereexists an orthonormal framefield { £;} such that
(4.12) Ajj = Aidij, Bij = Bidjj.
Furthermore, if (4.7) holds, then

(4.13) (Bij) = Diag(pt, ..., 01, U2, <oy 25 ooy s oo ey )
k1 ko ki

thatis

(414) By=--- =Bk1 :I’Ll""’Bk1+"'+k;_1+1= ---=B, = i,

where u1, ..., u, arenot necessarily different from each other.

PROOF.  SinceA is parallel, we can find a local orthonormal frame figkj}, such that
(4.7) or, equivalently, (4.8) holds. It suffices to show that, at any point, the component matrix
(B;;) of B with respect toE;} is diagonal. Note thaty, ..., k; are the multiplicities of the

eigenvalues, ..., A;, respectively. By Lemma 4.4, we can write
(B;j) = Diag(B(y), - - ., B)) ,
whereBy, ..., B(; are square matrices of orders .. ., k;, respectively. For any point,

we can choose a suitable orthogonal maltiaf the form

T = Diag(Tay, - - -, T(1))
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with T(y), ..., T(;) being orthogonal matrices of ordeéts . . ., k;, such that
T - (Bij(p))- T~ =Diag(B1, ..., Bn),
whereBs, ..., By, are the eigenvalues of tensBrat p. It then follows from Lemma 4.5 that
Bi=---=By, :=p1,...,Bytetbk, 41 == By 1=y .

Hence, we have

T(1)B(1)(P)T(I)1 = Diag(ug, ..., 1),

T(z)B(z)(P)T(,_)l = Diag(us, ..., fe) -
Therefore, we have

Bay(p) = T(I)l - Diag(1, - . ., n1) - Ty = Diag(ug, - .., p1),

B(l)(p) = Dlag(:u‘t! IR Ml‘) )
that is,

(Bl](p)):Dlag(l‘l/lv7“‘171“1‘17“‘[) g

LEMMA 4.7. Ift > 3, then all the M&bius principal curvatures u1, ..., u; of x are
constant, and hence x is Mdbius isoparametric.

ProOF It suffices to show that; is constant. To this end, choose a frame figiil}
such that (4.7) and (4.13) hold. Note that, by (4.6), whenil< k; andj > k1, we have

(4.15) > Bijro' =dBij - Y Bjwl — > Bywh =0,
which implies thatB;;, = 0.

Then, by the symmetry aB;;; (see Lemma 4.2), we see that; = 0, in the case that
two indices ini, j, k are less than or equal q with the other index larger thaky, or one
index ini, j, k is less than or equal #a with the other two indices larger than. In particular,
foranyi, j satisfying 1< i, j < k1,

k1
Z B,’jka)k =dB;j — Z Bkjw,]'( — Z B,'ka)];- =dB;d;j — B./a)z'j — B,'a)lj .
k=1
Thus, by putting/ = i, one obtains
k1
(4.16) Y Biro' =dpu,
k=1

which implies that

(4.17) Er(nu1) =0, k1+1<k<m.
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Similarly,

(4.18) Ei(Bj)=0, 1<i<ky, ki+1=<j<m.
On the other hand, it is easily seen from (4.10) that

(4.19) wiBj+r+A; =0, k+1<j<m,

hold identically. Differentiating (4.19) in the direction &, 1 < k < k1, and using (4.18),
we obtain

(4.20) Ex(up)Bj =0, 1<k<ky, ki+1=<j<m.

Sincet > 3, one finds easily that there exists some ingdesuch thatts + 1 < j < m and
B; # 0. Therefore Ex (1) = 0 for 1 < k < ky. This together with (4.17) implies that; is
a constant. a

COROLLARY 4.8. Ift > 3,thent = 3 and B isparallel.

PROOF Indeed, the conclusion th#t is parallel comes from (4.6), Corollary 4.6 and
Lemmad4.7.
If + > 3, then there exist at least four indidgsi», i3, i, such thatd;,, A;,, Ai;, A;, are
distinct each other. Then it follows from (4.10) that
BilBig + Ail + Aiz = 07 BigBi4 + Ai3 + Ai4 = O,
Bi,Bi, + Aj; + Ai; =0, B;,Bi, +A;,+ A, =0.
Consequently, we obtai;, — A;,)(Ai, — A;;) = 0, a contradiction. O
LEMMA 4.9. Ift < 2and B isnot parallel, then one of the following cases holds.
(1) r=1landx isMobiusisotropic.
) r=2,M+rp=0andB; =0¢therforalll<i <kjorforallky+1<i <m.

PrROOF It suffices to consider the case that 2. For any pointp € M™, we can find
an orthonormal frame fielf;} such that (4.12) holds at.
By (4.6), we see that

(4.21) @, =0, 1<i<hk, kai+1<j<m,

hold identically. Taking exterior differentiation of (4.21) and making use of (2.15), we find
that, atp

(4.22) BiBj+A;+A; =0, 1<i<hk, ki+1<j<m.

If there exist one pair of indice®, jo satisfying 1< ig < k1, k1 + 1 < jo < m such that
Bj, # 0 andBj, # 0, then for each indexsatisfying 1< i < k1, we obtain
BiyBj, +Ajy+Aj, =0, BiBj,+A +Aj,=0,
from which it follows that(B; — Bi,) B}, = 0 or, equivalently,
(4.23) B; =B

o, 1=<i=<ki.
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Similarly, we obtain
(4.24) Bi=Bj,, ki<j<m.

Consequently, (4.13) also holds in the case that 2. Now, an argument similar to that in
the proof of Lemma 4.7 shows that the principal curvatiesire all constant. Therefore,
B is parallel by (4.21), contradicting the assumption. Thus, eithex O for all indicesi
satisfying 1< i < k1 or B; = O for all indices; satisfyingk; < j < m. In both cases we
have, by (4.22)3.1 + A2 = 0. O

PROOF OFTHEOREM1.2. By Theorems 1.1 and 4.1, it suffices to consider the case
thatx neither is M6bius isotropic nor has parallel Mébius second fundamental form. Hence,
from the lemmas proved in this section, we can suppose without loss of generality that

(4.25) t=2, Mm=—-i2=A#0, Byt1=---=B,=0.

Sincey_ B; = 0 and}_ B? = (m — 1)/m, one sees easily that > 3. SinceA is parallel, the
tangent bundl@ M™ of M™ has a decompositiohM™ = V1 & Vo, whereV; and Vs are the
eigenspaces oA corresponding to the eigenvalues= 1 andip = —2, respectively.
Let{E;;1<i <ki}and{E;; k1 < j < m} be orthonormal frame fields for subbundles
V1 and Va, respectively. ThedE;; 1 < i < m} is an orthonormal frame field o™ with
respect to the Mébius metric. Then (4.21) implies that both; and V» are integrable, and
thus the Riemannian manifold/™, ¢g) can be locally decomposed into a direct product of
two Riemannian manifold&éM1, g1) and(Ma, ¢2), that is, as a Riemannian manifold, locally

(4.26) (M™, g) = (M1, g1) x (M2, g2) .

It follows from (2.15), (4.7), (4.25) and (4.26) that the Riemannian curvature tensors of
(M1, g1) and(M>, g2) have the following components, respectively,

(4.27) Rijki = 2A(8u8jk — 8ikdj1) + (BuBjx — BixBj1), 1<1i,j, k1 <k,
(4.28) Rijii = =20(8i18jk — dikbj1), ki+1=<i,j, kIl <m.

Thus(Ma, go) is of constant sectional curvature2i.

Next we consider the following cases separately.

Case (1): A > 0. Inthis case, set = (21)~1/2. Then(Ma, ¢») can be locally identi-
fied with H"*1(—=1/r2). Let§ = (o, 2) : H" *1(=1/r?) — R’f’kﬁl be the canonical
embedding.

Sinceh = Zf_lj:l Bijo'w’ is a Codazzi tensor oM1, g1), it follows from (4.27) that
there exists a minimal immersed hypersurface

(4.29) F1: (M1, 1) — Sty cRMY2 D 2<kyg<m—1,

which hash as its second fundamental form. Clearly, is umbilic free and has constant

scalar curvature
mki(ky — 1) — (m — 1)r2
5 ,

S1=

mr
andM™ can be locally identified witd™ = (M, g1) x H™ %1 (=1/r?).
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Definex1 = y1/y0, X2 = y2/yo andx = (x1, X2). Then, by the discussion in Exam-
ple 3.2, : M™ — $"t1 yields an immersed hypersurface with the giveand B as its
Mobius metric and Moébius second fundamentah, respectively. Therefore, by Theorem
2.3,x is Mobius equivalent ta.

Case (2): A < 0. Inthis case, set= (—21)~1/2, then(M>, ¢») can be locally identi-
fied with S”—%1(r). Let j, : " *1(r) — R"~k1+1 pe the canonical embedding.

Sinceh = Zﬁlj:l Bjjo'’ is a Codazzi tensor oM, g1), it follows from (4.27) that
there exists a minimal immersed hypersurface

(430)  §= (o, y1): (M1, g1) — HPY(=1/r2) cRM2 ) 2<kg<m—1,

which hag: as its second fundamental form. Cleashyis umbilic free and has constant scalar
curvature
mky(ky — 1) — (m — L)r?
S1=— 5 ;
mr
andM™ can be locally identified with1™ = (M1, g1) x H"™*1(=1/r?).

Definex1 = y1/y0, X2 = y2/yo andx = (X1, x2). Then, by the discussion in Example
3.3,i : M — "+ defines an immersed hypersurface with the giyamd B as its Mébius
metric and Mdobius second fundamental form, respectively. Therefore, by Theoremi2.3,
Mobius equivalent ta. m]
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