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Abstract. In this paper, we give a complete classification of all immersed hypersur-
faces in the unit sphere with parallel Blaschketensors. For this classification, two kinds of
new examples are constructed.

1. Introduction. Let Sn(r) be then-dimensional standard sphere of radiusr and
Sn = Sn(1) in then-dimensional Euclidean spaceRn. Let Hn(c) be then-dimensional hy-
perbolic space of constant curvaturec < 0 defined by

Hn(c) = {y = (y0, y1) ∈ Rn+1
1 ; 〈y, y〉1 = 1/c, y0 > 0} ,

where for any integern ≥ 2, Rn
1 ≡ R1 × Rn−1 is then-dimensional Lorentzian space with the

standard Lorentzian inner product〈·, ·〉1 given by

〈y, y ′〉1 = −y0y
′
0 + y1 · y ′

1 , y = (y0, y1), y ′ = (y ′
0, y

′
1) ∈ Rn

1 ,

and ‘·’ denotes the standard Euclidean inner product onRn−1.
Denote bySn+ the hemisphere inSn whose first coordinate is positive. Then there are

two conformal diffeomorphismsσ : Rn → Sn\{(−1, 0)} andτ : Hn(−1) → Sn+ defined as
follows:

σ(u) =
(

1 − |u|2
1 + |u|2 ,

2u

1 + |u|2
)

, u ∈ Rn,(1.1)

τ (y) =
(

1

y0
,
y1

y0

)
, y = (y0, y1) ∈ Hn ⊂ Rn+1

1 .(1.2)

Now suppose thatx : Mm → Sm+p is an immersed submanifold inSm+p without um-
bilic points. We recall that there are four basic Möbius invariants ofx given by Wang in [17],
which are the Möbius metricg, the Möbius formΦ, the Blaschke tensorA and the Möbius
second fundamental formB. Study of these invariants is closely related to Willmore hypersur-
faces (in particular, Willmore surfaces) and other interesting topics in conformal differential
geometry. In recent years, many interesting and important results have been obtained in re-
lated areas; see, for example, [1, 2, 5–7, 9–17]and references therein.Among these results,
there are some interesting classification theorems of submanifolds with particular Möbius in-
variants, such as classification of surfaces withvanishing Möbius form [13], classification of
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Möbius isotropic submanifolds[15], and classification of hypersurfaces with Blaschke ten-
sors that are linearly dependent on the Möbius metrics and the second Möbius fundamental
forms [12, 16]. Also, Hu and Li [6] recently proved a classification theorem of all immersed
hypersurfaces inSm+1 with parallel Möbius second fundamental forms, which can be stated
as follows.

THEOREM 1.1 (Hu and Li [6]). Let x : Mm → Sm+1, m ≥ 2, be an immersed
umbilic-free hypersurface with parallel Möbius second fundamental form. Then x is locally
Möbius equivalent to one of the following hypersurfaces.

(1) A standard torus Sk1(r) × Sm−k1(
√

1 − r2) in Sm+1 for some r > 0 and positive
integer k1.

(2) The image under the conformal diffeomorphism σ of a standard cylinder Sk1(r) ×
Rm−k1 in Rm+1 for some r > 0 and positive integer k1.

(3) The image under the conformal diffeomorphism τ of a standard cylinder Sk1(r) ×
Hm−k1(−1/(1 + r2)) in Hm+1(−1) for some r > 0 and positive integer k1.

(4) CSS(p, q, r) for some constants p, q, r, as indicated in Example 3.1.

Thus, it is natural to study submanifolds in the unit sphereSn with particular Blaschke
tensors. It is easily seen that a submanifold inSn with vanishing Blaschke tensor also has
a vanishing Möbius form, and therefore is a special Möbius isotropic submanifold. By the
argument of [15], we can conclude that each submanifold inSn with vanishing Blaschke
tensor is locally Möbius equivalent to the image under the conformal diffeomorphismσ :
Rn → Sn\{(−1, 0)} of a minimal submanifold in the Euclidean spaceRn. On the other
hand, by Theorem 1.1, it is interesting to find a classification of immersed submanifolds with
parallel Blaschke tensors.

In this direction, the most important area is the study of hypersurfaces. In this paper, we
give a Möbius classification of all immersed hypersurfaces inSm+1 with parallel Blaschke
tensors. In pursuing this, we find two kinds of immersed hypersurfaces that have parallel
Blaschke tensors but have non-parallel Möbius second fundamental forms (for details, see
Examples 3.2 and 3.3). The main theorem of this paper is the following.

THEOREM 1.2. Let x : Mm → Sm+1, m ≥ 2, be an immersed hypersurface without
umbilics. If the Blaschke tensor A of x is parallel, then one of the following holds.

(1) x is Möbius isotropic and is therefore locally Möbius equivalent to:
(a) a minimal immersed hypersurface in Sm+1 with constant scalar curvature; or
(b) the image under σ of a minimal immersed hypersurface in Rm+1 with constant

scalar curvature; or
(c) the image under τ of a minimal immersed hypersurface in Hm+1(−1) with

constant scalar curvature.
(2) x is of parallel Möbius second fundamental form B and is therefore locally Möbius

equivalent to:
(a) a standard torus Sk1(r) × Sm−k1(

√
1 − r2) in Sm+1 for some r > 0 and posi-

tive integer k1; or
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(b) the image under σ of a standard cylinder Sk1(r) × Rm−k1 in Rm+1 for some
r > 0 and positive integer k1; or

(c) the image under τ of a standard cylinder Sk1(r) × Hm−k1(−1/(1 + r2)) in
Hm+1(−1) for some r > 0 and positive integer k1; or

(d) CSS(p, q, r) for some constants p, q, r .
(3) x is non-isotropic with a non-parallel Möbius second fundamental form B and is

locally Möbius equivalent to:
(a) one of the minimal hypersurfaces as indicated in Example 3.2; or
(b) one of the non-minimal hypersurfaces as indicated in Example 3.3.

REMARK 1.3. It is directly verified that each of the immersed hypersurfaces without
umbilics stated in the above theorem has a parallel Blaschke tensor.

2. Preliminaries. Let x : Mm → Sm+p be an immersed submanifold without um-
bilic points, andn = m + p. Denote byh the second fundamental form ofx andH =
(1/m) trh the mean curvature vector field. Define

ρ =
(

m

m − 1
(|h|2 − m|H |2)

)1/2

, Y = ρ(1, x) .(2.1)

ThenY : Mm → Rn+2
1 is an immersion ofMm into the Lorentzian spaceRn+2

1 and is called
the canonical lift (or the Möbius position vector) ofx. The functionρ given by (2.1) may be
called the ‘Möbius factor’ of the immersionx. We define

Cn+1+ = {Y = (Y0, Y ) ∈ R1 × Rn+1 ; 〈Y, Y 〉1 = 0, Y0 > 0} .

Let O(n + 1, 1) be the Lorentzian group of all elements inGL(n + 2; R) preserving
the standard Lorentzian inner product〈·, ·〉1 on Rn+2

1 , andO+(n + 1, 1) be a subgroup of
O(n + 1, 1) given by

O+(n + 1, 1) = {T ∈ O(n + 1, 1) ; T (Cn+1+ ) ⊂ Cn+1+ } .(2.2)

Then the following theorem is well known.

THEOREM 2.1 (Wang [17]). Two submanifolds x, x̃ : Mm → Sm+p with Möbius
position vectors Y, Ỹ , respectively, are Möbius equivalent if and only if there is a T ∈
O+(n + 1, 1) such that Ỹ = T (Y ).

By Theorem 2.1, the induced metricg = Y ∗〈·, ·〉1 = ρ2 dx · dx defined byY on Mm

from the Lorentzian product〈·, ·〉1 is a Möbius invariant Riemannian metric (cf. [3, 4 17]), and
is called the Möbius metric ofx. Using the vector-valued functionY and the Laplacian� of
the metricg, we can define another important vector-valued functionN : Mm → Rn+2

1 by

N = − 1

m
�Y − 1

2m2
〈�Y,�Y 〉1Y .(2.3)
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Then it is verified that the Möbius position vectorY and the Möbius biposition vectorN
satisfy the following identities [17]:

〈�Y, Y 〉1 = −m , 〈�Y, dY 〉1 = 0 , 〈�Y,�Y 〉1 = 1 + m2κ ,(2.4)

〈Y, Y 〉1 = 〈N,N〉1 = 0 , 〈Y,N〉1 = 1 ,(2.5)

whereκ denotes the normalized scalar curvature of the Möbius metricg.
Let V → Mm be the vector subbundle of the trivial Lorentzian bundleMm × Rn+2

1 de-
fined to be the orthogonal complement ofRY⊕ RN⊕Y∗(T Mm) with respect to the Lorentzian
product〈·, ·〉1. ThenV is called the Möbius normal bundle of the immersionx. Clearly, we
have the following vector bundle decomposition:

Mm × Rn+2
1 = RY ⊕ RN ⊕ Y∗(T Mm) ⊕ V .(2.6)

Now, let T ⊥Mm be the normal bundle of the immersionx : Mm → Sm+1. Then the
mean curvature vector fieldH of x defines a bundle isomorphismf : T ⊥Mm → V by

f (e) = (H · e, (H · e)x + e) for anye ∈ T ⊥Mm .(2.7)

It is easily seen thatf preserves the inner products as well as the connections onT ⊥Mm and
V (see [17]).

To simplify notation, we make the following conventions on the ranges of induces used
frequently in this paper:

1 ≤ i, j, k, · · · ≤ m , m + 1 ≤ α, β, γ, · · · ≤ n .(2.8)

For a local orthonormal frame field{ei} for the induced metricdx ·dx with dual{θ i} and
for an orthonormal normal frame field{eα} of x, we set

Ei = ρ−1ei , ωi = ρθi , Eα = f (eα) .(2.9)

Then{Ei} is a local orthonormal frame field for the Möbius metricg, {ωi} is the dual of{Ei},
and{Eα} is a local orthonormal frame field of the Möbius normal bundleV → M. By [17]
and [15], the basic Möbius invariantsΦ, A andB have the following local expressions:

Φ =
∑

Φα
i ωiEα , A =

∑
Aijω

iωj , B =
∑

Bα
ijω

iωjEα ,(2.10)

where

Φα
i = −ρ−2

(
Hα

,i +
∑

(hα
ij − Hαδij )ej (logρ)

)
,(2.11)

Aij = − ρ−2
(

Hessij (logρ) − ei(logρ)ej (logρ) −
∑

Hαhα
ij

)

− 1

2
ρ−2(|d logρ|2 − 1 + |H |2)δij ,

(2.12)

Bα
ij = ρ−1(hα

ij − Hαδij ) ,(2.13)

in which the subscript ‘i’ denotes the covariant derivative with respect to the induced metric
dx · dx and in the directionei .
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REMARK 2.2. By definition, the Möbius formΦ and the Möbius second fundamental
form B are V -valued differential forms. However, if we identifyV with T ⊥Mm via the
canonical bundle isomorphismf : T ⊥Mm → V , thenΦ andB are identified, respectively,
with f −1(Φ), f −1(B). Therefore, (2.10) can be written as

f −1(Φ) = ρ
∑

Φα
i θ ieα , A = ρ2

∑
Aij θ

iθj , f −1(B) = ρ2
∑

Bα
ij θ

iθj eα .

Denote byD the Riemannian connection of the Möbius metricg. Then, with respect to
the frame field{Ei}, the componentsRijkl , Rij of the Riemannian curvature tensor and the
Ricci tensor are defined, respectively, by

DEkDEl Ei − DEl DEkEi − D[Ek,El ]Ei =
∑
j

RijklEj , Rij =
∑

k

Rikkj .

Then by [17], we have

tr A = 1

2m
(1 + m2κ) , tr B =

∑
Bα

iiEα = 0 , |B|2 =
∑

(Bα
ij )2 = m − 1

m
.(2.14)

Rijkl =
∑

(Bα
ilB

α
jk − Bα

ikB
α
jl) + Ailδjk − Aikδjl + Ajkδil − Ajlδik .(2.15)

We should remark that (2.15) has the opposite sign to (2.31) in [17] due to the different
defining equations of the Riemannian curvature tensor. Furthermore, ifΦα

ij , Aijk, Bα
ijk denote

respectively the components with respect to the frame fields{Ei} and{Eα} of the covariant
derivatives ofΦ, A, B, then the following Ricci identities hold [17]:

Φα
ij − Φα

ji =
∑

(Bα
ikAkj − Bα

kjAki) ,(2.16)

Aijk − Aikj =
∑

(Bα
ikΦ

α
j − Bα

ijΦ
α
k ) ,(2.17)

Bα
ijk − Bα

ikj = δijΦ
α
k − δikΦ

α
j .(2.18)

By taking a trace in (2.15) and (2.18), one obtains

Rij = −
∑

Bα
ikB

α
kj + δij tr A + (m − 2)Aij ,(2.19)

(m − 1)Φα
i = −

∑
Bα

ijj .(2.20)

By (2.14), (2.19) and (2.20), ifx is a hypersurface andm ≥ 3, then the Möbius formΦ and the
Blaschke tensorA are determined by the Möbius metricg and Möbius second fundamental
form B. Thus, it is easily seen that the following theorem holds.

THEOREM 2.3 (Wang [17]). Two hypersurfaces x : Mm → Sm+1 and x̃ : M̃m →
Sm+1, m ≥ 3, are Möbius equivalent if and only if there exists a diffeomorphism ϕ : Mm →
M̃m preserving the Möbius metric and the Möbius second fundamental forms.

3. Examples. Before proving the main theorem, we present some concrete immersed
hypersurfaces inSm+1 with parallel Blaschke tensors.

EXAMPLE 3.1 (Hu and Li [6]). LetR+ be the half line of positive real numbers. For
any two natural numbersp, q satisfyingp + q < m and a real numberr ∈ (0, 1), consider
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the imbedded hypersurfaceu : Sp(r) × Sq(
√

1 − r2) × R+ × Rm−p−q−1 → Rm+1 defined
by u = (tu′, tu′′, u′′′), where

u′ ∈ Sp(r) ⊂ Rp+1 , u′′ ∈ Sq(
√

1 − r2) ⊂ Rq+1 , t ∈ R+ , u′′′ ∈ Rm−p−q−1.

Thenx = σ ◦ u : Sp(r) × Sq(
√

1 − r2) × R+ × Rm−p−q−1 → Sm+1 defines an immersed
hypersurface inSm+1 without umbilics, which is denoted in [6] byCSS(p, q, r). By a direct
calculation, one easily finds thatCSS(p, q, r) has exactly three distinct Möbius principal cur-
vatures and has parallel Möbius second fundamental form, see [6] for details. Then it follows
from the arguments in the main theorem of [6] thatCCS(p, q, r) also has a parallel Blaschke
tensor.

EXAMPLE 3.2. For any integersm andk1 satisfyingm ≥ 3 and 2≤ k1 ≤ m − 1, let
ỹ1 : M1 → Sk1+1(r) ⊂ Rk1+2 be an immersed minimal hypersurface without umbilics and
with constant scalar curvature

S̃1 = mk1(k1 − 1) − (m − 1)r2

mr2
,(3.1)

and

ỹ = (ỹ0, ỹ2) : Hm−k1(−1/r2) → Rm−k1+1
1(3.2)

be the canonical embedding. Set

M̃m = M1 × Hm−k1(−1/r2) , Ỹ = (ỹ0, ỹ1, ỹ2) .(3.3)

Then Ỹ : M̃m → Rm+3
1 is an immersion satisfying〈Ỹ , Ỹ 〉1 = 0 and has the induced Rie-

mannian metric

g = 〈dỸ , dỸ 〉1 = −dỹ2
0 + dỹ2

1 + dỹ2
2 .

Obviously,

(M̃m, g) = (M1, dỹ2
1) × (Hm−k1(−1/r2), 〈dỹ, dỹ〉1)(3.4)

as a Riemannian manifold. Define

x̃1 = ỹ1

ỹ0
, x̃2 = ỹ2

ỹ0
, x̃ = (x̃1, x̃2) .(3.5)

Thenx̃2 = 1 andx̃ : Mm → Sm+1 defines an immersed hypersurface without umbilics and
hasỸ as its Möbius position vector, see (3.7). Clearly, we have

dx̃ = −dỹ0

ỹ2
0

(ỹ1, ỹ2) + 1

ỹ0
d(ỹ1, ỹ2) .(3.6)

Therefore, the induced metric̃g = dx̃ · dx̃ is related tog by

g̃ = ỹ−4
0 dỹ2

0(ỹ2
1 + ỹ2

2) + ỹ−2
0 (dỹ2

1 + dỹ2
2) − 2ỹ−3

0 dỹ0(ỹ1 dỹ1 + ỹ2 dỹ2)

= ỹ−2
0 dỹ2

0 + ỹ−2(dỹ2
1 + dỹ2

2) − 2ỹ−2
0 dỹ2

0

= ỹ−2
0 (−dỹ2

0 + dỹ2
1 + dỹ2

2) = ỹ−2
0 g .

(3.7)
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If ñ1 is the unit normal vector field of̃y1 in Sk1+1(r) ⊂ Rk1+2, thenñ = (ñ1, 0) ∈ Rm+2 is a
unit normal vector field of̃x. Consequently, by (3.6), the second fundamental formh̃ of x̃ is
related to the second fundamental formh of ỹ1 as

h̃ = −dñ · dx̃ = −ỹ−1
0 (dñ1 · dỹ1) = ỹ−1

0 h .(3.8)

Let {Ei ; 1 ≤ i ≤ k1} (resp.{Ei ; k1 + 1 ≤ i ≤ m}) be a local orthonormal frame field
on (M1, dỹ2

1) (resp. onHm−k1(−1/r2)). Then{Ei ; 1 ≤ i ≤ m} gives a local orthonormal
frame field on(M̃m, g). Putei = ỹ0Ei , i = 1, . . . ,m. Then{ei ; 1 ≤ i ≤ m} yields a local
orthonormal frame field on(M̃m, g̃). Thus we obtain

h̃ij =
{

h̃(ei, ej ) = ỹ2
0h̃(Ei, Ej ) = ỹ0h(Ei,Ej ) = ỹ0hij , when 1≤ i, j ≤ k1 ,

0 , wheni > k1 or j > k1 ,
(3.9)

which implies, by the minimality of̃y1, that the mean curvaturẽH of x̃ vanishes. Therefore,
by definition, the Möbius factor̃ρ of x̃ is determined by

ρ̃2 = m

m − 1

( ∑
i,j

h̃2
ij − m|H̃ |2

)
= m

m − 1
ỹ2

0

k1∑
i,j=1

h2
ij = ỹ2

0 ,

where we used the Gauss equation and (3.1). Hence,ρ̃ = ỹ0 and thusỸ is the Möbius position
of x̃. Consequently, the Möbius metric ofx̃ is defined by〈dỸ , dỸ 〉1 = g. Furthermore, the
Möbius second fundamental form ofx̃ is given by

B̃ = ρ̃−1
∑

(h̃ij − H̃ δij )ω
iωj =

k1∑
i,j=1

hij ωiωj ,(3.10)

where{ωi} is the local coframe field onMm dual to{Ei}.
On the other hand, by (3.4) and the Gauss equations ofỹ1 andỹ, one finds that the Ricci

tensor ofg is given as follows:

Rij = k1 − 1

r2 δij −
k1∑

k=1

hikhkj , if 1 ≤ i, j ≤ k1 ,(3.11)

= −m − k1 − 1

r2 δij , if k1 + 1 ≤ i, j ≤ m ,(3.12)

Rij = 0 , if 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ m or k1 + 1 ≤ i ≤ m, 1 ≤ j ≤ k1 ,(3.13)

which implies that the normalized scalar curvature ofg is given by

κ = m(k1(k1 − 1) − (m − k1)(m − k1 − 1)) − (m − 1)r2

m2(m − 1)r2 .(3.14)

Thus, we have

1

2m
(1 + m2κ) = k1(k1 − 1) − (m − k1)(m − k1 − 1)

2(m − 1)r2
.(3.15)
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Sincem ≥ 3, it follows from (2.19) and (3.10)–(3.15) that the Blaschke tensor ofx̃ is
given byA = ∑

Aijω
iωj , where

Aij = 1

2r2δij , if 1 ≤ i, j ≤ k1 ,(3.16)

Aij = − 1

2r2δij , if k1 + 1 ≤ i, j ≤ m ,(3.17)

Aij = 0, if 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ m or k1 + 1 ≤ i ≤ m, 1 ≤ j ≤ k1 .(3.18)

Clearly,A is parallel and has two distinct eigenvalues

λ1 = −λ2 = 1

2r2 .(3.19)

EXAMPLE 3.3. For any integersm andk1 satisfyingm ≥ 3 and 2≤ k1 ≤ m − 1,
let ỹ = (ỹ0, ỹ1) : M1 → Hk1+1

(−1/r2
) ⊂ Rk1+2

1 be an immersed minimal hypersurface
without umbilics and with constant scalar curvature

S̃1 = −mk1(k1 − 1) + (m − 1)r2

mr2 ,(3.20)

and

ỹ2 : Sm−k1(r) → Rm−k1+1(3.21)

be the canonical embedding. Set

M̃m = M1 × Sm−k1(r), Ỹ = (ỹ0, ỹ1, ỹ2) .(3.22)

Then Ỹ : Mm → Rm+3
1 is an immersion satisfying〈Ỹ , Ỹ 〉1 = 0 and has the induced Rie-

mannian metric
g = 〈dỸ , dỸ 〉1 = −dỹ2

0 + dỹ2
1 + dỹ2

2 .

Obviously,

(M̃m, g) = (M1, 〈dỹ, dỹ〉1) × (Sm−k1(r), dỹ2
2)(3.23)

as a Riemannian manifold. Define

x̃1 = ỹ1

ỹ0
, x̃2 = ỹ2

ỹ0
, x̃ = (x̃1, x̃2) .(3.24)

Thenx̃2 = 1 andx̃ : M̃m → Sm+1 defines an immersed hypersurface without umbilics and
hasỸ as its Möbius position vector, see (3.26). Similarly, as in Example 3.2, we have

dx̃ = −dỹ0

ỹ2
0

(ỹ1, ỹ2) + 1

ỹ0
(dỹ1, dỹ2) ,(3.25)

and the induced metric̃g = dx̃ · dx̃ is related tog by

g̃ = ỹ−2
0 (−dỹ2

0 + dỹ2
1 + dỹ2

2) = ỹ−2
0 g .(3.26)

If (ñ0, ñ1) is the unit normal vector field of̃y in Hk1+1(−1/r2) ⊂ Rm+2
1 , then it is easy to see

that
ñ = (ñ1, 0) − ñ0x̃ ∈ Rm+2
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is a unit normal vector field of̃x. Hence, by (3.25), we have

dñ · dx̃ = (dñ1, 0) · dx̃ − ñ0 dx̃2

= −(ỹ−2
0 dỹ0)dñ1 · ỹ1 + ỹ−1

0 dñ1 · dỹ1 − ñ0ỹ
−2
0 (−dỹ2

0 + dỹ2
1 + dỹ2

2)(3.27)

= ỹ−1
0 (−dñ0 dỹ0 + dñ1 · dỹ1) − n0ỹ

−2
0 g ,

where the third equality comes from the fact that

−ỹ2
0 + ỹ2

2 = −1/r2 , −ñ0ỹ0 + ñ1 · ỹ1 = −ñ0 dỹ0 + ñ1 · dỹ1 = 0 .(3.28)

Consequently, the second fundamental formh̃ of x̃ is related to the second fundamental form
h of ỹ and the metricg as

h̃ = −dñ · dx̃ = −ỹ−1
0 〈d(ñ0, ñ1), dỹ〉1 + n0ỹ

−2
0 g = y−1

0 h + n0ỹ
−2
0 g .(3.29)

Let {Ei ; 1 ≤ i ≤ k1} (resp.{Ei ; k1 + 1 ≤ i ≤ m}) be a local orthonormal frame field on
(M1, dỹ2) (resp. onSm−k1(r)). Then{Ei ; 1 ≤ i ≤ m} is a local orthonormal frame field on
(Mm, g). Putei = ỹ0Ei , i = 1, . . . ,m. Then{ei ; 1 ≤ i ≤ m} is a local orthonormal frame
field on(Mm, g̃). Thus

h̃ij =




h̃(ei, ej ) = ỹ2
0h̃(Ei, Ej ) = ỹ0h(Ei,Ej ) + ñ0g(Ei, Ej )

= ỹ0hij + ñ0δij , when 1≤ i, j ≤ k1,

ñ0δij , when i > k1 or j > k1 ,

(3.30)

which implies, by the minimality of̃y1, that the mean curvature ofx̃ is

H̃ = 1

m

∑
h̃ii = ỹ0

m

k1∑
i=1

hii + ñ0 = ñ0 .(3.31)

Therefore, by definition, the Möbius factorρ̃ of x̃ is determined by

ρ̃2 = m

m − 1

(∑
i,j

h̃2
ij − m|H̃ |2

)
= m

m − 1
ỹ2

0

∑
i,j

h2
ij = ỹ2

0 ,

where we used the Gauss equation and (3.20). Hence,ρ̃ = ỹ0 and thusỸ is the Möbius posi-
tion of x̃. Consequently, the Möbius metric ofx̃ is defined by〈dỸ , dỸ 〉1 = g. Furthermore,
the Möbius second fundamental form ofx̃ is given by

B̃ = ρ̃−1(h̃ij − H̃ δij )ω
iωj =

k1∑
i,j=1

hijω
iωj ,(3.32)

where{ωi} is the local coframe field onMm dual to{Ei}.
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On the other hand, by (3.23) and the Gauss equations ofỹ1 andỹ, one finds that the Ricci
tensor ofg is given as follows:

Rij = −k1 − 1

r2 δij −
k1∑

k=1

hikhkj , if 1 ≤ i, j ≤ k1 ,(3.33)

Rij = m − k1 − 1

r2 δij , if k1 + 1 ≤ i, j ≤ m ,(3.34)

Rij = 0 , if 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ m or k1 + 1 ≤ i ≤ m, 1 ≤ j ≤ k1 ,(3.35)

which implies that the normalized scalar curvature ofg is given by

κ = m((m − k1)(m − k1 − 1) − k1(k1 − 1)) − (m − 1)r2

m2(m − 1)r2 .(3.36)

Thus,

1

2m
(1 + m2κ) = (m − k1)(m − k1 − 1) − k1(k1 − 1)

2(m − 1)r2 .(3.37)

Sincem ≥ 3, it follows from (2.19) and (3.32)–(3.37) that the Blaschke tensor ofx̃ is
given byA = ∑

Aijω
iωj , where

Aij = − 1

2r2
δij , if 1 ≤ i, j ≤ k1,(3.38)

Aij = 1

2r2
δij , if k1 + 1 ≤ i, j ≤ m ,(3.39)

Aij = 0 , if 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ m or k1 + 1 ≤ i ≤ m, 1 ≤ j ≤ k1 ,(3.40)

which, once again, implies thatA is parallel and has two distinct eigenvalues

λ1 = −λ2 = − 1

2r2 .(3.41)

4. Proof of the main theorem. To make the argument simpler, we divide the proof
into several lemmas. First, we recall a theorem proved by Liu et al. [15].

THEOREM 4.1 (Liu et al. [15]). Any Möbius isotropic submanifold immersed in Sn

must be locally Möbius equivalent to one of the following immersions.
(1) A minimal immersion x̃ : M → Sn with constant scalar curvature.
(2) The image under σ of a minimal immersion with constant scalar curvature.
(3) The image under τ of a minimal immersion with constant scalar curvature.

Now, letx : Mm → Sm+1 be an immersed hypersurface without umbilics.

LEMMA 4.2. If the Blaschke tensor A is parallel, then the Möbius form Φ vanishes
identically; in particular, by (2.18), Bijk is symmetric for all indices i, j, k.

PROOF. For any given pointp ∈ Mm, take an orthonormal frame field{Ei} around
p with respect to the Möbius metricg, such that the corresponding componentsBij of the
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Möbius second fundamental formB are diagonalized atp, that is,Bij (p) = Biδij . Let {ωi}
be the dual of{Ei}, and write

A =
∑

Aijω
iωj , Φ =

∑
Φiω

i .

Then it follows from (2.17) that

Aijk − Aikj = BikΦj − Bij Φk .(4.1)

SinceA is parallel,Aijk = 0 for anyi, j, k. Thus, at the given pointp, we have

Bi(δikΦj (p) − δijΦk(p)) = 0 .(4.2)

By (2.14), there are different indicesi1, i2 such thatBi1 �= 0 andBi2 �= 0. Then for any
indicesi, j , we have

δi1jΦi(p) − δi1iΦj (p) = 0 , δi2jΦi(p) − δi2iΦj (p) = 0 .(4.3)

If i = i1, putj = i2; if i �= i1, putj = i1. Then it follows from (4.3) thatΦi(p) = 0. By the
arbitrariness ofi andp, we obtain thatΦ ≡ 0. �

LEMMA 4.3. If A is parallel, then all eigenvalues of the Blaschke tensor A of x are
constant on Mm.

PROOF. SinceA is parallel, there exists, around each point, a local orthonormal frame
field {Ei} such that

Aij = Aiδij .(4.4)

Substitute (4.4) into the equality

0 =
∑

Aijkω
k = dAij − Akjω

k
i − Aikω

k
j ,

where{ωi} is the dual of{Ei} andωi
j are the connection forms of the Levi-Civita connection

of g. Then it follows easily that

dAiδij − (Ai − Aj)ω
i
j = 0 ,(4.5)

which implies that

dAi = 0 , ωi
j = 0 in the case thatAi �= Aj . �(4.6)

LEMMA 4.4. If (4.4) holds, then Bij = 0 in the case that Ai �= Aj .

PROOF. It follows from (2.16) and Lemma 4.2 that
∑

BikAkj −AikBkj = Φij −Φji =
0. Since (4.4) holds, we haveBij (Aj − Ai) = 0. �

Now, let t be the number of the distinct eigenvalues ofA, andλ1, . . . , λt denote the
distinct eigenvalues ofA. Fix a suitably chosen orthonormal frame field{Ei} for which the
matrix (Aij ) can be written as

(Aij ) = Diag(λ1, . . . , λ1︸ ︷︷ ︸
k1

, λ2, . . . , λ2︸ ︷︷ ︸
k2

, . . . , λt , . . . , λt︸ ︷︷ ︸
kt

) ,(4.7)
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or, equivalently,

A1 = · · · = Ak1 = λ1, . . . , Ak1+···+kt−1+1 = · · · = Am = λt .(4.8)

LEMMA 4.5. Suppose that t ≥ 3. If, with respect to an orthonormal frame field {Ei},
(4.7) holds and at a point p, Bij = Biδij , then

Bi = Bj in the case that Ai = Aj .(4.9)

PROOF. By Lemma 4.3, for anyi, j satisfyingAi �= Aj , we haveωi
j = 0. Differentiat-

ing this equation, we obtain from (2.15) that

0 = Rijji = BiiBjj − B2
ij + Aii − Aij δij + Ajj − Aij δij .

Thus atp, it holds that

BiBj + Ai + Aj = 0 .(4.10)

If there exist indicesi, j such thatAi = Aj but Bi �= Bj , then for allk satisfying
Ak �= Ai , we have

BiBk + Ai + Ak = 0 , BjBk + Aj + Ak = 0 .(4.11)

It follows from (4.11) that(Bi − Bj )Bk = 0, which implies thatBk = 0. Thus, by (4.11),
we obtainAk = −Ai = −Aj . This implies thatt = 2, contradicting the assumption of the
lemma. �

COROLLARY 4.6. If t ≥ 3, then there exists an orthonormal frame field {Ei} such that

Aij = Aiδij , Bij = Biδij .(4.12)

Furthermore, if (4.7) holds, then

(Bij ) = Diag(µ1, . . . , µ1︸ ︷︷ ︸
k1

, µ2, . . . , µ2︸ ︷︷ ︸
k2

, . . . , µt , . . . , µt︸ ︷︷ ︸
kt

) ,(4.13)

that is

B1 = · · · = Bk1 = µ1, . . . , Bk1+···+kt−1+1 = · · · = Bm = µt ,(4.14)

where µ1, . . . , µt are not necessarily different from each other.

PROOF. SinceA is parallel, we can find a local orthonormal frame field{Ei}, such that
(4.7) or, equivalently, (4.8) holds. It suffices to show that, at any point, the component matrix
(Bij ) of B with respect to{Ei} is diagonal. Note thatk1, . . . , kt are the multiplicities of the
eigenvaluesλ1, . . . , λt , respectively. By Lemma 4.4, we can write

(Bij ) = Diag(B(1), . . . , B(t)) ,

whereB(1), . . . , B(t) are square matrices of ordersk1, . . . , kt , respectively. For any pointp,
we can choose a suitable orthogonal matrixT of the form

T = Diag(T(1), . . . , T(t)) ,
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with T(1), . . . , T(t) being orthogonal matrices of ordersk1, . . . , kt , such that

T · (Bij (p)) · T −1 = Diag(B1, . . . , Bm) ,

whereB1, . . . , Bm are the eigenvalues of tensorB atp. It then follows from Lemma 4.5 that

B1 = · · · = Bk1 := µ1, . . . , Bk1+···+kt−1+1 = · · · = Bm := µt .

Hence, we have

T(1)B(1)(p)T −1
(1) = Diag(µ1, . . . , µ1) ,

...

T(t)B(t)(p)T −1
(t) = Diag(µt , . . . , µt ) .

Therefore, we have

B(1)(p) = T −1
(1) · Diag(µ1, . . . , µ1) · T(1) = Diag(µ1, . . . , µ1) ,

...

B(t)(p) = Diag(µt , . . . , µt ) ,

that is,

(Bij (p)) = Diag(µ1, . . . , µ1, . . . , µt , . . . , µt ) . �

LEMMA 4.7. If t ≥ 3, then all the Möbius principal curvatures µ1, . . . , µt of x are
constant, and hence x is Möbius isoparametric.

PROOF. It suffices to show thatµ1 is constant. To this end, choose a frame field{Ei}
such that (4.7) and (4.13) hold. Note that, by (4.6), when 1≤ i ≤ k1 andj > k1, we have∑

Bijkω
k = dBij −

∑
Bkjω

k
i −

∑
Bikω

k
j = 0 ,(4.15)

which implies thatBijk = 0.
Then, by the symmetry ofBijk (see Lemma 4.2), we see thatBijk = 0, in the case that

two indices ini, j, k are less than or equal tok1 with the other index larger thank1, or one
index ini, j, k is less than or equal tok1 with the other two indices larger thank1. In particular,
for anyi, j satisfying 1≤ i, j ≤ k1,

k1∑
k=1

Bijkω
k = dBij −

∑
Bkjω

k
i −

∑
Bikω

k
j = dBiδij − Bjω

j
i − Biω

i
j .

Thus, by puttingj = i, one obtains

k1∑
k=1

Biikω
k = dµ1 ,(4.16)

which implies that

Ek(µ1) = 0, k1 + 1 ≤ k ≤ m .(4.17)
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Similarly,

Ei(Bj ) = 0, 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ m .(4.18)

On the other hand, it is easily seen from (4.10) that

µ1Bj + λ1 + Aj = 0 , k1 + 1 ≤ j ≤ m ,(4.19)

hold identically. Differentiating (4.19) in the direction ofEk, 1 ≤ k ≤ k1, and using (4.18),
we obtain

Ek(µ1)Bj = 0 , 1 ≤ k ≤ k1, k1 + 1 ≤ j ≤ m .(4.20)

Sincet ≥ 3, one finds easily that there exists some indexj such thatk1 + 1 ≤ j ≤ m and
Bj �= 0. Therefore,Ek(µ1) = 0 for 1 ≤ k ≤ k1. This together with (4.17) implies thatµ1 is
a constant. �

COROLLARY 4.8. If t ≥ 3, then t = 3 and B is parallel.

PROOF. Indeed, the conclusion thatB is parallel comes from (4.6), Corollary 4.6 and
Lemma 4.7.

If t > 3, then there exist at least four indicesi1, i2, i3, i4, such thatAi1, Ai2, Ai3, Ai4 are
distinct each other. Then it follows from (4.10) that

Bi1Bi2 + Ai1 + Ai2 = 0 , Bi3Bi4 + Ai3 + Ai4 = 0 ,

Bi1Bi3 + Ai1 + Ai3 = 0 , Bi2Bi4 + Ai2 + Ai4 = 0 .

Consequently, we obtain(Ai1 − Ai4)(Ai2 − Ai3) = 0, a contradiction. �

LEMMA 4.9. If t ≤ 2 and B is not parallel, then one of the following cases holds.
(1) t = 1 and x is Möbius isotropic.
(2) t = 2, λ1 + λ2 = 0 and Bi = 0 either for all 1 ≤ i ≤ k1 or for all k1 + 1 ≤ i ≤ m.

PROOF. It suffices to consider the case thatt = 2. For any pointp ∈ Mm, we can find
an orthonormal frame field{Ei} such that (4.12) holds atp.

By (4.6), we see that

ωi
j = 0 , 1 ≤ i ≤ k1 , k1 + 1 ≤ j ≤ m ,(4.21)

hold identically. Taking exterior differentiation of (4.21) and making use of (2.15), we find
that, atp

BiBj + Ai + Aj = 0 , 1 ≤ i ≤ k1 , k1 + 1 ≤ j ≤ m .(4.22)

If there exist one pair of indicesi0, j0 satisfying 1≤ i0 ≤ k1, k1 + 1 ≤ j0 ≤ m such that
Bi0 �= 0 andBj0 �= 0, then for each indexi satisfying 1≤ i ≤ k1, we obtain

Bi0Bj0 + Ai0 + Aj0 = 0 , BiBj0 + Ai + Aj0 = 0 ,

from which it follows that(Bi − Bi0)Bj0 = 0 or, equivalently,

Bi = Bi0 , 1 ≤ i ≤ k1 .(4.23)
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Similarly, we obtain

Bj = Bj0 , k1 ≤ j ≤ m .(4.24)

Consequently, (4.13) also holds in the case thatt = 2. Now, an argument similar to that in
the proof of Lemma 4.7 shows that the principal curvaturesBi are all constant. Therefore,
B is parallel by (4.21), contradicting the assumption. Thus, eitherBi = 0 for all indicesi
satisfying 1≤ i ≤ k1 or Bj = 0 for all indicesj satisfyingk1 ≤ j ≤ m. In both cases we
have, by (4.22),λ1 + λ2 = 0. �

PROOF OFTHEOREM 1.2. By Theorems 1.1 and 4.1, it suffices to consider the case
thatx neither is Möbius isotropic nor has parallel Möbius second fundamental form. Hence,
from the lemmas proved in this section, we can suppose without loss of generality that

t = 2 , λ1 = −λ2 = λ �= 0 , Bk1+1 = · · · = Bm = 0 .(4.25)

Since
∑

Bi = 0 and
∑

B2
i = (m − 1)/m, one sees easily thatm ≥ 3. SinceA is parallel, the

tangent bundleT Mm of Mm has a decompositionT Mm = V1 ⊕ V2, whereV1 andV2 are the
eigenspaces ofA corresponding to the eigenvaluesλ1 = λ andλ2 = −λ, respectively.

Let {Ei ; 1 ≤ i ≤ k1} and{Ej ; k1 ≤ j ≤ m} be orthonormal frame fields for subbundles
V1 andV2, respectively. Then{Ei ; 1 ≤ i ≤ m} is an orthonormal frame field onMm with
respect to the Möbius metricg. Then (4.21) implies that bothV1 andV2 are integrable, and
thus the Riemannian manifold(Mm, g) can be locally decomposed into a direct product of
two Riemannian manifolds(M1, g1) and(M2, g2), that is, as a Riemannian manifold, locally

(Mm, g) = (M1, g1) × (M2, g2) .(4.26)

It follows from (2.15), (4.7), (4.25) and (4.26) that the Riemannian curvature tensors of
(M1, g1) and(M2, g2) have the following components, respectively,

Rijkl = 2λ(δilδjk − δikδjl) + (BilBjk − BikBjl) , 1 ≤ i, j, k, l ≤ k1 ,(4.27)

Rijkl = −2λ(δilδjk − δikδjl) , k1 + 1 ≤ i, j, k, l ≤ m .(4.28)

Thus(M2, g2) is of constant sectional curvature−2λ.
Next we consider the following cases separately.
Case (1): λ > 0. In this case, setr = (2λ)−1/2. Then(M2, g2) can be locally identi-

fied with Hm−k1(−1/r2). Let ỹ = (ỹ0, ỹ2) : Hm−k1(−1/r2) → Rm−k1+1
1 be the canonical

embedding.
Sinceh = ∑k1

i,j=1 Bij ωiωj is a Codazzi tensor on(M1, g1), it follows from (4.27) that
there exists a minimal immersed hypersurface

ỹ1 : (M1, g1) → Sk1+1(r) ⊂ Rk1+2 , 2 ≤ k1 ≤ m − 1 ,(4.29)

which hash as its second fundamental form. Clearly,ỹ1 is umbilic free and has constant
scalar curvature

S1 = mk1(k1 − 1) − (m − 1)r2

mr2
,

andMm can be locally identified withM̃m = (M1, g1) × Hm−k1(−1/r2).
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Define x̃1 = ỹ1/ỹ0, x̃2 = ỹ2/ỹ0 and x̃ = (x̃1, x̃2). Then, by the discussion in Exam-
ple 3.2, x̃ : M̃m → Sm+1 yields an immersed hypersurface with the giveng andB as its
Möbius metric and Möbius second fundamental form, respectively. Therefore, by Theorem
2.3,x is Möbius equivalent tõx.

Case (2): λ < 0. In this case, setr = (−2λ)−1/2, then(M2, g2) can be locally identi-
fied withSm−k1(r). Let ỹ2 : Sm−k1(r) → Rm−k1+1 be the canonical embedding.

Sinceh = ∑k1
i,j=1 Bij ωiωj is a Codazzi tensor on(M1, g1), it follows from (4.27) that

there exists a minimal immersed hypersurface

ỹ = (ỹ0, ỹ1) : (M1, g1) → Hk1+1(−1/r2) ⊂ Rk1+2
1 , 2 ≤ k1 ≤ m − 1 ,(4.30)

which hash as its second fundamental form. Clearly,ỹ is umbilic free and has constant scalar
curvature

S1 = −mk1(k1 − 1) − (m − 1)r2

mr2 ,

andMm can be locally identified withM̃m = (M1, g1) × Hm−k1(−1/r2).
Definex̃1 = ỹ1/ỹ0, x̃2 = ỹ2/ỹ0 andx̃ = (x̃1, x̃2). Then, by the discussion in Example

3.3,x̃ : M̃m → Sm+1 defines an immersed hypersurface with the giveng andB as its Möbius
metric and Möbius second fundamental form, respectively. Therefore, by Theorem 2.3,x is
Möbius equivalent tõx. �
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