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Abstract. We study different notions of blow-up of a scheiialong a subschemk,
depending on the datum of an embeddingfofhto an ambient scheme. The two extremes in
this theory are the ordinary blow-up, corresponding to the identity, and the ‘quasi-symmetric
blow-up’, corresponding to the embeddingXfinto a nonsingular variety. We prove that this
latter blow-up is intrinsic o and X, and is universal with respect to the requirement of being
embedded as a subscheme of the ordinary blow-up of some ambient spac¥.along

We consider these notions in the context of the theory of characteristic classes of singu-
lar varieties. We prove that X is a hypersurface in a nonsingular variety and its ‘singu-
larity subscheme’, these two extremes embody respectivelgatmmal and characteristic
cycles ofX. Consequently, the first carries the essential information computing Chern-Mather
classes, and the second is likewise a carrier for Chern-Schwartz-MacPherson classes. In our
approach, these classes are obtained from Segre class-like invariants, in precisely the same
way as other intrinsic characteristic classes such as those proposed by Fulton, and by Fulton
and Johnson.

We also identify a condition on the singularities of a hypersurface under which the quasi-
symmetric blow-up is simply the linear fiber space associated with a coherent sheaf.

1. Introduction. Itis not hard to see that trmnormal cycle of a hypersurfac& of
a nonsingular algebraic variety can be realized as the cycle of the blow-upXo&long its
singularity subscheme (defined by the partials of an equation defijin@ur guiding ques-
tion in this paper is, what kind of ‘blow-up’ realizes similarly the much subtleracteristic
cycle of a hypersurface? We answer this questand extract from our construction a unified
approach to different characteristic classes associated with a possibly singular hypersurface
of a nonsingular variety.

The ordinary blow-up of a schenm¥¢along a subschem¥@—that is, the Proj of the Rees
algebra of the ideal shegl x of Y in X—has the remarkable property that it can be recovered
from the blow-up of any ambient schem alongY, by taking the proper transform of.

As there are other notions of blow-up, obtained by taking the Proj of other ‘blow-up algebras’
(such as the symmetric algebra®f x), it is natural to ask whether there is a ‘largest’ blow-
up of X alongY that can be embedded $ome (ordinary) blow-up of an ambient schem#
alongy.

In the first part of this paper we construct such a blow-up: we define aquesi-
symmetric algebra of an ideal Jy x, and show that it satisfies the universal property sum-
marized above. In fact, we define (Definition 2.5) a quasi-symmetric algebra for every em-
beddingX c M, then show (Theorem 2.9) that the limit of the corresponding inverse system
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of algebras equals the quasi-symmetric algebra arising for any nonsidguletherwise in-
dependently o). We name the corresponding blow-up thesi-symmetric blow-up of X
alongY, gBly X. We also show (Theorem 2.12) that this new blow-up can be obtained by
taking a ‘principal’ transform o¥ in Bly M, for any nonsingular variety/ containingX.

The ordinary Rees blow-up and the new quasi-symmetric blow-up are two extremes in a
range. In the second part of the paper we consider the case in Whih hypersurface in a
nonsingular ambient variet, and we také&’ to be itssingularity subscheme. We find that the
two extremes live naturally in the projectivized cotangent bundl® pénd their cycles yield
concrete realizations of tleenormal, resp characteristic cycles ofX (Theorems 3.1 and 3.2).

As mentioned above, the first of these facts is old fare; the second appears to be new, at least
in the form given here. Every quasi-symmetric blow-up in the range should correspond to
a Lagrangian cycle in the projectivized cotgent bundle; that is, every embeddingXofin

another scheme should determine a constructible functidhlmnthis construction. One way

to summarize the main results in 83 is by saying that our construction associates the identity
X < X with the Euler obstruction af, and any inclusiorX C M into a nonsingular variety

with the constant functiofiy.

From the point of view of characteristic class# singular hypersurfaces, this means that
‘Rees is to Mather as quasi-symmetric is to Schwartz-MacPherson'. In the third part of the
paper we show (Theorem 4.4) how to obtain these classes rather directly from the correspond-
ing blow-up algebras, by a standard intersection-theoretic operation (which is the ‘shadow’
in the title, Definition 4.1). Tis set-up gives a unified approach—for hypersurfaces—for the
theory of Chern-Mather and Chern-Schwartz-MacPherson classes together with other intrin-
sic classes defined for singular varieties—notably the classes defined by Fulton and Johnson
in [FJ80], and those defined by Fulton in [Ful84], Example 4.2.6.

We also discuss briefly (§8B1) an intriguing condition on the singularities of a hyper-
surface, under which the quasi-symmetric algebra of the singularity subscheme equals the
symmetric algebra; in other words, in this case the characteristic cydldéthe linear fiber
space of the coherent shedf x, and the Chern-Schwartz-MacPherson clasX afan be
computed from the ordinary Segre class of a coherent sheaf. We point out that this condition
is automatically verified in several standard situations, and mention an interpretation of the
condition in terms of extending vector fields along pieces of a Whitney stratification of the
hypersurface.

One should wonder whether an intrinsic realization of the characteristic cycle can be
given for more general schemes than hypersurfaces of nonsingular varieties (as we do here).
In the end, our attention is directed to a coheghreaf that is present regardless of whether
X is a hypersurface: the cokernel of the dual of the map on differentials determined by the
embedding in a nonsingular variety. Xf is a hypersurface then a quasi-symmetric algebra
can be defined for this sheaf, and our main result shows that this algebra leads to the Chern-
Schwartz-MacPherson class%f(Theorem 4.9).

This suggests what the shape of an analogous result for arbitrary schemes might be, but
the difficulty in establishing such a general result should not be underestimated. Indeed, the
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key technical fact allowing us to obtain the result for hypersurfaces in this paper amounts to

a specific result relating Fulton-Johnson’s classes and Chern-Schwartz-MacPherson classes
of hypersurfaces. This relation has now been known for the better part of a decade, and
studied intensely from many different viewpoints (cf. [Alu94], [Suw97], [BLSS99], [Yok99],
[Alu99a], [Alu99b], [Suw00],[Alu00], [PP01] and the recent [Sch0la] to hame a few), yet

a generalization to arbitrary schemes hasvpdoexceedingly elusive. A full analog of the
results in this paper to arbitrary schemes would amount to a solution of this problem.

Our motivation in pursuing this program is twofold. First, we believe that it would be
highly worthwhile to uncover any functoriality feature of classes such as Fulton’s or Fulton-
Johnson’s. Chern-Schwartz-MacPherson’s classes owe their existence precisely to their ex-
cellent functoriality properties; if such functoriality could be transferred to Segre classes (via
formulas such as the ones presented in this article), this would offer a new handle on com-
puting Segre classes, arguably one of the most basic invariants in intersection theory. Second,
formulas such as the ones obtained in this paper can be implemented into algorithms run-
ning in symbolic computation programs suchMecaul ay2 ([GS]). The only algorithm
known to us for such computations ([Alu03]) is woefully slow, and we hope that the approach
presented in this paper may lead to substantially improved algorithms.

This work was performed while the author was visiting the Max-Planck-Institut fur
Mathematik in Bonn, Germany; the present version is a thorough reworking of an MPI
preprint by the same title. Thanks are due t® kPI for support and for the congenial atmo-
sphere, and to Professor Marcolli for countless insightful discussions.

2. Quasi-symmetric algebrasand blow-ups.

2.1. In this section we define and discuss the new blow-up—first in strictly algebraic
terms, and next (starting in 82.5) in more geometric ones.

The ordinary blow-up is the Proj of tHeees algebra of an ideal, which is a close relative
of its symmetric algebra. Our first task is to introduce and study another close relative of
the symmetric algebra of an ideal. In fact, in Definition 2.1 we give a whole family of such
algebras, depending on the datum of a surjective homomorphism. In Lemma 2.4 we identify
conditions under which different homomorphisms lead to the same algebra. In the geometric
setting, the family of algebras determines a new notion of blow-up of a scikealeng a
subscheme’, for each embedding oX into an ambient variety?. As a consequence of
Lemma 2.4, we can prove (Theorem 2.7) that the new blow-up is independent of the ambient
M provided thatM is nonsingular.

This canonically determined blow-up is the ‘quasi-symmetric blow-up’ mentioned in the
introduction (Definition 2.6). Arxplicit computation of the corresponding ‘quasi-symmetric’
algebra shows (Theorem 2.12) that the quasi-symmetric blow-up can be realized as a residual
scheme to the exceptional divisor of the (ordinary) blow-up of the ambient nonsingular vari-
ety. This will be the key to one of the main results of the paper (Theorem 3.2), realizing the
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characteristic cycle of a hypersurface in terms of a quasi-symmetric blow-up. In turn, filter-
ing this result through a little intersection theory will yield our applications to characteristic
classes (Theorems 4.4 and 4.9).

2.2. Our rings will be Noetherian, commutative, with 1. Homomorphisms of algebras
endowed of a natural grading are implicitly understood to preserve the grading.

Let A be aring, and: an ideal ofA. Let R be a ring surjecting ontd, and denote by
the inverse image af in R. Note that the symmetric algebra Syd) maps to both the Rees
algebra Reeg(I) := P, " and (by functoriality of Sym) to Syn(a).

DEFINITION 2.1. Thequasi-symmetric algebra qSynmg_, 4 (a) is defined by

gSynMk—a(a) := Symu(a) Qsyme (1) Reek (/) .

A particular case of this notion will be the affine version of our main blow-up algebra,
cf. Definition 2.8 below. Note that the algebra corresponding to the identity is the ordinary
Rees algebra:

aSymy— 4 (a) = Reesi(a);
thus, the ordinary blow-up can be recovered in terms of the operation studied here. We will
be especially interested in the case corresponding to epimorplismsA with R suitably
‘nice’; we begin by recording a few properties of the local version of the more general notion.

First of all, the quasi-symmetric algebra is functorial in the sense that any homomor-
phism of ringsR — S compatible with epimorphisms té induces an epimorphism

aSynmk—a(a) — qSymy—4(a).
Indeed, the homomorphisn&s— S — A induce the middle row in the diagram

Kr — Ks

\ \
Symg (1) — Symg(J) — Symu(a)
\ \

Rees(I) — Reesg(J)
where/J is the inverse image afin S, andKg, K5 are the kernels of the vertical maps to the
Rees algebras. Sindéz Symy (a) C KsSymy (a), there is an induced epimorphism
qSymg—a(a) = Syma(a)/KgSymu (a) — Symy(a)/KsSyma(a) = qSyms— a(a) .
Pictorially, we have the commutative diagram:
Symg(l) — Symg(J) ——  Syma(a)
| e
Reex (/) — Reeg(J) —— qSyng_ 4(a)

where the square on the right is cocartesian by definition. As gSynta) satisfies a
universal property (as a tensor product) there is an induced canonical homomorphism
qSynmg—4(a) — qSynk— a(a).
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2.3. The functoriality is the key to most of the following remarks, whose proof is left
to the reader.

LEMMA 2.2. Let R — A, qa, I beasabove.
1. The quasi-symmetric algebra bridges between the Rees algebra and the ordinary
symmetric algebra of a in A:

Syma (a) — qSynmg— 4(a) — Rees (a) .

2. If Symgr(I) = Reex (1), then qSynmg_ 4 (a) = Symyu (a).

3. If R — A splits, then qSynmg_ 4 (a) = Reeg (a).

4. Thereisan epimorphismReeg (1) — qSyng_ 4(a).

ExampLE 2.3. If I is a complete intersection iR, then qSym_, 4 (a) = Symy(a)
by Part 2 in Lemma 2.2 (since then the symmetric and Rees algebiagoR coincide,
[Mic64]).

This shows that qSym., 4 (@) may depend oR. For example, led = C[x, y]/(xy),
a=(x,y), R=Clx, y]; then

qSynmg— a(a) = Syma (a) # Rees (a) = qSymy . 4(a) .

However, one of the main results of this section (Theorem 2.9) will show that
gSynmg_, 4 (a) is in fact independent ak provided thatr is constrained to begular.

2.4, There are two important cases in which the induced epimorphism is in fact an
isomorphism.

LEMMA 2.4. Let R — S be a ring homomorphism compatible with epimorphisms
R — Aand S — A;letabeanideal of A, andlet I, J resp. betheinverseimagesof ain R,
S. Then the induced epimor phism
qSymg—a(a) — qSynk— 4 (a)

isan isomorphism if
1. thehomomorphism R — S splits; or
2. SisR-flat,and J = IS.

PROOF In the first situation, if a compositioR — S — R is the identity we obtain a
decomposition of the identity

qSymg (1) — qSymy(J) — qSymg (1)
implying that both maps are isomorphisms.
In the second situation, sinceis flat overR we havel™S = S g I™ for all m. Thus

Rees (/) = Rees(IS) = P S@r I" = S ®& <@ 1’”) — S ®z Reex(I).

m>0 m>0

On the other hand, and again using flatness,

Symg(J) = Symg(IS) = Syms(I Qg S) = S ®r Symg (1),



598 P. ALUFFI

by [Bou74], 11l 86, Proposition 7. Thus
Syms(J) Q@symg (1) Reek (1) = (S ®r Symg (1)) @symg (1) Reek (1)
= S ®r (SYymgr(Il) Qsymp(1) Reex (1))
= § ®r Reex (/)
= Reeg(J).

This shows that the square on the left in the diagram at the end of §2.2 is cocartesian, implying
the assertion. a

2.5. We now move to the geometric setting. All our schemes are of finite type over a
field k.

LetY ¢ X ¢ M be closed embeddings of schemes. We denot&hy, resp.Jy. i the
ideals ofY in X andM, respectively.

DEFINITION 2.5. Thequasi-symmetric algebra qSymy - (Jy.x) is the gradedx-
algebra

aSymMxcm (Jv.x) := SYMo, (Jv.x) @syme,, (Jy.n) R€ED,, (Tr.m) -

In other words, qSymac i (Jv, x) sheafifies the local construction given by Definition 2.1.
Every commutative diagram

N

e
T

(_i>M

Y——X

determines an epimorphism
aSymkcm (Jv.x) — qSymxcn (Jv.x)
and we are interested in conditions guaranteeing that this map is an isomorphism.

LEMMA 2.6. Theinduced epimorphismisan isomorphism if
1. N=M x A"; or
2. misflat, and j(X) isa connected component of 7 ~1(i (X)).

ProOF. These follow from Lemma 2.4. As the matter can be checked locally, we may
assumeM = SpecR, N = SpecS, X = Spec4, Y is given by an idead in A, and we have a
commutative diagram

a

A/a<<—A<<—R
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Denote byK, L resp. the kernels oR — A, S — A resp.; and by, J resp. the inverse
images ofa in R, S resp.

In the first situationS = R[ua, ..., us] is a polynomial ring, and the splitting needed
in order to apply Lemma 2.4 holds becaus&iis an ideal ofR then any left-inverse of the
inclusionR/K < (R/K)[u1, ..., us] lifts to a left-inverse ofR < R[u1, ..., us].

In the second situation, by hypothesigs flat overR, and there exists ayi € S such
that the epimorphisn§ — A lifts to an epimorphisns s — A from the localization ofS at
f,with kernelK Sy = LSy. Afortiori 1Sy = J Sy is the inverse image afin S;. As Sy is
flat over bothS andR, two applications of Part 2 from Lemma 2.4 give the assertion. O

THEOREM 2.7. If r : N — M is a smooth map compatible with closed embeddings
X C M, X C N, thenfor all closed subschemesY C X the induced epimorphism

aSymxcm (Jyv.x) — qSymxcn (Jy.x)
is an isomorphism.

PROOF. Again the matter can be checked locally, sarais smooth we may assume
that it can be written as a composition

N %M x AS — M;
by Lemma 2.6, Part 1, we may assume thaitself is étale. In this case 1(X) — X is
an étale map with a section; hence the imag& af N must be a connected component of
771(X). As étale maps are flat, Part 2 in Lemma 2.6 concludes the proof. O

Theorem 2.7 shows that the quasi-symmetric algebrasaillect into classes detecting
specific ‘qualities’ of the embeddings ¢ M. For example, ifX C M is a section of a smooth
projectionM — X then qSymycum (Jy,x) = Reep, (Jy,x) for all closed subschemés C
X. In fact, only the features of the embeddiXg C M near Y affect the corresponding
guasi-symmetric algebra.

2.6. ltis time to remove the dependence on the choice of an embe&dmgV/. For
givenY C X, the epimorphisms on quasi-symmetric algebras induced by concatenation of
embeddingsX € M C N make{qSymycm (Jv.x)}m iNto an inverse system.

DEFINITION 2.8. LetY C X be aclosed embedding of schemes. @jinasi-symmetric
algebra of Jy, x is defined as the inverse limit

aSymo, (Jy,x) :== lim qSymkcm (Jy.x) -
M>X
Thequasi-symmetric blow-up of X alongY is defined as the Proj of the quasi-symmetric
algebra:
gBly X := Proj(qSymy, (Jy,x))-

The quasi-symmetric blow-up carries a tautological line budile 1), as do the more
conventional sBtX = ProjSymp, (Jy,x)) and By X = Proj(Reesg, (Jy,x)). Also, note
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that by Lemma 2.2, Part 1, there are closed embeddings
BlyX cgBlyX Cc sBlyX.

Theorem 2.7 is the key to the following concrete computation of the ‘absolute’ quasi-
symmetric algebra and blow-up.

THEOREM 2.9. LetY C X C M be closed embeddings of schemes, with M nonsingu-
lar. Then the canonical epimorphism

aSymo, (Jv,x) — aSymxcm (Jv,x)
is an isomor phism.

PROOF. The matter is local. Since locally every scheme is embedded in a nonsingular
variety, it suffices to show that X ¢ M C N are closed embeddings, witid and N non-
singular varieties, then gSya y (Jy,x) — qSymxcum (Jy,x) is an isomorphism. Factoring
the embedding/ c N through the product, we have the diagram

M x N

AN

which induces the commutative diagram of qSym algebras

aSymycmxn (Jy,x)

qSymycm (Jy,x) qSymycm (Jy,x)

The diagonal arrow on the left is an isomophism because the diagonal embedding splits; the
diagonal arrow on the right is an isomorphism by Theorem 2.7. Thus the horizontal arrow is
an isomorphism, as needed. m]

2.7. By Theorem 2.9, the inverse system of algebras g@wniJy,x) stabilizes at
nonsingular ambient varietiéd. In fact, by Part 4 in Lemma 2.2 there is a canonical embed-
ding

QB|yX Cc Blym

induced by the surjection Regg(Jy,») — 9Synmp, (Jy,x); the line bundled(-1) is the
restriction of the line bundle of the exceptional divisor.

Theorem 2.9 implies immediately that gBY fulfills the promise made in the introduc-
tion.
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COROLLARY 2.10. The quasi-symmetric blow-up gBly X is the largest subscheme of
sBly X which admits an embedding in Bly M (compatibly with the projection to X) for some
scheme M containing X.

PROOF By Theorem 2.9, the quasi-symmetric blow-up gBl can be embedded in
Bly M for anynonsingular variety M containingX.

On the other hand, i is any quotient algebra of Sym) (Jy,x) which is also a quotient
of Reep,, (Jy,m) (for someM) then there is an induced epimorphism qSy# (Jy,x) —
S by the definition of qSym (as a tensor product). Hence we obtain a surjection from
gSymp, (Jv,x) to S, showing that PrgjS) C gBly X, as needed. O

It is natural to ask whether the embedding gBl C Bly M (for M a nonsingular vari-
ety containingX) can be realized concretely, just as the embeddingkBt Bly M can be
realized as a ‘proper transform’.

DEFINITION 2.11. LetY C X C M be closed embeddings of schemes. phacipal
transform of X in the blow-up B} M L MoftMm alongY is the residual to the exceptional
divisor in p~1(X).

Here, ‘residual’ is taken in the sense of [Ful84], Definition 9.2.1. ExplicitlyZ i&nd
J are respectively the ideals of the exceptional divisor anddf(X) in Bly M, then since
Y c X itfollows that7 = 7 - K for a uniquely determined ide#l. This idealK defines the
residual scheme.

The definition of principal transform would appear to dependfrat any ratep—1(X)
certainly depends ol as it contains the exceptional divisor ofyBlf. However, the next
result claims that therincipal transform is almost as intrinsic 6, Y as is theproper trans-
form.

THEOREM 2.12. LetY C X C M beclosed embeddings of schemes, with M a nonsin-
gular variety. Then the quasi-symmetric blow-up of X along ¥ equalsthe principal transform
of X inBly M.

This is an easy consequence of the following computation of g8\, x).
LEMMA 2.13. With notation asin the statement of the theorem,

qSyMo, (Jr.x) = P Tf s/ Tx Tyt
d=0
(wherewe set 7, 3, = Op).
PROOF. By Theorem 2.9 we have qSym (Jy,x) = qSymxcm (Jy,x); we compute
the latter. For/ > 1 set up the commutative diagram with exact rows
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0

l

Tors; — Discy — 0

| l

Jx.m - Symt Yy — Syt Fy y — Synt (Fy.m/JIx.m) —> O

l l l

0 —  Jxm Tt — Tty — T/ Txm TP — 0
0 0 0

where all Sym are ova®y,, Jx » denotes the image Qfx u in Symlij = Jv.mu, Torg
is defined to make the central column exact, Rigits image in Syrﬁ(jy,M/jx,M). A
diagram chase shows that the column on the right is exact. This gives

Om & D T¥ 1/ Tx m Ty s = SYM0,, (Ty.m [ Tx. ) @symo,, Ty REED,, (Tv ) -
d>1

Tensoring byOx only affects the term of degree 0 on the left. On the other hand,

Ox ®0,, SYMo,, (Jy.m/Tx.m) = Symo, (Jy,x) ;

thus
D T i/ Tx m Tt = aSymo, (Jr.x)
d>0
by the associativity of tensor products. O

2.8. ForY Cc X ¢ M, andM not necessarily nonsingular, we can of course consider a
guasi-symmetric blow-up Pr@Symycy (Jv.x))-

EXAMPLE 2.14. LetY c X c M,with M = X x P andX embedded a& x {oo}.
Then the corresponding quasi-symmetric blow-up equals the ordinary blowyup Bl

This follows (for example) from Theorem 2.7 and the fact that the quasi-symmetric alge-
bra corresponding to the identity is the Rees algebra, cf. the comments immediately following
the proof of Theoremm 2.7.

In this case the blow-up of the ambient spa¢alongY is the ‘deformation to the normal
cone’ of [Ful84]. The statement of Theorem 2.12 corresponds to the description of the fiber
over oo of the deformation, cf. p. 87 of loc. cit.

In general, the analog of Theorem 2.12 realizes any such quasi-symmetric blow-up as the
principal transform ofX in the (ordinary) blow-up o/ alongY. We observe that every Proj
of a quasi-symmetric algebra is contained in the quasi-symmetric blow-up of Definition 2.8,
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since anyM is contained locally in a nonsingular variety. In any case, this more general notion
will not be used in the rest of this paper.

Some of the intuition regarding the quasi-symmetric blow-up of Definition 2.8 is cap-
tured by the following simple examples.

EXAMPLE 2.15. LetX = a pair of distinct lines il = A2, andY = the point of
intersection.

Consider the blow-up : BlyM — M; the exceptional divisor is 1. The ordinary
Bly X is the proper transform ok, and it consists of two disjoin!. The inverse image
p~1(X) consists (as a divisor) of BIX plus the exceptional divisokith multiplicity 2. By
Theorem 2.12, the quasi-symmetric blow-up gBlsits between these two schemes: it con-
sists of Bl X plus the exceptional divisavith multiplicity 1.

ExamMPLE 2.16. By the same token, X consists of the union of: distinct lines
through a point’ in a plane, then qBIX consists ofn disjoint lines union am — 1)-multiple
Pl intersecting each of them at a point.

ExampPLE 2.17. The picture is drastically different if the lines are not coplanar. For
example, letX be the union of the coordinate axesdr, and letY be the origin. Then qBIX
consists of three disjoint lines, uniorpkane P2 intersecting each of them at a point.

This is again checked by using Theorem 2.12. Using coordirates z) in M = A3,
the ideals ofY and X are (x, y, z), (xy, xz, yz) respectively. We can choose coordinates
(%,7.72) in an affine chart of the blow-up oA® at the origin so that the blow-up mapis
given by

=

I

=
ISTEYST!

N
Il
[a RIS

with (Z) the ideal of the exceptional divisor. The idealof!(X) in this chart is
(X372, 572,575 = (322,579 .

By Theorem 2.12, qBIX is the residual to the exceptional divisor in g¢Bf; hence it has
ideal

(Xz,y2) = (x,») N ()
in this chart: that is, qBIM meets this chart in the proper transform of the line- y = 0,

union the exceptional divisor. The proper transforms of the other lines are contained in the
other charts covering the blow-up.

Example 2.17 shows that gBXK may have components of higher dimension tian
Contrast this situation with Example 2.16: the quasi-symmetric blow-up of the union of three
coplanar lines has dimension 1 (it consists of three disjoint lines union a double line connect-
ing them). More generally:
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COROLLARY 2.18. If X canlocally be embedded as a hypersurface in a nonsingular
irreducible variety, then for every Y C X the quasi-symmetric blow-up qBly X is equidimen-
sional.

PrRooOF This follows from Theorem 2.12, which shows that in this casey¢BIs a
Cartier divisor in By M. O

Hypersurfaces of nonsingular varieties will be our main concern in the rest of the paper.

3. Theconormal and characteristic cycles of a hyper surface.

3.1. We now move from the generalities in §2 to our application to the theory of Chern
classes of singular varieties. In this section we will deal with the theory at the level of La-
grangian cycles in the cotangent bundle of an ambient nonsingular variety; in the next section
we will extract the information more closely pertaining to characteristic classes.

Our main objective in this section is to show that the notion introduced in 82 gives a
concrete realization of the characteristic cycle of a hypersuXagea nonsingular ambient
variety M. In a nutshell, thecharacteristic cycle of X is the cycle of thequasi-symmetric
blow-up of X along its singularity subscheme. This fact should be appreciated in conjunction
with the (straightforward) observation that tbanormal cycle of X is the cycle of its ordinary
blow-up along the same subscheme.

Realizing the characteristic cycle allows us to give a direct computation of the Chern-
Schwartz-MacPherson classes of a hypersurfattewing the same pitosophy behind other
characteristic classes (specifically the clasggroduced in [FJ80] and [Ful84], Example
4.2.6). This requires a certain care in handling the appropriate tautological line bundles; we
work this out in 84.

After the preliminary work done in §2, the main result in this section follows easily from
the existing literature on characteristic classes for singular hypersurfaces.

In this section we also identify a condition under which the quasi-symmetric blow-up
needed here equals the symmetric blow-up. In this situation, the Chern-Schwartz-MacPherson
class of the hypersurface can be efficiently expressed in terms of the Chern class of a certain
coherent sheaf defined on it.

3.2.  We work over an algebraically closed field of characteristic 0. Throughout the rest
of the pape will denote a nonsingular irreducible algebraic variety, &nill be the zero-
scheme of a nonzero sectighof a line bundle on M; we will say thatX is ahypersurface
for short. For convenience we will implicitly assume thats reduced, although this is not
an essential requirement (cf. §3.12).

The singularity locus ok has an interesting, possibly nonreduced scheme structure. We
will denote byY this singularity subscheme of X (see §3.8 for the precise definition).

We begin by recalling several well-established notions, for the benefit of the non-expert
and in order to establish notation. The informed and impatient reader can safely skip to §3.6.

3.3. Aconstructible function on a varietyV is a finite linear combination

anlw,
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where the summation ranges over (closed, irreducible) subvarigtiesV, ny € Z, andly
denotes the function that is the constant 1Wénand O outside of¥. We denote byC (V)
the group of constructible functions an If f : V1 — V> is a proper map, a push-forward
C(f) : C(V1) — C(Vo) is defined by setting, foW a subvariety o, andp € Va,

C(HAWP) = x(fHpnw),

and extending by linearity. Here denotes the topological Euler characteristic when working
overC; see [Ken90], 83, for the extension of the theory to arbitrary algebraically closed field
of characteristic 0.

With this push-forward, the assignment

C: Vi CV)
yields a covariant functor from algebraic varieties to abelian groups.
3.4. Afundamental result of MacPherson ([Mac74] and [Ken90]) compares this functor
to the functor
A: Vi AWV)
assigning to a variety its Chow group: there exists a natural transformation
cx :C~ A
such that, foV anonsingular variety, the induced group homomorphism
C(V)— A(V)
mapsly to the total Chern class of the tangent bundl& of
1y > c(TV)N[V].

For arbitrarily singula, one may then define a (total) ‘Chern class’ in the Chow group of
V, by setting

csm(V) == cx(lv);
thuscesm(V) = ¢(TV) N [V]if V is nonsingular. Brasselet and Schwartz later discovered
that this class defined by MacPherson is in fact Alexander dual to a class previously defined
by Schwartz ([Sch65a], [Sch65b]; and [BS81]); nowadays (V) is commonly named the
Chern-Schwartz-MacPherson class of V.

3.5. In MacPherson’s approach, the natural transformatjois defined directly by

requiring that

cx(Euy) = ema(V)

for all varietiesV. Herecma(V) stands for th&Chern-Mather class ofV, and Ew is thelocal

Euler obstruction, a measure of the singularities &f Both these notions were defined in
[Mac74], and have been the subject of intensegsince; again we refer the reader to [Ken90]

for a very readable treatment and for the extension of the theory to arbitrary algebraically
closed fields of characteristic 0.
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A different approach to the definition @f emerged in the work of Sabbah ([Sab85],
[Ken90] and [PPO1], 81). The natural transformatiQrtan be obtained (up to taking a harm-
less dual) as the composite of two transformations

C~L~ A,

where £ denotes the functor assigning to a varidtythe groupL(V) of Lagrangian cy-
cles over vV, with a suitably defined push-forward. ¥ ¢ M is an embedding oV into a
nonsingular variety, the Lagrangian cycles ovéf are the Lagrangian cycles in the restric-
tion P(T*M)|y of the projectivized cotangent bundle &f. As is well known ([Ken90],
Lemma 3), every Lagrangian subvariety ouJéris in fact the projective conormal space
P(Ty,M) of a closed subvarietyy c V. HenceL(V) is the free abelian group on the set
of subvarieties ofV; the realization ofL.(V) as a group of cycles i®(T*M)|y, for some
nonsingulamM containingV, yields a good notion of push-forward of elementd.g¥) (see

p. 2829-31 in [Ken90] for details).

The second stefi ~ A in the above decomposition can be expressed in terms of stan-
dard intersection theory, and will be recalled in 84.3. The first slep; L, is considerably
subtler. It is determined by the requirement that, for all (closed, irreducible) subvarieties
W C V, the local Euler obstruction ¥ correspond (up to sign) to ttoenormal cycle of W
in M:

(DI Euy > [P(T}M)].
For every constructible functiop € C(V) we obtain then &haracteristic cycle
Ch(p) € L(V).

The cycle Clly) (realized as above, that is, in terms of an embedd#ting M) is called
thecharacteristic cycleof V (in M).

3.6. Summarizing, there are two important cycles associated to a varietyhe pro-
jectivized cotangent bundlB(T*M) = Proj(SyquQ/b)V)) (here and elsewherg denotes
‘dual’ in the ordinary sense of locally free sheaves, as in [Har77], p. 123) of any nonsingular
variety M in which V is embedded:

e the conormal cyclg P (7 M)], corresponding (up to sign) to the local Euler ob-
struction ofV, and to the Chern-Mather class ¥f and

e the characteristic cycle Ch) of V, likewise corresponding to the constant function
1y and to the Chern-Schwartz-MacPherson clasi.of

Explicitly realizing CHV) ‘from the definition’ requires finding subvarietié® of V
and integergw such thatly = )"y, ew Euy. This information is extremely subtle. ‘Index
formulas’ (cf. [BDK81]) provide an approach to extracting this information, but we do not
know of any computationally effective method to implement such formulas.

Our goal here is the construction of a scheme whose cycle is the characteristic cycle of
a hypersurfac& of a nonsingular variety. In principle this construction can be performed
by symbolic computation programs suchMescaul ay2. An entirely analogous realization
of the conormal cycle is more readily available, and will be recalled in a moment.
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The theory recalled above applies to varieties, and in particular requitebereduced.
Because of this, we will assume that our hypersurfaces are reduced in what follows (but see
3.12 below).

3.7. According to the framework recalled above, the conormal and characteristic cycles
arise as cycles in the (projectivized) cotangent bundle of an ambient nonsingular variety. It is
our opinion that these cycles have a right to exist freely, independent of an ambient variety; but
we will wait until 84 to fully make this point. For the time being we will house the cycles in
the usual place, which amounts to finding an appiate ambient for the blow-ups considered
in §2.

The sectionF of £ defining X determines a sectionof the bundleP3, £ of principal
parts ofL:

s: 0y — 771%,11:;
(see [EGA], 16.7, for the definition gP!; we recommend the appendix of [Per95] for a

thorough but concise treatment). We Yetlenote the zero-scheme ofh M, and we cally
the ‘singularity subscheme’ of . Composing with the projection tol recoversF:

F

/_\
OMﬁP,b£—>£;

hences induces a section a}, ® £ on X, which is natural to nameFr:
dF : Ox — (2, ® L)lx ;

the subschem# is the zero-scheme @fF on X. It is easily checked that, locallylF is
given by the partial derivatives d@f with respect to a set of local parameters 6y henceY
is supported on the singular locus ¥f justifying its name. Locally, we can write (abusing
notation):
oF oF
=|\F,—, ..., —
Jrm ( dx1 8xn)
for the ideal orY in M. We will write (F) for the ideal ofX in M, as this is given by the
vanishing of the sectiof of L.
Dualizings : Oy — Pj, L we get an epimorphism

(PyL)" = Jrm
and from this, Lemma 2.2, and Theorem 2.9 the epimorphisms
Symo,, (P £)") — Reew,, (Jr,m) — ASyMo, (Jr.x) -
Since qSym, (Jy,x) is anOx-module, tensoring b x gives an epimorphism

Symp,, (PyL)Y [x) — qSymo, (Jr.x) -
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Finally, composing with¥ — (7)1}4£)v gives the zero-map oveéf, showing that there is a
surjection
Sym((2y; ® £)" |x) = qSymo, (Jy,x) -
Since gqSym, (Jy,x) dominates all quasi-symmetric algebragify, and in particular
the Rees algebra, this shows (taking Proj) that there are closed embeddings

Bly X C gBlyX c ProjSym((22), ® £)V|x)) = P(T*M ® L|x) = P(T*M|x).

3.8. The following statement is only one step away from the definitions, but it is excel-
lent preparation for the main result of the section, Theorem 3.2 below.

THEOREM 3.1. Theconormal cycle[P(TyM)] of X in M equals

[Bly X] = [ProjqSymxcx (Jr.x)]-

PrROOF. Recall that we are assuming thais reduced. The conormal spatgM of X
in M is the closure irf *M of the kernels of the projection

(T*M), - (T*X), — 0

over nonsingular points of X. In other words, the projectivized conormal spaceadt the
closure of the image of the section

X" P(T*M)|x = P(T*M ® L)|x

induced on the sex"™9 of regular points ofX by the section/ F determined above. Chas-
ing the morphisms collected above shows that this is precisely how B8 embedded in

P(T*M|x) over regular points oX. Hence B} X and the projectivized conormal space
agree over regular points a&f, and it follows that they agree eysvhere, as needed. Finally,

. . . . id
recall that the quasi-symmetric algebra corresponding to the |déhh'%y X equals the Rees
algebra. ]

3.9. The nextresultis our main application of the construction developed in §2; it does
for the characteristic cycle precisely atiTheorem 3.1 does for the conormal cycle.

THEOREM 3.2. Thecharacteristic cycle [Ch(X)] of X in M equals
(—DIMX[gBly X] = (-1 ™ *[ProjaSymy .y (Jy.x))] -

The annoying sign is due to established (thus unavoidable) conventions, and reflects the
fact that the Lagrangian point of view is best suited to buitdtangent theory of characteristic
classes.

Modulo the work done in 82, the statement is an easy consequence of results in the
literature on characteristic classes for singular varieties.

PrROOF. By Theorem 2.12[gBly M] equals the principal transform &f in Bly M, so
the claim is that the latter computes @&h, with due attention to the sign. OVéy, this state-
ment is Corollary 2.4 in [PPO1]; for arbitrary algebraically closed fields of characteristic 0O, it
can be obtained from Claim 2.1 in [Alu00]. a
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3.10. We will now identify a technicalandition under which the algebra qSyitY) is
nothing but the symmetric algebra g¥ x. As a consequence of Theorem 3.2, the character-
istic cycle of hypersurfaces satisfying this condition is (up to sign) the cycle adythmetric
blow-up of their singularity subschemes. This both simplifies matters computationally (since
packages such d¢acaul ay2 have built-in functions for computing symmetric algebras)
and is philosphically intriguing: in this case, the characteristic cycle is realized as the ‘linear
fiber space’ inearer Faserraum, cf. [Fis67]) corresponding to the ideal sheaf x. While
the fibers of the characteristic cycle are always linear, we do not know if every characteristic
cycle can be realized as a linear fiber space.

As above,F denotes the section of the line bundleon M whose zero-scheme is the
hypersurfaceX. For the purpose of this discussionhamogeneous, degree d differential
operator satisfied by F is a local section of Syf‘n(P,bE)v mapping to 0 ir17;{M via the map
induced by the surjectio'tP,}lL:)v — Jy.m Whose existence we pointed out in 83.7. In terms
of local parameters;, . .., x, on M, this object is nothing but a homogeneous polynomial

P(To,.... Ty)

with coefficients (local) functions o, such that
P(F, a—F,..., 3_F) =0;
0x1 0xy,
we will express the condition in this slightly imprecise but more vivid language, leaving to
the reader the task of translating it intglkbal, coordinate-free formulation.
The simplest way to manufacture homogeneous differential operators of degatis-
fied by F is as a sum
P=P-To+P1-T1+---+P,-Tp,

where theP; are homogeneous polynomials of degiee 1in Ty, ..., T,, and
oF oF
Po-F+P-—+---+P,-—=0.
0x1 dx,

We say that such operators drévially satisfied byF. The x-condition on X is a softening
of this requirement, on operators of sufficiently high degree satisfidd. by

DEFINITION 3.3. A hypersurfac& in M satisfies the x-condition if there exists algp
such that every homogeneous differential oper&af degreel > do and satisfied by can
be written as

P=P-To+PL-T1+---+P,-Ty,
where theP; are homogeneous polynomials of degiee 1in T, ..., T,, and

oF oF
e .
0x1 0

Xn
ProrPoOsSITION 3.4. A hypersurface X satisfies the x-condition if and only if
Synfy (Y) = qSynd ()
for d > 0.
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PROOF. In the hypersurface case, we can cortglbe diagram in the proof of Theo-
rem 2.12 so that all rows and columns are exact:

0 0 0
| | l
0 — To-Torgj.1 ——  Toryy —— Discy — 0

l l l

0 — To-Sym* %y — Symt Fyy — Symt(Jy.m/(F)) — 0

l l l

0 —> F.j;{;} — Ty — j;{M/(F)j;{;} — 0
0 0 0

(the leftmost column is exact &8 is a non-zero-divisor, and it follows that the top row is

exact). We have to verify that Dige= 0 ford > 0 if and only if X satisfies the<-condition.
Now (cf. for example [Vas94], Chapter 2) Tgrsan be described as the space of degree-

homogeneous operators satisfieddyymodulo those trivially satisfied b¥. Hence

Discy; = Tors; /T - Tors;—1

is 0 if and only if every degred-homogeneous operator satisfied Byis equivalent to a
multiple of 7o modulo trivial ones. That s, if and only if for every homogene@usf degree

d such that
oF oF
P\F,—,...,— | =0
dx1 0Xy,

there exists &, homogeneous of degrée— 1 and such that

P-To-Q=Po-To+Pr-T1+--+P,- Ty

with
oF oF
Po-F+P-—+---4+ P, =0.
0x1 0xy,
It is straightforward to verify that this latter condition is satisfieddop> 0O if and only if X
satisfies the<-condition. m]

COROLLARY 3.5. If X satisfies the x-condition, then the characteristic cycle of X in
M equals (—1)4™ X [Proj(Symo, (Jy,x))]-

PROOF. Immediate consequence of Theorem 3.2X iBatisfies thex-condition, then
by Proposition 3.4 the algebras Syy(Jy,x) and qSym, (Jy,x) are isomorphic in high
degree, so they have the same Proj. m]
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3.11. Thex-files. The X’ in x-condition has been chosen as it reminds us of the
prototypical singularities satisfying it: the conigz = 0 in the plane is (i) a hypersurface
with a nonsingular singularity subscheme; (ii) a hypersurface with quasi-homogeneous iso-
lated singularities; and (iii) a divisor with normal crossing divisor. Each of these classes of
hypersurfaces satisfies tiecondition. In fact, as the interested reader may verify, in each of
these cases the embedding of the singularity subscheme in the ambient space is ‘linear’.

Recall ([Kee93]) that an embedding of schemSes T is linear if the Rees algebra and
the symmetric algebra of the ideal §fin T are isomorphic; it isveakly linear if the Rees
algebra and the symmetric algebra are isomorphic in high degree, that is,(®¥mj(S))
is isomorphic to the (Rees) blow-up BfalongsS. These conditions have been studied exten-
sively, see for example [Mic64], [Hun80], [Val80].

PROPOSITION 3.6. Let X be a hypersurface in a nonsingular variety M, with sin-
gularity subscheme Y. If the embedding of Y in M is weakly linear, then X satisfies the
x -condition.

PrRoOOF. With the notation in the proof of Proposition 3.4, the embedding of M is
weakly linear if and only if Torg = 0 ford > 0. This implies Disg = 0 ford > 0, which
is equivalent to thex-condition, as observed in that proof. O

For example, this implies immediately the-condition for the first case listed above:
if Y is nonsingular, then its embedding M is regular, hence linear, hence weakly-linear.
However, we should remind the reader that the requirement that the singsidostheme
of a hypersurface be nonsingular is very strong; substantially stronger, for example, than the
requirement that the singularitgcus be nonsingular. Some constraints on this situation are
studied in [Alu95], 83. Hypersurfaces whose singularity subscheme is nonsingular are in
particularnicein the sense of [AB03].

EXAMPLE 3.7. The plane curve* + x3y? + y8 = 0 has an isolated singularity at the
origin; the embedding of its singularity subscheme in the plane is not linear.

This is checked by explicit calculations, which we performed Wititaul ay?2.

It can also be shown that if the-condition implies that every vector tangent at a paint
to a stratum in a Whitney stratification &fextends to fiberwise linear functions %O(X),
tangent to nearby ‘level hypersurfaces’. In this sense,xXheondition may be viewed as
a strong regularity requirement on extensions of tangent vectors near strata of a Whitney
stratification ofX. It is known that tangent vectors to strata of a Whitney stratification of
X are suitably ‘close’ to the tangent spaces of nearby level hypersurfaces (the sowgalled
condition of Thom). This suggests that the techniques in [Par93] or [BMM94] may be apt to
characterizing hypersurfaces satisfying theondition.

3.12. For simplicity we have assumed that the hypersuriade reduced in the pre-
ceding subsections. It should be noted, however, that the quasi-symmetric blow-up is defined,
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and determines a cycle iB(T*M), regardless of whethex is reduced or not. The argu-
ments given above can be traced in this case, and show that this cycle is nothing but the char-
acteristic cycle of the suppoleq. This rather remarkable fact implies that simply setting
csm(X) := csm(Xred) leads to a consistent theory of Chern-Schwartz-MacPherson classes, at
least whenX is a hypersurface.

We leave the detalils to the interested reader (cf. 82.1 in [Alu99a]).

4. Shadows of blow-up algebras.

4.1. Theorems 3.1 and 3.2 give intrinsic constructions of the two key cycles associated
with X. We would like to deal with the corresponding schemesXBlgBly X as stand-alone
entities, and determine precisely what type of information they carry in relation with the
ambient nonsingular variet .

With this in mind, we first discuss the transformatién-» .4 mentioned in §3.5, which
produces the Chern-Mather, resp. Chern-Schwartz-MacPherson classes from the conormal,
resp. characteristic cycle; then we separate the réle of the ambient variety in this computation
from that of the blow-ups themselves, and find that the blow-ups carry ‘normal data’ regarding
the embedding C M. This point of view unifies the computation of the Chern-Mather and
Chern-Schwartz-MacPherson classes with fiig@ach yielding the classes defined by Fulton
and Fulton-Johnson ([Ful84], [FJ80] and cf. 84.6 below).

4.2. If€isalocally free sheaf of rank+ 1 on a schems, there is a precise structure
theorem for the Chow group of the projective bundle

P(&) := ProjSynmeY) - §

([Ful84], 83.3): every clas€ € A, P(£) can be written uniquely as

e
C =) c1(0W) Ne*(Croey))
j=0

whereO(1) denotes the tautological line bundle 84E), andCr_.4; € Ar_eyjS.

Therefore, knowledge af is equivalent to knowledge of the collectionof 1 classes
Cre,...,CrONS.

DEFINITION 4.1. We say that the clags . + --- + C, € AS is theshadow of the
classC.

As its real world namesake, the shadow eetg some of the information carried by the
object that casts it. For example,(O(1))/ - [P(E)] has shadowsS] forall j = 0,...,e.
However, a pure-dimensional claS§scan be reconstructed from its shadow if its dimension
is known, as follows immediately from the structure theorem recalled above.

It will be convenient to have a direct way to obtain the shadow of a given class.

LEMMA 4.2. Theshadow of C istheclass

(&) Nep(c(O(=1))INn0).
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PROOF. Writing C as above, we have

c(€) Nex(c(O(=1) 71N C) = c(€) Ny <c<0(—1>)1 nY a0y n e*(creﬂ-))
j=0

— Z ()N s*( Z 1Ok n s*(c,_e+,~)) )

j=0 k> j

Sincec1(O(1)* Ne*a =0for0< k < e and anyx € A, S, this says
(@) Nex(cO=1)1NC) =" c(€) New(c(O(=1) N e*(Cret))) .
j=0

Finally, this equalijzo Cy—e4j by [Ful84], Example 3.3.3. O

4.3. Asrecalledin 83.5, MacPherson’s natural transformatjaran be expressed by a
two-step procedureC(~ L) taking the characteristic cycle Gh) of a constructibile function
¢, and  ~ A) extracting a rational equivalence class from the characteristic cycle. As the
natural habitat of Lagrangian cycles is the projectivizethngent bundleP (7* M), we find
it convenient to arrange things so as to obtain a cla&g) differing from ¢, (¢) by the sign
of the components of odd dimension:

{Ex@lr = (=D {ex(@)}r
in dimensiorr. For example,
(L) = (=™ Me(T* M) N [M]
for the nonsingular ambient .
LEMMA 4.3. Theclassc,(¢) isthe shadow of the characteristic cycle Ch(g).

PrROOF. This is formula (12) on p. 67 of [PP01], filtered through Lemma 4.2. As ob-
served in [PP01], this is in agreement with [Mac74]. O

The statement of Lemma 4.3, while implicit in the existing literature, is mysteriously
absent in this explicit form relating the transformatién-» A to the structure theorem of the
Chow group of projective bundles. This interpretation streamlines the proofthatA is a
natural transformation; Schirmann has ipeledently made the same observation [Sch01b].

4.4. We are ready to justify the title of this article. Denote’hg(X), ¢sm(X) resp. the
classes obtained by changing the sign of the components of odd dimengjgii), cspm(X).

THEOREM 4.4. Let X be a hypersurface of a nonsingular variety M, and let Y beits
singularity subscheme. Then

o theshadow of [Bly X] is (—1)9MX &ya(X),

e theshadow of [qBly X] is (—1)3MX fgu(X).

PROOFE. This now follows from Theorems 3.1 and 3.2, and Lemma 4.3. O
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4.5. The next step in our program consists of carefully distinguishing the role of the
ambient space and of the blow-ups in the statement of Theorem 4.4. There is an interesting
twist to this story, which highlights the need for a subtle change of perspective.

We have so far focused on the ided@} x as the most natural source of information
concerning the singularities &f; and indeed we have defined our main notions in §2 starting
from the data of an ideal sheaf fiy. We are now going to shift the attention to a different
coherent sheaf, defined for any subschexnef a nonsingular variety/; it will be easy
to relate this sheaf tg/y x when X is a hypersurface, and this will naturally extend quasi-
symmetric blow-up algebras to this coherent sheaf. To summarize what we will find, these
new algebras agree locally with the algebras obtained7ox; in fact, their Proj will be
isomorphic as schemes to the quasi-symmetric blow-upgyof. But thealgebras carry
more information than the schemes: the grading determines a line bundle on the blow-ups,
and this information will turn out to be essential.

The new blow-up algebras will thus determine a Segre-class type of invariant, and we
will show that using this invariant yields the Mather and Schwartz-MacPherson classes in
essentially the same way as ordinary Segre classes of coherent sheaves, resp. of cones lead to
Fulton-Johnson, resp. Fulton classes.

4.6. Here is a quick reminder concerning these latter two classes, in order to clarify the
context underlining our motivation.

If Z is any scheme embedded in a nonsingular varltyof dimension> dim Z for
convenience), there are several ways to obtain ‘normal data’ relating to the embedding. For
example, such data is carried by the conormal sWéad! = 7z v ®0,, Oz, and can be
effectively encoded in th8egre class of this coherent sheaf, defined by

sNZM) := ps ) c(OD) N [ProjSymo, (NzM))]
wherep is the structure morphism on Proj.
DEFINITION 4.5. TheFulton-Johnson class ofZ is the class
c(TM)YNsNzM)
in the Chow group of.

It can be shown that this class is independent of the ambient vadiegnd agrees with
the total Chern class of the tangent bundl&ofhenZ is nonsingular (cf. [FJ80] or [Ful84],
Example 4.2.6 (c)).

A different way to access normal data amounts to taking a Rees point of view rather than
a Sym point of view. Replacing

Symo, (NzM) = Symp,, (Jz.m) ®o,, Oz

by

Reep, (Jz.m) ®o,, Oz
defines thenormal cone of Z in M, whose Segre class (again defined by pushing forward
powers of the first Chern class 6f(1)) is properly called th&egreclassof Z in M, s(Z, M).
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Applying the same principle as above leads to the following notion.
DEFINITION 4.6. TheFulton class ofZ is the class
c(TMYNns(Z, M)
in the Chow group o¥.

Again, it can be shown that this class is independent of the ambient nonsingular va-
riety M (cf. [Ful84], Example 4.2.6), and agrees with the total Chern class of the tangent
bundle ofZ whenZ is nonsingular.

The formulas in Definitions 4.5 and 4.6 should be compared with the formulas for the
Chern-Mather and Chern-Schwartz-MacPherson classes that we will obtain in Theorem 4.9.
4.7. How else can one extract normal data from an embeddiagM of a scheme in

a nonsingular variety? Again we assume that gfin»- dim Z. There is a surjection

.Q,%,I|Z — .Q% — 0,
from which we obtain the exact sequence
0— Hom(ﬂ%, Oz) — Hom(.Q]%ﬂz, Oz)— T;M — 0,

defining the coherent she@j M on Z. If Z is nonsingular thez M is locally free, and in
fact it is the sheaf of sections of the normal bundl&ah M.

Now our idea consists of following the same guiding principle which rules in §4.6, but
employing Segre classes obtained fromsjtgymmetric algebras associated wWithM. As
things stand now, we only have defined such objects for ideals, and this limits the scope of
our aim. However, in the case we have considered in 83 and in Theorem 4.4 the day is saved
by a special form taken byz M.

LEmmMA 4.7. If Z = X isahypersurfacein a nonsingular variety M, with line bundle
L and singularity subscheme Y, then 7x M = Jy, x ®o, L.

PROOF. LetJ = Jx.m denote the ideal ok in M. TakingHom(—, Ox) in the exact
sequence of differential gives the exact sequence

0— Hom(.Q)l(, Ox) — Hom(.Q]%,Ax, Ox) — Hom(J/JZ, Ox).

A local computation determines the image of the rightmost map as the subsh@af- of
morphisms7 /7% — Oy factoring through7y x. In other words, ifX is a hypersurface
in M then

TxM = Hom(J/JT? Jy.x) = LIx ®0y Jr.x .

as claimed. O
By virtue of Lemma 4.7 we can make sense of quasi-symmetric algebBsiéfif X

is a hypersurface iM. The two extremes in the range of quasi-symmetric algebras are the
following two definitions:

aSymxcx (7x M) := Reeg, (Jr.x) ®oy L
gSymycm (Ix M) := qSymp, (Jy,x) ®oy L
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and the corresponding Segre class-like notions:

$wa(X, M) = p. Y c(O(1))' N [ProjSymxcx (Tx M))]
SsM(X, M) = px Y c(OD) N [ProjaSymycu (Tx M))]

wherep denotes the projection from the corresponding Proj,@cd) is the tautological line
bundle. We remark that the two Proj equal Rl, qBly X as schemes—only the tautological
bundles are affected upon tensoringfyy

We have defined a ‘checked’ notion of Segre class in view of artificially taking a dual
that brings us back to titangent world. So we set

sma(X, M) = (=1)¥™X > *(~1)"Sva(X, M),

r>0

ssm(X, M) == (=DM™X 3 " (~1y"Ssm(X, M),
r>0
where subscripts mark dimensions; that is, we change the sign of components in the checked
Segre classes of every otteadimension inX.

ExampPLE 4.8. If X is a nonsingular hypersurface, then all notions of Segre class co-
incide: s(NxM) = s(X, M) = spa(X, M) = ssm(X, M) = ¢(L)"1 N [X]. If X may be
singular, but satisfies the-condition (see §3.10), thegm(X, M) = s(Jy.x ® L).

4.8. Summarizing, we have extracted normal data from our hypersuxfaneM by
defining a coherent shedfy M in a rather simple-minded way from the exact sequence of
differentials ofX; adapting toZx M the construction of §2; and defining from the resulting
blow-up algebra a notion of Segre class. Theksses achieve precisely what we set out to
do, that is, they yield the Chern-Mather and Chern-Schwartz-MacPherson classes by the same
method behind the classes of Fulton and Fulton-Johnson (cf. Definitions 4.5 and 4.6). That is:

THEOREM 4.9. Let X bea hypersurfacein a nonsingular variety M. Then
e cMa(X) = c(TM)Nsma(X, M),
o csm(X) =c(TM)Nssm(X, M).

PrRoOF. We will give the argument for the second equality; the first is treated similarly.
Tensoring byC the epimorphism

Sym((2; ® £)"[x) — qSymp, (Jv.x)
from §3.7 we obtain
Sym((23)" |x) — aSymxcm (Tx M) .
inducing the embedding
gBly X — P(T*M)
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realizing the characteristic cycle &f (by Theorem 3.2), and showing that the restriction of
O(-1) to gBly X is the universal bundl®(—1) of ProjqSymy -y (7x M)). By Lemma 4.2,
the shadow of the blow-up algebra gB{ is computed by

c(T*M)N (c(O=1)~1n [gBly X]) = ¢«(T*M) N Ssm(X, M) .

This equalg—1)9MX ég(X), by Theorem 4.4. The equality fogw(X) follows by changing
the sign of the components of every other codimension. O

4.9. Atthis pointitis only too natural to pose the problem of defining quasi-symmetric
algebras for coherent sheaves so as to validate Theorem 4.9 for more general skhemes
following the same strategy (that is, by obtaining Segre classes from the quasi-symmetric
algebras offx M). The advantage in formulas such as those in Theorem 4.9 is not only theo-
retical: these formulas can be implementedriogedures for symbolic computation programs
such advacaul ay2. At present a routine is implementédat computes Chern-Schwartz-
MacPherson classes of projective schemes ([Alu03]), exploiting the hypersurface case in order
to compute classes in the general case, by a computationally expensive ‘inclusion-exclusion’
procedure.

An upgrade of Theorem 4.9 to more general schemes would bring about a drastic im-
provement in the speed of such routines.

Regarding a possible definition of quasi-symmetric algebras for coherent sheaves, this
would presumably pivot on a good notion of Rees algebra of a module; such notions have
been introduced and studied by several authors—for example Micali, [Mic64]. Even in the
simpler case of ideals treated here, it would be quite interesting to relate our construction with
the ideals defined by Micali in loc. cit., infeolating between the symmetric and the Rees
algebras.
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