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SHADOWS OF BLOW-UP ALGEBRAS
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Abstract. We study different notions of blow-up of a schemeX along a subschemeY ,
depending on the datum of an embedding ofX into an ambient scheme. The two extremes in
this theory are the ordinary blow-up, corresponding to the identity, and the ‘quasi-symmetric
blow-up’, corresponding to the embedding ofX into a nonsingular variety. We prove that this
latter blow-up is intrinsic ofY andX, and is universal with respect to the requirement of being
embedded as a subscheme of the ordinary blow-up of some ambient space alongY .

We consider these notions in the context of the theory of characteristic classes of singu-
lar varieties. We prove that ifX is a hypersurface in a nonsingular variety andY is its ‘singu-
larity subscheme’, these two extremes embody respectively theconormal andcharacteristic
cycles ofX. Consequently, the first carries the essential information computing Chern-Mather
classes, and the second is likewise a carrier for Chern-Schwartz-MacPherson classes. In our
approach, these classes are obtained from Segre class-like invariants, in precisely the same
way as other intrinsic characteristic classes such as those proposed by Fulton, and by Fulton
and Johnson.

We also identify a condition on the singularities of a hypersurface under which the quasi-
symmetric blow-up is simply the linear fiber space associated with a coherent sheaf.

1. Introduction. It is not hard to see that theconormal cycle of a hypersurfaceX of
a nonsingular algebraic varietyM can be realized as the cycle of the blow-up ofX along its
singularity subscheme (defined by the partials of an equation definingX). Our guiding ques-
tion in this paper is, what kind of ‘blow-up’ realizes similarly the much subtlercharacteristic
cycle of a hypersurface? We answer this question, and extract from our construction a unified
approach to different characteristic classes associated with a possibly singular hypersurface
of a nonsingular variety.

The ordinary blow-up of a schemeX along a subschemeY—that is, the Proj of the Rees
algebra of the ideal sheafJY,X of Y in X—has the remarkable property that it can be recovered
from the blow-up of any ambient schemeM alongY , by taking the proper transform ofX.
As there are other notions of blow-up, obtained by taking the Proj of other ‘blow-up algebras’
(such as the symmetric algebra ofJY,X), it is natural to ask whether there is a ‘largest’ blow-
up ofX alongY that can be embedded insome (ordinary) blow-up of an ambient schemeM

alongY .
In the first part of this paper we construct such a blow-up: we define a newquasi-

symmetric algebra of an idealJY,X, and show that it satisfies the universal property sum-
marized above. In fact, we define (Definition 2.5) a quasi-symmetric algebra for every em-
beddingX ⊂ M, then show (Theorem 2.9) that the limit of the corresponding inverse system
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of algebras equals the quasi-symmetric algebra arising for any nonsingularM (otherwise in-
dependently ofM). We name the corresponding blow-up thequasi-symmetric blow-up of X

alongY , qBlY X. We also show (Theorem 2.12) that this new blow-up can be obtained by
taking a ‘principal’ transform ofX in BlY M, for any nonsingular varietyM containingX.

The ordinary Rees blow-up and the new quasi-symmetric blow-up are two extremes in a
range. In the second part of the paper we consider the case in whichX is a hypersurface in a
nonsingular ambient varietyM, and we takeY to be itssingularity subscheme. We find that the
two extremes live naturally in the projectivized cotangent bundle ofM, and their cycles yield
concrete realizations of theconormal, resp.characteristic cycles ofX (Theorems 3.1 and 3.2).
As mentioned above, the first of these facts is old fare; the second appears to be new, at least
in the form given here. Every quasi-symmetric blow-up in the range should correspond to
a Lagrangian cycle in the projectivized cotangent bundle; that is, every embedding ofX in
another scheme should determine a constructible function onX by this construction. One way
to summarize the main results in §3 is by saying that our construction associates the identity
X
=
↪→ X with the Euler obstruction ofX, and any inclusionX ⊂M into a nonsingular variety

with the constant function1X.
From the point of view of characteristic classes of singular hypersurfaces, this means that

‘Rees is to Mather as quasi-symmetric is to Schwartz-MacPherson’. In the third part of the
paper we show (Theorem 4.4) how to obtain these classes rather directly from the correspond-
ing blow-up algebras, by a standard intersection-theoretic operation (which is the ‘shadow’
in the title, Definition 4.1). This set-up gives a unified approach—for hypersurfaces—for the
theory of Chern-Mather and Chern-Schwartz-MacPherson classes together with other intrin-
sic classes defined for singular varieties—notably the classes defined by Fulton and Johnson
in [FJ80], and those defined by Fulton in [Ful84], Example 4.2.6.

We also discuss briefly (§3.11) an intriguing condition on the singularities of a hyper-
surface, under which the quasi-symmetric algebra of the singularity subscheme equals the
symmetric algebra; in other words, in this case the characteristic cycle ofX is the linear fiber
space of the coherent sheafJY,X , and the Chern-Schwartz-MacPherson class ofX can be
computed from the ordinary Segre class of a coherent sheaf. We point out that this condition
is automatically verified in several standard situations, and mention an interpretation of the
condition in terms of extending vector fields along pieces of a Whitney stratification of the
hypersurface.

One should wonder whether an intrinsic realization of the characteristic cycle can be
given for more general schemes than hypersurfaces of nonsingular varieties (as we do here).
In the end, our attention is directed to a coherentsheaf that is present regardless of whether
X is a hypersurface: the cokernel of the dual of the map on differentials determined by the
embedding in a nonsingular variety. IfX is a hypersurface then a quasi-symmetric algebra
can be defined for this sheaf, and our main result shows that this algebra leads to the Chern-
Schwartz-MacPherson class ofX (Theorem 4.9).

This suggests what the shape of an analogous result for arbitrary schemes might be, but
the difficulty in establishing such a general result should not be underestimated. Indeed, the
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key technical fact allowing us to obtain the result for hypersurfaces in this paper amounts to
a specific result relating Fulton-Johnson’s classes and Chern-Schwartz-MacPherson classes
of hypersurfaces. This relation has now been known for the better part of a decade, and
studied intensely from many different viewpoints (cf. [Alu94], [Suw97], [BLSS99], [Yok99],
[Alu99a], [Alu99b], [Suw00],[Alu00], [PP01] and the recent [Sch01a] to name a few), yet
a generalization to arbitrary schemes has proved exceedingly elusive. A full analog of the
results in this paper to arbitrary schemes would amount to a solution of this problem.

Our motivation in pursuing this program is twofold. First, we believe that it would be
highly worthwhile to uncover any functoriality feature of classes such as Fulton’s or Fulton-
Johnson’s. Chern-Schwartz-MacPherson’s classes owe their existence precisely to their ex-
cellent functoriality properties; if such functoriality could be transferred to Segre classes (via
formulas such as the ones presented in this article), this would offer a new handle on com-
puting Segre classes, arguably one of the most basic invariants in intersection theory. Second,
formulas such as the ones obtained in this paper can be implemented into algorithms run-
ning in symbolic computation programs such asMacaulay2 ([GS]). The only algorithm
known to us for such computations ([Alu03]) is woefully slow, and we hope that the approach
presented in this paper may lead to substantially improved algorithms.

This work was performed while the author was visiting the Max-Planck-Institut für
Mathematik in Bonn, Germany; the present version is a thorough reworking of an MPI
preprint by the same title. Thanks are due to the MPI for support and for the congenial atmo-
sphere, and to Professor Marcolli for countless insightful discussions.

2. Quasi-symmetric algebras and blow-ups.
2.1. In this section we define and discuss the new blow-up—first in strictly algebraic

terms, and next (starting in §2.5) in more geometric ones.
The ordinary blow-up is the Proj of theRees algebra of an ideal, which is a close relative

of its symmetric algebra. Our first task is to introduce and study another close relative of
the symmetric algebra of an ideal. In fact, in Definition 2.1 we give a whole family of such
algebras, depending on the datum of a surjective homomorphism. In Lemma 2.4 we identify
conditions under which different homomorphisms lead to the same algebra. In the geometric
setting, the family of algebras determines a new notion of blow-up of a schemeX along a
subschemeY , for each embedding ofX into an ambient varietyM. As a consequence of
Lemma 2.4, we can prove (Theorem 2.7) that the new blow-up is independent of the ambient
M provided thatM is nonsingular.

This canonically determined blow-up is the ‘quasi-symmetric blow-up’ mentioned in the
introduction (Definition 2.6). Anexplicit computation of the corresponding ‘quasi-symmetric’
algebra shows (Theorem 2.12) that the quasi-symmetric blow-up can be realized as a residual
scheme to the exceptional divisor of the (ordinary) blow-up of the ambient nonsingular vari-
ety. This will be the key to one of the main results of the paper (Theorem 3.2), realizing the
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characteristic cycle of a hypersurface in terms of a quasi-symmetric blow-up. In turn, filter-
ing this result through a little intersection theory will yield our applications to characteristic
classes (Theorems 4.4 and 4.9).

2.2. Our rings will be Noetherian, commutative, with 1. Homomorphisms of algebras
endowed of a natural grading are implicitly understood to preserve the grading.

Let A be a ring, anda an ideal ofA. Let R be a ring surjecting ontoA, and denote byI
the inverse image ofa in R. Note that the symmetric algebra SymR(I) maps to both the Rees
algebra ReesR(I) :=⊕

n≥0 In and (by functoriality of Sym) to SymA(a).

DEFINITION 2.1. Thequasi-symmetric algebra qSymR→A(a) is defined by

qSymR→A(a) := SymA(a)⊗SymR(I ) ReesR(I) .

A particular case of this notion will be the affine version of our main blow-up algebra,
cf. Definition 2.8 below. Note that the algebra corresponding to the identity is the ordinary
Rees algebra:

qSymA→A(a) = ReesA(a) ;
thus, the ordinary blow-up can be recovered in terms of the operation studied here. We will
be especially interested in the case corresponding to epimorphismsR → A with R suitably
‘nice’; we begin by recording a few properties of the local version of the more general notion.

First of all, the quasi-symmetric algebra is functorial in the sense that any homomor-
phism of ringsR→ S compatible with epimorphisms toA induces an epimorphism

qSymR→A(a) � qSymS→A(a) .

Indeed, the homomorphismsR→ S → A induce the middle row in the diagram

KR −−−−→ KS

↓ ↓
SymR(I)→ SymS(J )→ SymA(a)

↓ ↓
ReesR(I)→ ReesS(J )

whereJ is the inverse image ofa in S, andKR, KS are the kernels of the vertical maps to the
Rees algebras. SinceKRSymA(a) ⊂ KSSymA(a), there is an induced epimorphism

qSymR→A(a) = SymA(a)/KRSymA(a) � SymA(a)/KSSymA(a) = qSymS→A(a) .

Pictorially, we have the commutative diagram:

SymR(I) −−→ SymS(J ) −−→ SymA(a)� � �

�
ReesR(I) −−→ ReesS(J ) −−→ qSymS→A(a)

where the square on the right is cocartesian by definition. As qSymR→A(a) satisfies a
universal property (as a tensor product) there is an induced canonical homomorphism
qSymR→A(a)→ qSymS→A(a).
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2.3. The functoriality is the key to most of the following remarks, whose proof is left
to the reader.

LEMMA 2.2. Let R→ A, a, I be as above.
1. The quasi-symmetric algebra bridges between the Rees algebra and the ordinary

symmetric algebra of a in A:
SymA(a) � qSymR→A(a) � ReesA(a) .

2. If SymR(I) = ReesR(I), then qSymR→A(a) = SymA(a).
3. If R→ A splits, then qSymR→A(a) = ReesA(a).
4. There is an epimorphism ReesR(I) � qSymR→A(a).

EXAMPLE 2.3. If I is a complete intersection inR, then qSymR→A(a) = SymA(a)

by Part 2 in Lemma 2.2 (since then the symmetric and Rees algebras ofI in R coincide,
[Mic64]).

This shows that qSymR→A(a) may depend onR. For example, letA = C[x, y]/(xy),
a = (x, y), R = C[x, y]; then

qSymR→A(a) = SymA(a) �= ReesA(a) = qSymA→A(a) .

However, one of the main results of this section (Theorem 2.9) will show that
qSymR→A(a) is in fact independent ofR provided thatR is constrained to beregular.

2.4. There are two important cases in which the induced epimorphism is in fact an
isomorphism.

LEMMA 2.4. Let R → S be a ring homomorphism compatible with epimorphisms
R→ A and S → A; let a be an ideal of A, and let I , J resp. be the inverse images of a in R,
S. Then the induced epimorphism

qSymR→A(a) � qSymS→A(a)

is an isomorphism if
1. the homomorphism R→ S splits; or
2. S is R-flat, and J = IS.

PROOF. In the first situation, if a compositionR → S → R is the identity we obtain a
decomposition of the identity

qSymR(I) � qSymS(J ) � qSymR(I)

implying that both maps are isomorphisms.
In the second situation, sinceS is flat overR we haveImS = S ⊗R Im for all m. Thus

ReesS(J ) = ReesS(IS) =
⊕
m≥0

S ⊗R Im = S ⊗R

( ⊕
m≥0

Im

)
= S ⊗R ReesR(I) .

On the other hand, and again using flatness,

SymS(J ) = SymS(IS) = SymS(I ⊗R S) = S ⊗R SymR(I) ,
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by [Bou74], III §6, Proposition 7. Thus

SymS(J )⊗SymR(I ) ReesR(I) = (S ⊗R SymR(I))⊗SymR(I ) ReesR(I)

= S ⊗R (SymR(I)⊗SymR(I ) ReesR(I))

= S ⊗R ReesR(I)

= ReesS(J ) .

This shows that the square on the left in the diagram at the end of §2.2 is cocartesian, implying
the assertion. �

2.5. We now move to the geometric setting. All our schemes are of finite type over a
field k.

Let Y ⊂ X ⊂ M be closed embeddings of schemes. We denote byJY,X, resp.JY,M the
ideals ofY in X andM, respectively.

DEFINITION 2.5. Thequasi-symmetric algebra qSymX⊂M(JY,X) is the gradedOX-
algebra

qSymX⊂M(JY,X) := SymOX
(JY,X)⊗SymOM

(JY,M) ReesOM
(JY,M) .

In other words, qSymX⊂M(JY,X) sheafifies the local construction given by Definition 2.1.
Every commutative diagram

determines an epimorphism

qSymX⊂M(JY,X) � qSymX⊂N(JY,X)

and we are interested in conditions guaranteeing that this map is an isomorphism.

LEMMA 2.6. The induced epimorphism is an isomorphism if
1. N = M ×An; or
2. π is flat, and j (X) is a connected component of π−1(i(X)).

PROOF. These follow from Lemma 2.4. As the matter can be checked locally, we may
assumeM = SpecR, N = SpecS, X = SpecA, Y is given by an ideala in A, and we have a
commutative diagram
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Denote byK, L resp. the kernels ofR → A, S → A resp.; and byI , J resp. the inverse
images ofa in R, S resp.

In the first situationS = R[u1, . . . , us ] is a polynomial ring, and the splitting needed
in order to apply Lemma 2.4 holds because ifK is an ideal ofR then any left-inverse of the
inclusionR/K ↪→ (R/K)[u1, . . . , us ] lifts to a left-inverse ofR ↪→ R[u1, . . . , us ].

In the second situation, by hypothesisS is flat overR, and there exists anf ∈ S such
that the epimorphismS → A lifts to an epimorphismSf → A from the localization ofS at
f , with kernelKSf = LSf . A fortiori ISf = JSf is the inverse image ofa in Sf . As Sf is
flat over bothS andR, two applications of Part 2 from Lemma 2.4 give the assertion. �

THEOREM 2.7. If π : N → M is a smooth map compatible with closed embeddings
X ⊂ M, X ⊂ N , then for all closed subschemes Y ⊂ X the induced epimorphism

qSymX⊂M(JY,X) � qSymX⊂N(JY,X)

is an isomorphism.

PROOF. Again the matter can be checked locally, so asπ is smooth we may assume
that it can be written as a composition

N
étale−→ M ×As −→ M ;

by Lemma 2.6, Part 1, we may assume thatπ itself is étale. In this caseπ−1(X) → X is
an étale map with a section; hence the image ofX in N must be a connected component of
π−1(X). As étale maps are flat, Part 2 in Lemma 2.6 concludes the proof. �

Theorem 2.7 shows that the quasi-symmetric algebras ofX collect into classes detecting
specific ‘qualities’ of the embeddingsX ⊂M. For example, ifX ⊂ M is a section of a smooth
projectionM → X then qSymX⊂M(JY,X) = ReesOX

(JY,X) for all closed subschemesY ⊂
X. In fact, only the features of the embeddingX ⊂ M near Y affect the corresponding
quasi-symmetric algebra.

2.6. It is time to remove the dependence on the choice of an embeddingX ⊂ M. For
given Y ⊂ X, the epimorphisms on quasi-symmetric algebras induced by concatenation of
embeddingsX ⊂ M ⊂ N make{qSymX⊂M(JY,X)}M into an inverse system.

DEFINITION 2.8. LetY ⊂ X be a closed embedding of schemes. Thequasi-symmetric
algebra of JY,X is defined as the inverse limit

qSymOX
(JY,X) := lim←−

M⊃X

qSymX⊂M(JY,X) .

Thequasi-symmetric blow-up of X alongY is defined as the Proj of the quasi-symmetric
algebra:

qBlY X := Proj(qSymOX
(JY,X)).

The quasi-symmetric blow-up carries a tautological line bundleO(−1), as do the more
conventional sBlY X = Proj(SymOX

(JY,X)) and BlY X = Proj(ReesOX
(JY,X)). Also, note
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that by Lemma 2.2, Part 1, there are closed embeddings

BlY X ⊂ qBlY X ⊂ sBlY X .

Theorem 2.7 is the key to the following concrete computation of the ‘absolute’ quasi-
symmetric algebra and blow-up.

THEOREM 2.9. Let Y ⊂ X ⊂ M be closed embeddings of schemes, with M nonsingu-
lar. Then the canonical epimorphism

qSymOX
(JY,X) � qSymX⊂M(JY,X)

is an isomorphism.

PROOF. The matter is local. Since locally every scheme is embedded in a nonsingular
variety, it suffices to show that ifX ⊂ M ⊂ N are closed embeddings, withM andN non-
singular varieties, then qSymX⊂N(JY,X)→ qSymX⊂M(JY,X) is an isomorphism. Factoring
the embeddingM ⊂ N through the product, we have the diagram

which induces the commutative diagram of qSym algebras

The diagonal arrow on the left is an isomophism because the diagonal embedding splits; the
diagonal arrow on the right is an isomorphism by Theorem 2.7. Thus the horizontal arrow is
an isomorphism, as needed. �

2.7. By Theorem 2.9, the inverse system of algebras qSymX⊂M(JY,X) stabilizes at
nonsingular ambient varietiesM. In fact, by Part 4 in Lemma 2.2 there is a canonical embed-
ding

qBlY X ⊂ BlY M

induced by the surjection ReesOM
(JY,M) → qSymOX

(JY,X); the line bundleO(−1) is the
restriction of the line bundle of the exceptional divisor.

Theorem 2.9 implies immediately that qBlY X fulfills the promise made in the introduc-
tion.
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COROLLARY 2.10. The quasi-symmetric blow-up qBlY X is the largest subscheme of
sBlY X which admits an embedding in BlY M (compatibly with the projection to X) for some
scheme M containing X.

PROOF. By Theorem 2.9, the quasi-symmetric blow-up qBlY X can be embedded in
BlY M for anynonsingular varietyM containingX.

On the other hand, ifS is any quotient algebra of SymOX
(JY,X) which is also a quotient

of ReesOM
(JY,M) (for someM) then there is an induced epimorphism qSymX⊂M(JY,X)→

S by the definition of qSym (as a tensor product). Hence we obtain a surjection from
qSymOX

(JY,X) to S, showing that Proj(S) ⊂ qBlY X, as needed. �

It is natural to ask whether the embedding qBlY X ⊂ BlY M (for M a nonsingular vari-
ety containingX) can be realized concretely, just as the embedding BlY X ⊂ BlY M can be
realized as a ‘proper transform’.

DEFINITION 2.11. LetY ⊂ X ⊂ M be closed embeddings of schemes. Theprincipal

transform of X in the blow-up BlY M
ρ→ M of M alongY is the residual to the exceptional

divisor inρ−1(X).

Here, ‘residual’ is taken in the sense of [Ful84], Definition 9.2.1. Explicitly, ifI and
J are respectively the ideals of the exceptional divisor and ofρ−1(X) in BlY M, then since
Y ⊂ X it follows thatJ = I ·K for a uniquely determined idealK. This idealK defines the
residual scheme.

The definition of principal transform would appear to depend onM; at any rate,ρ−1(X)

certainly depends onM as it contains the exceptional divisor of BlY M. However, the next
result claims that theprincipal transform is almost as intrinsic toX, Y as is theproper trans-
form.

THEOREM 2.12. Let Y ⊂ X ⊂ M be closed embeddings of schemes, with M a nonsin-
gular variety. Then the quasi-symmetric blow-up of X along Y equals the principal transform
of X in BlY M .

This is an easy consequence of the following computation of qSymOX
(JY,X).

LEMMA 2.13. With notation as in the statement of the theorem,

qSymOX
(JY,X) =

⊕
d≥0

J d
Y,M/JX,MJ d−1

Y,M

(where we set J −1
Y,M = OM).

PROOF. By Theorem 2.9 we have qSymOX
(JY,X) ∼= qSymX⊂M(JY,X); we compute

the latter. Ford ≥ 1 set up the commutative diagram with exact rows
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0�
Torsd −−→ Discd −−→ 0�

�
JX,M · Symd−1JY,M −−→ SymdJY,M −−→ Symd(JY,M/JX,M) −−→ 0� � �

0 −−→ JX,M · J d−1
Y,M −−→ J d

Y,M −−→ J d
Y,M/(JX,M · J d−1

Y,M ) −−→ 0� � �
0 0 0

where all Sym are overOM , JX,M denotes the image ofJX,M in Sym1JY,M = JY,M , Torsd
is defined to make the central column exact, Discd is its image in Symd(JY,M/JX,M). A
diagram chase shows that the column on the right is exact. This gives

OM ⊕
⊕
d≥1

J d
Y,M/JX,MJ d−1

Y,M = SymOM
(JY,M/JX,M)⊗SymOM

JY,M
ReesOM

(JY,M) .

Tensoring byOX only affects the term of degree 0 on the left. On the other hand,

OX ⊗OM
SymOM

(JY,M/JX,M) = SymOX
(JY,X) ;

thus ⊕
d≥0

J d
Y,M/JX,MJ d−1

Y,M = qSymOX
(JY,X)

by the associativity of tensor products. �

2.8. ForY ⊂ X ⊂ M, andM not necessarily nonsingular, we can of course consider a
quasi-symmetric blow-up Proj(qSymX⊂M(JY,X)).

EXAMPLE 2.14. LetY ⊂ X ⊂ M, with M = X × P 1 andX embedded asX × {∞}.
Then the corresponding quasi-symmetric blow-up equals the ordinary blow-up BlY X.

This follows (for example) from Theorem 2.7 and the fact that the quasi-symmetric alge-
bra corresponding to the identity is the Rees algebra, cf. the comments immediately following
the proof of Theoremm 2.7.

In this case the blow-up of the ambient spaceM alongY is the ‘deformation to the normal
cone’ of [Ful84]. The statement of Theorem 2.12 corresponds to the description of the fiber
over∞ of the deformation, cf. p. 87 of loc. cit.

In general, the analog of Theorem 2.12 realizes any such quasi-symmetric blow-up as the
principal transform ofX in the (ordinary) blow-up ofM alongY . We observe that every Proj
of a quasi-symmetric algebra is contained in the quasi-symmetric blow-up of Definition 2.8,
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since anyM is contained locally in a nonsingular variety. In any case, this more general notion
will not be used in the rest of this paper.

Some of the intuition regarding the quasi-symmetric blow-up of Definition 2.8 is cap-
tured by the following simple examples.

EXAMPLE 2.15. LetX = a pair of distinct lines inM = A2, andY = the point of
intersection.

Consider the blow-upρ : BlY M → M; the exceptional divisor is aP 1. The ordinary
BlY X is the proper transform ofX, and it consists of two disjointA1. The inverse image
ρ−1(X) consists (as a divisor) of BlY X plus the exceptional divisorwith multiplicity 2. By
Theorem 2.12, the quasi-symmetric blow-up qBlY X sits between these two schemes: it con-
sists of BlY X plus the exceptional divisorwith multiplicity 1.

EXAMPLE 2.16. By the same token, ifX consists of the union ofm distinct lines
through a pointY in a plane, then qBlY X consists ofm disjoint lines union a(m−1)-multiple
P 1 intersecting each of them at a point.

EXAMPLE 2.17. The picture is drastically different if the lines are not coplanar. For
example, letX be the union of the coordinate axes inA3, and letY be the origin. Then qBlY X

consists of three disjoint lines, union aplane P 2 intersecting each of them at a point.
This is again checked by using Theorem 2.12. Using coordinates(x, y, z) in M = A3,

the ideals ofY andX are (x, y, z), (xy, xz, yz) respectively. We can choose coordinates
(x̃, ỹ, z̃) in an affine chart of the blow-up ofA3 at the origin so that the blow-up mapρ is
given by 


x = x̃z̃

y = ỹz̃

z = z̃

,

with (z̃) the ideal of the exceptional divisor. The ideal ofρ−1(X) in this chart is

(x̃ỹz̃2, x̃z̃2, ỹz̃2) = (x̃z̃2, ỹz̃2) .

By Theorem 2.12, qBlY X is the residual to the exceptional divisor in qBlY M; hence it has
ideal

(x̃z̃, ỹz̃) = (x̃, ỹ) ∩ (z̃)

in this chart: that is, qBlY M meets this chart in the proper transform of the linex = y = 0,
union the exceptional divisor. The proper transforms of the other lines are contained in the
other charts covering the blow-up.

Example 2.17 shows that qBlY X may have components of higher dimension thanX.
Contrast this situation with Example 2.16: the quasi-symmetric blow-up of the union of three
coplanar lines has dimension 1 (it consists of three disjoint lines union a double line connect-
ing them). More generally:
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COROLLARY 2.18. If X can locally be embedded as a hypersurface in a nonsingular
irreducible variety, then for every Y ⊂ X the quasi-symmetric blow-up qBlY X is equidimen-
sional.

PROOF. This follows from Theorem 2.12, which shows that in this case qBlY X is a
Cartier divisor in BlY M. �

Hypersurfaces of nonsingular varieties will be our main concern in the rest of the paper.

3. The conormal and characteristic cycles of a hypersurface.
3.1. We now move from the generalities in §2 to our application to the theory of Chern

classes of singular varieties. In this section we will deal with the theory at the level of La-
grangian cycles in the cotangent bundle of an ambient nonsingular variety; in the next section
we will extract the information more closely pertaining to characteristic classes.

Our main objective in this section is to show that the notion introduced in §2 gives a
concrete realization of the characteristic cycle of a hypersurfaceX in a nonsingular ambient
variety M. In a nutshell, thecharacteristic cycle of X is the cycle of thequasi-symmetric
blow-up of X along its singularity subscheme. This fact should be appreciated in conjunction
with the (straightforward) observation that theconormal cycle ofX is the cycle of its ordinary
blow-up along the same subscheme.

Realizing the characteristic cycle allows us to give a direct computation of the Chern-
Schwartz-MacPherson classes of a hypersurface,following the same philosophy behind other
characteristic classes (specifically the classes introduced in [FJ80] and [Ful84], Example
4.2.6). This requires a certain care in handling the appropriate tautological line bundles; we
work this out in §4.

After the preliminary work done in §2, the main result in this section follows easily from
the existing literature on characteristic classes for singular hypersurfaces.

In this section we also identify a condition under which the quasi-symmetric blow-up
needed here equals the symmetric blow-up. In this situation, the Chern-Schwartz-MacPherson
class of the hypersurface can be efficiently expressed in terms of the Chern class of a certain
coherent sheaf defined on it.

3.2. We work over an algebraically closed field of characteristic 0. Throughout the rest
of the paperM will denote a nonsingular irreducible algebraic variety, andX will be the zero-
scheme of a nonzero sectionF of a line bundleL onM; we will say thatX is ahypersurface
for short. For convenience we will implicitly assume thatX is reduced, although this is not
an essential requirement (cf. §3.12).

The singularity locus ofX has an interesting, possibly nonreduced scheme structure. We
will denote byY this singularity subscheme of X (see §3.8 for the precise definition).

We begin by recalling several well-established notions, for the benefit of the non-expert
and in order to establish notation. The informed and impatient reader can safely skip to §3.6.

3.3. A constructible function on a varietyV is a finite linear combination
∑

nW 1W ,
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where the summation ranges over (closed, irreducible) subvarietiesW ⊂ V , nW ∈ Z, and1W

denotes the function that is the constant 1 onW , and 0 outside ofW . We denote byC(V )

the group of constructible functions onV . If f : V1 → V2 is a proper map, a push-forward
C(f ) : C(V1)→ C(V2) is defined by setting, forW a subvariety ofV1 andp ∈ V2,

C(f )(1W)(p) = χ(f−1(p) ∩W) ,

and extending by linearity. Hereχ denotes the topological Euler characteristic when working
overC; see [Ken90], §3, for the extension of the theory to arbitrary algebraically closed field
of characteristic 0.

With this push-forward, the assignment

C : V �→ C(V )

yields a covariant functor from algebraic varieties to abelian groups.
3.4. A fundamental result of MacPherson ([Mac74] and [Ken90]) compares this functor

to the functor

A : V �→ A(V )

assigning to a variety its Chow group: there exists a natural transformation

c∗ : C � A

such that, forV anonsingular variety, the induced group homomorphism

C(V )→ A(V )

maps1V to the total Chern class of the tangent bundle ofV :

1V �→ c(T V ) ∩ [V ] .
For arbitrarily singularV , one may then define a (total) ‘Chern class’ in the Chow group of
V , by setting

cSM(V ) := c∗(1V ) ;
thuscSM(V ) = c(T V ) ∩ [V ] if V is nonsingular. Brasselet and Schwartz later discovered
that this class defined by MacPherson is in fact Alexander dual to a class previously defined
by Schwartz ([Sch65a], [Sch65b]; and [BS81]); nowadays,cSM(V ) is commonly named the
Chern-Schwartz-MacPherson class of V .

3.5. In MacPherson’s approach, the natural transformationc∗ is defined directly by
requiring that

c∗(EuV ) = cMa(V )

for all varietiesV . HerecMa(V ) stands for theChern-Mather class ofV , and EuV is thelocal
Euler obstruction, a measure of the singularities ofV . Both these notions were defined in
[Mac74], and have been the subject of intense study since; again we refer the reader to [Ken90]
for a very readable treatment and for the extension of the theory to arbitrary algebraically
closed fields of characteristic 0.
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A different approach to the definition ofc∗ emerged in the work of Sabbah ([Sab85],
[Ken90] and [PP01], §1). The natural transformationc∗ can be obtained (up to taking a harm-
less dual) as the composite of two transformations

C � L � A ,

whereL denotes the functor assigning to a varietyV the groupL(V ) of Lagrangian cy-
cles overV , with a suitably defined push-forward. IfV ⊂ M is an embedding ofV into a
nonsingular varietyM, the Lagrangian cycles overV are the Lagrangian cycles in the restric-
tion P (T ∗M)|V of the projectivized cotangent bundle ofM. As is well known ([Ken90],
Lemma 3), every Lagrangian subvariety overV is in fact the projective conormal space
P (T ∗WM) of a closed subvarietyW ⊂ V . HenceL(V ) is the free abelian group on the set
of subvarieties ofV ; the realization ofL(V ) as a group of cycles inP (T ∗M)|V , for some
nonsingularM containingV , yields a good notion of push-forward of elements ofL(V ) (see
p. 2829–31 in [Ken90] for details).

The second stepL � A in the above decomposition can be expressed in terms of stan-
dard intersection theory, and will be recalled in §4.3. The first step,C � L, is considerably
subtler. It is determined by the requirement that, for all (closed, irreducible) subvarieties
W ⊂ V , the local Euler obstruction ofW correspond (up to sign) to theconormal cycle of W

in M:

(−1)dimW EuW �→ [P (T ∗WM)] .
For every constructible functionϕ ∈ C(V ) we obtain then acharacteristic cycle

Ch(ϕ) ∈ L(V ) .

The cycle Ch(1V ) (realized as above, that is, in terms of an embeddingV ⊂ M) is called
thecharacteristic cycle of V (in M).

3.6. Summarizing, there are two important cycles associated to a varietyV in the pro-
jectivized cotangent bundleP (T ∗M) = Proj(SymM((Ω1

M)∨)) (here and elsewhere,∨ denotes
‘dual’ in the ordinary sense of locally free sheaves, as in [Har77], p. 123) of any nonsingular
varietyM in whichV is embedded:

• the conormal cycle[P (T ∗V M)], corresponding (up to sign) to the local Euler ob-
struction ofV , and to the Chern-Mather class ofV ; and

• the characteristic cycle Ch(V ) of V , likewise corresponding to the constant function
1V and to the Chern-Schwartz-MacPherson class ofV .

Explicitly realizing Ch(V ) ‘from the definition’ requires finding subvarietiesW of V

and integerseW such that1V = ∑
W eW EuW . This information is extremely subtle. ‘Index

formulas’ (cf. [BDK81]) provide an approach to extracting this information, but we do not
know of any computationally effective method to implement such formulas.

Our goal here is the construction of a scheme whose cycle is the characteristic cycle of
a hypersurfaceX of a nonsingular varietyM. In principle this construction can be performed
by symbolic computation programs such asMacaulay2. An entirely analogous realization
of the conormal cycle is more readily available, and will be recalled in a moment.
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The theory recalled above applies to varieties, and in particular requiresV to bereduced.
Because of this, we will assume that our hypersurfaces are reduced in what follows (but see
3.12 below).

3.7. According to the framework recalled above, the conormal and characteristic cycles
arise as cycles in the (projectivized) cotangent bundle of an ambient nonsingular variety. It is
our opinion that these cycles have a right to exist freely, independent of an ambient variety; but
we will wait until §4 to fully make this point. For the time being we will house the cycles in
the usual place, which amounts to finding an appropriate ambient for the blow-ups considered
in §2.

The sectionF of L definingX determines a sections of the bundleP1
ML of principal

parts ofL:

s : OM → P1
ML ;

(see [EGA], 16.7, for the definition ofP1; we recommend the appendix of [Per95] for a
thorough but concise treatment). We letY denote the zero-scheme ofs in M, and we callY
the ‘singularity subscheme’ ofX. Composings with the projection toL recoversF :

hences induces a section ofΩ1
M ⊗ L onX, which is natural to namedF :

dF : OX → (Ω1
M ⊗ L)|X ;

the subschemeY is the zero-scheme ofdF on X. It is easily checked that, locally,dF is
given by the partial derivatives ofF with respect to a set of local parameters forM; henceY
is supported on the singular locus ofX, justifying its name. Locally, we can write (abusing
notation):

JY,M =
(

F,
∂F

∂x1
, . . . ,

∂F

∂xn

)

for the ideal orY in M. We will write (F ) for the ideal ofX in M, as this is given by the
vanishing of the sectionF of L.

Dualizings : OM → P1
ML we get an epimorphism

(P1
ML)∨ � JY,M

and from this, Lemma 2.2, and Theorem 2.9 the epimorphisms

SymOM
((P1

ML)∨) � ReesOM
(JY,M) � qSymOX

(JY,X) .

Since qSymOX
(JY,X) is anOX-module, tensoring byOX gives an epimorphism

SymOM
((P1

ML)∨|X) � qSymOX
(JY,X) .
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Finally, composing withL∨ ↪→ (P1
ML)∨ gives the zero-map overX, showing that there is a

surjection

Sym((Ω1
M ⊗ L)∨|X) � qSymOX

(JY,X) .

Since qSymOX
(JY,X) dominates all quasi-symmetric algebras ofJY,X, and in particular

the Rees algebra, this shows (taking Proj) that there are closed embeddings

BlY X ⊂ qBlY X ⊂ Proj(Sym((Ω1
M ⊗ L)∨|X)) = P (T ∗M ⊗ L|X) ∼= P (T ∗M|X) .

3.8. The following statement is only one step away from the definitions, but it is excel-
lent preparation for the main result of the section, Theorem 3.2 below.

THEOREM 3.1. The conormal cycle [P (T ∗XM)] of X in M equals

[BlY X] = [Proj(qSymX⊂X(JY,X))] .
PROOF. Recall that we are assuming thatX is reduced. The conormal spaceT ∗XM of X

in M is the closure inT ∗M of the kernels of the projection

(T ∗M)x → (T ∗X)x → 0

over nonsingular pointsx of X. In other words, the projectivized conormal space ofX is the
closure of the image of the section

Xreg→ P (T ∗M)|X = P (T ∗M ⊗ L)|X
induced on the setXreg of regular points ofX by the sectiondF determined above. Chas-
ing the morphisms collected above shows that this is precisely how BlY X is embedded in
P (T ∗M|X) over regular points ofX. Hence BlY X and the projectivized conormal space
agree over regular points ofX, and it follows that they agree everywhere, as needed. Finally,

recall that the quasi-symmetric algebra corresponding to the identityX
id

↪→ X equals the Rees
algebra. �

3.9. The next result is our main application of the construction developed in §2; it does
for the characteristic cycle precisely what Theorem 3.1 does for the conormal cycle.

THEOREM 3.2. The characteristic cycle [Ch(X)] of X in M equals

(−1)dimX[qBlY X] = (−1)dimX[Proj(qSymX⊂M(JY,X))] .
The annoying sign is due to established (thus unavoidable) conventions, and reflects the

fact that the Lagrangian point of view is best suited to build acotangent theory of characteristic
classes.

Modulo the work done in §2, the statement is an easy consequence of results in the
literature on characteristic classes for singular varieties.

PROOF. By Theorem 2.12,[qBlY M] equals the principal transform ofX in BlY M, so
the claim is that the latter computes Ch(X), with due attention to the sign. OverC, this state-
ment is Corollary 2.4 in [PP01]; for arbitrary algebraically closed fields of characteristic 0, it
can be obtained from Claim 2.1 in [Alu00]. �
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3.10. We will now identify a technical condition under which the algebra qSymX(Y ) is
nothing but the symmetric algebra ofJY,X. As a consequence of Theorem 3.2, the character-
istic cycle of hypersurfaces satisfying this condition is (up to sign) the cycle of thesymmetric
blow-up of their singularity subschemes. This both simplifies matters computationally (since
packages such asMacaulay2 have built-in functions for computing symmetric algebras)
and is philosphically intriguing: in this case, the characteristic cycle is realized as the ‘linear
fiber space’ (Linearer Faserraum, cf. [Fis67]) corresponding to the ideal sheafJY,X. While
the fibers of the characteristic cycle are always linear, we do not know if every characteristic
cycle can be realized as a linear fiber space.

As above,F denotes the section of the line bundleL on M whose zero-scheme is the
hypersurfaceX. For the purpose of this discussion, ahomogeneous, degree d differential
operator satisfied by F is a local section of Symd(P1

ML)∨ mapping to 0 inJ d
Y,M via the map

induced by the surjection(P1
ML)∨ → JY,M whose existence we pointed out in §3.7. In terms

of local parametersx1, . . . , xn onM, this object is nothing but a homogeneous polynomial

P(T0, . . . , Tn)

with coefficients (local) functions onM, such that

P

(
F,

∂F

∂x1
, . . . ,

∂F

∂xn

)
≡ 0 ;

we will express the condition in this slightly imprecise but more vivid language, leaving to
the reader the task of translating it into aglobal, coordinate-free formulation.

The simplest way to manufacture homogeneous differential operators of degreed satis-
fied byF is as a sum

P = P0 · T0+ P1 · T1+ · · · + Pn · Tn ,

where thePi are homogeneous polynomials of degreed − 1 in T0, . . . , Tn, and

P0 · F + P1 · ∂F

∂x1
+ · · · + Pn · ∂F

∂xn

= 0 .

We say that such operators aretrivially satisfied byF . The×-condition on X is a softening
of this requirement, on operators of sufficiently high degree satisfied byF .

DEFINITION 3.3. A hypersurfaceX in M satisfies the ×-condition if there exists ad0

such that every homogeneous differential operatorP of degreed ≥ d0 and satisfied byF can
be written as

P = P0 · T0+ P1 · T1+ · · · + Pn · Tn ,

where thePi are homogeneous polynomials of degreed − 1 in T0, . . . , Tn, and

P1 · ∂F

∂x1
+ · · · + Pn · ∂F

∂xn

∈ (F ) .

PROPOSITION 3.4. A hypersurface X satisfies the ×-condition if and only if

Symd
X(Y ) ∼= qSymd

X(Y )

for d � 0.
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PROOF. In the hypersurface case, we can complete the diagram in the proof of Theo-
rem 2.12 so that all rows and columns are exact:

0 0 0� � �
0 −−→ T0 · Torsd−1 −−→ Torsd −−→ Discd −−→ 0� � �
0 −−→ T0 · Symd−1JY,M −−→ SymdJY,M −−→ Symd(JY,M/(F )) −−→ 0�

�
�

0 −−→ F · J d−1
Y,M −−→ J d

Y,M −−→ J d
Y,M/(F )J d−1

Y,M −−→ 0�
�

�
0 0 0

(the leftmost column is exact asF is a non-zero-divisor, and it follows that the top row is
exact). We have to verify that Discd = 0 for d � 0 if and only ifX satisfies the×-condition.

Now (cf. for example [Vas94], Chapter 2) Torsd can be described as the space of degree-d

homogeneous operators satisfied byF , modulo those trivially satisfied byF . Hence

Discd = Torsd/T0 · Torsd−1

is 0 if and only if every degree-d homogeneous operator satisfied byF is equivalent to a
multiple ofT0 modulo trivial ones. That is, if and only if for every homogeneousP of degree
d such that

P

(
F,

∂F

∂x1
, . . . ,

∂F

∂xn

)
≡ 0

there exists aQ, homogeneous of degreed − 1 and such that

P − T0 ·Q = P0 · T0+ P1 · T1+ · · · + Pn · Tn

with

P0 · F + P1 · ∂F

∂x1
+ · · · + Pn · ∂F

∂xn

= 0 .

It is straightforward to verify that this latter condition is satisfied ford � 0 if and only if X
satisfies the×-condition. �

COROLLARY 3.5. If X satisfies the ×-condition, then the characteristic cycle of X in
M equals (−1)dimX[Proj(SymOX

(JY,X))].
PROOF. Immediate consequence of Theorem 3.2: ifX satisfies the×-condition, then

by Proposition 3.4 the algebras SymOX
(JY,X) and qSymOX

(JY,X) are isomorphic in high
degree, so they have the same Proj. �
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3.11. The×-files. The ‘×’ in ×-condition has been chosen as it reminds us of the
prototypical singularities satisfying it: the conicxy = 0 in the plane is (i) a hypersurface
with a nonsingular singularity subscheme; (ii) a hypersurface with quasi-homogeneous iso-
lated singularities; and (iii) a divisor with normal crossing divisor. Each of these classes of
hypersurfaces satisfies the×-condition. In fact, as the interested reader may verify, in each of
these cases the embedding of the singularity subscheme in the ambient space is ‘linear’.

Recall ([Kee93]) that an embedding of schemesS ⊂ T is linear if the Rees algebra and
the symmetric algebra of the ideal ofS in T are isomorphic; it isweakly linear if the Rees
algebra and the symmetric algebra are isomorphic in high degree, that is, if Proj(SymT (S))

is isomorphic to the (Rees) blow-up ofT alongS. These conditions have been studied exten-
sively, see for example [Mic64], [Hun80], [Val80].

PROPOSITION 3.6. Let X be a hypersurface in a nonsingular variety M, with sin-
gularity subscheme Y . If the embedding of Y in M is weakly linear, then X satisfies the
×-condition.

PROOF. With the notation in the proof of Proposition 3.4, the embedding ofY in M is
weakly linear if and only if Torsd = 0 for d � 0. This implies Discd = 0 for d � 0, which
is equivalent to the×-condition, as observed in that proof. �

For example, this implies immediately the×-condition for the first case listed above:
if Y is nonsingular, then its embedding inM is regular, hence linear, hence weakly-linear.
However, we should remind the reader that the requirement that the singularitysubscheme
of a hypersurface be nonsingular is very strong; substantially stronger, for example, than the
requirement that the singularitylocus be nonsingular. Some constraints on this situation are
studied in [Alu95], §3. Hypersurfaces whose singularity subscheme is nonsingular are in
particularnice in the sense of [AB03].

EXAMPLE 3.7. The plane curvex4+ x3y2+ y6 = 0 has an isolated singularity at the
origin; the embedding of its singularity subscheme in the plane is not linear.

This is checked by explicit calculations, which we performed withMacaulay2.
It can also be shown that if the×-condition implies that every vector tangent at a pointx

to a stratum in a Whitney stratification ofX extends to fiberwise linear functions onP1
MO(X),

tangent to nearby ‘level hypersurfaces’. In this sense, the×-condition may be viewed as
a strong regularity requirement on extensions of tangent vectors near strata of a Whitney
stratification ofX. It is known that tangent vectors to strata of a Whitney stratification of
X are suitably ‘close’ to the tangent spaces of nearby level hypersurfaces (the so-calledwf -
condition of Thom). This suggests that the techniques in [Par93] or [BMM94] may be apt to
characterizing hypersurfaces satisfying the×-condition.

3.12. For simplicity we have assumed that the hypersurfaceX is reduced in the pre-
ceding subsections. It should be noted, however, that the quasi-symmetric blow-up is defined,
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and determines a cycle inP (T ∗M), regardless of whetherX is reduced or not. The argu-
ments given above can be traced in this case, and show that this cycle is nothing but the char-
acteristic cycle of the supportXred. This rather remarkable fact implies that simply setting
cSM(X) := cSM(Xred) leads to a consistent theory of Chern-Schwartz-MacPherson classes, at
least whenX is a hypersurface.

We leave the details to the interested reader (cf. §2.1 in [Alu99a]).

4. Shadows of blow-up algebras.
4.1. Theorems 3.1 and 3.2 give intrinsic constructions of the two key cycles associated

with X. We would like to deal with the corresponding schemes BlY X, qBlY X as stand-alone
entities, and determine precisely what type of information they carry in relation with the
ambient nonsingular varietyM.

With this in mind, we first discuss the transformationL � A mentioned in §3.5, which
produces the Chern-Mather, resp. Chern-Schwartz-MacPherson classes from the conormal,
resp. characteristic cycle; then we separate the rôle of the ambient variety in this computation
from that of the blow-ups themselves, and find that the blow-ups carry ‘normal data’ regarding
the embeddingX ⊂ M. This point of view unifies the computation of the Chern-Mather and
Chern-Schwartz-MacPherson classes with the approach yielding the classes defined by Fulton
and Fulton-Johnson ([Ful84], [FJ80] and cf. §4.6 below).

4.2. If E is a locally free sheaf of ranke+ 1 on a schemeS, there is a precise structure
theorem for the Chow group of the projective bundle

P (E) := Proj(SymE∨) ε−→ S

([Ful84], §3.3): every classC ∈ ArP (E) can be written uniquely as

C =
e∑

j=0

c1(O(1))j ∩ ε∗(Cr−e+j )

whereO(1) denotes the tautological line bundle onP (E), andCr−e+j ∈ Ar−e+j S.
Therefore, knowledge ofC is equivalent to knowledge of the collection ofe + 1 classes

Cr−e, . . . , Cr onS.

DEFINITION 4.1. We say that the classCr−e + · · · + Cr ∈ AS is theshadow of the
classC.

As its real world namesake, the shadow neglects some of the information carried by the
object that casts it. For example,c1(O(1))j · [P (E)] has shadow[S] for all j = 0, . . . , e.
However, a pure-dimensional classC can be reconstructed from its shadow if its dimension
is known, as follows immediately from the structure theorem recalled above.

It will be convenient to have a direct way to obtain the shadow of a given class.

LEMMA 4.2. The shadow of C is the class

c(E) ∩ ε∗(c(O(−1))−1 ∩ C) .
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PROOF. Writing C as above, we have

c(E) ∩ ε∗(c(O(−1))−1 ∩ C) = c(E) ∩ ε∗
(

c(O(−1))−1 ∩
e∑

j=0

c1(O(1))j ∩ ε∗(Cr−e+j )

)

=
e∑

j=0

c(E) ∩ ε∗
( ∑

k≥j

c1(O(1))k ∩ ε∗(Cr−e+j )

)
.

Sincec1(O(1))k ∩ ε∗α = 0 for 0≤ k < e and anyα ∈ A∗S, this says

c(E) ∩ ε∗(c(O(−1))−1 ∩ C) =
e∑

j=0

c(E) ∩ ε∗(c(O(−1))−1 ∩ ε∗(Cr−e+j )) .

Finally, this equals
∑e

j=0 Cr−e+j by [Ful84], Example 3.3.3. �

4.3. As recalled in §3.5, MacPherson’s natural transformationc∗ can be expressed by a
two-step procedure: (C � L) taking the characteristic cycle Ch(ϕ) of a constructibile function
ϕ, and (L � A) extracting a rational equivalence class from the characteristic cycle. As the
natural habitat of Lagrangian cycles is the projectivizedcotangent bundleP (T ∗M), we find
it convenient to arrange things so as to obtain a classč∗(ϕ) differing from c∗(ϕ) by the sign
of the components of odd dimension:

{č∗(ϕ)}r = (−1)r{c∗(ϕ)}r
in dimensionr. For example,

č∗(1M) = (−1)dimMc(T ∗M) ∩ [M]
for the nonsingular ambientM.

LEMMA 4.3. The class č∗(ϕ) is the shadow of the characteristic cycle Ch(ϕ).

PROOF. This is formula (12) on p. 67 of [PP01], filtered through Lemma 4.2. As ob-
served in [PP01], this is in agreement with [Mac74]. �

The statement of Lemma 4.3, while implicit in the existing literature, is mysteriously
absent in this explicit form relating the transformationL � A to the structure theorem of the
Chow group of projective bundles. This interpretation streamlines the proof thatL � A is a
natural transformation; Schürmann has independently made the same observation [Sch01b].

4.4. We are ready to justify the title of this article. Denote byčMa(X), čSM(X) resp. the
classes obtained by changing the sign of the components of odd dimension incMa(X), cSM(X).

THEOREM 4.4. Let X be a hypersurface of a nonsingular variety M, and let Y be its
singularity subscheme. Then

• the shadow of [BlY X] is (−1)dimXčMa(X),
• the shadow of [qBlY X] is (−1)dimXčSM(X).

PROOF. This now follows from Theorems 3.1 and 3.2, and Lemma 4.3. �
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4.5. The next step in our program consists of carefully distinguishing the rôle of the
ambient space and of the blow-ups in the statement of Theorem 4.4. There is an interesting
twist to this story, which highlights the need for a subtle change of perspective.

We have so far focused on the idealJY,X as the most natural source of information
concerning the singularities ofX; and indeed we have defined our main notions in §2 starting
from the data of an ideal sheaf inOX . We are now going to shift the attention to a different
coherent sheaf, defined for any subschemeX of a nonsingular varietyM; it will be easy
to relate this sheaf toJY,X whenX is a hypersurface, and this will naturally extend quasi-
symmetric blow-up algebras to this coherent sheaf. To summarize what we will find, these
new algebras agree locally with the algebras obtained forJY,X ; in fact, their Proj will be
isomorphic as schemes to the quasi-symmetric blow-ups ofJY,X. But thealgebras carry
more information than the schemes: the grading determines a line bundle on the blow-ups,
and this information will turn out to be essential.

The new blow-up algebras will thus determine a Segre-class type of invariant, and we
will show that using this invariant yields the Mather and Schwartz-MacPherson classes in
essentially the same way as ordinary Segre classes of coherent sheaves, resp. of cones lead to
Fulton-Johnson, resp. Fulton classes.

4.6. Here is a quick reminder concerning these latter two classes, in order to clarify the
context underlining our motivation.

If Z is any scheme embedded in a nonsingular varietyM (of dimension> dimZ for
convenience), there are several ways to obtain ‘normal data’ relating to the embedding. For
example, such data is carried by the conormal sheafNZM = JZ,M ⊗OM

OZ , and can be
effectively encoded in theSegre class of this coherent sheaf, defined by

s(NZM) := p∗
∑

c(O(1))i ∩ [Proj(SymOZ
(NZM))]

wherep is the structure morphism on Proj.

DEFINITION 4.5. TheFulton-Johnson class ofZ is the class

c(T M) ∩ s(NZM)

in the Chow group ofZ.

It can be shown that this class is independent of the ambient varietyM, and agrees with
the total Chern class of the tangent bundle ofZ whenZ is nonsingular (cf. [FJ80] or [Ful84],
Example 4.2.6 (c)).

A different way to access normal data amounts to taking a Rees point of view rather than
a Sym point of view. Replacing

SymOZ
(NZM) = SymOM

(JZ,M)⊗OM
OZ

by
ReesOM

(JZ,M)⊗OM
OZ

defines thenormal cone of Z in M, whose Segre class (again defined by pushing forward
powers of the first Chern class ofO(1)) is properly called theSegre class of Z in M, s(Z,M).
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Applying the same principle as above leads to the following notion.

DEFINITION 4.6. TheFulton class ofZ is the class

c(T M) ∩ s(Z,M)

in the Chow group ofZ.

Again, it can be shown that this class is independent of the ambient nonsingular va-
riety M (cf. [Ful84], Example 4.2.6), and agrees with the total Chern class of the tangent
bundle ofZ whenZ is nonsingular.

The formulas in Definitions 4.5 and 4.6 should be compared with the formulas for the
Chern-Mather and Chern-Schwartz-MacPherson classes that we will obtain in Theorem 4.9.

4.7. How else can one extract normal data from an embeddingZ ⊂ M of a scheme in
a nonsingular variety? Again we assume that dimM > dimZ. There is a surjection

Ω1
M |Z → Ω1

Z → 0 ,

from which we obtain the exact sequence

0→ Hom(Ω1
Z,OZ)→ Hom(Ω1

M |Z,OZ)→ TZM → 0 ,

defining the coherent sheafTZM on Z. If Z is nonsingular thenTZM is locally free, and in
fact it is the sheaf of sections of the normal bundle ofZ in M.

Now our idea consists of following the same guiding principle which rules in §4.6, but
employing Segre classes obtained from quasi-symmetric algebras associated withTZM. As
things stand now, we only have defined such objects for ideals, and this limits the scope of
our aim. However, in the case we have considered in §3 and in Theorem 4.4 the day is saved
by a special form taken byTZM.

LEMMA 4.7. If Z = X is a hypersurface in a nonsingular variety M, with line bundle
L and singularity subscheme Y , then TXM = JY,X ⊗OX

L.

PROOF. LetJ = JX,M denote the ideal ofX in M. TakingHom(−,OX) in the exact
sequence of differential gives the exact sequence

0→ Hom(Ω1
X,OX)→ Hom(Ω1

M |X,OX)→ Hom(J /J 2,OX) .

A local computation determines the image of the rightmost map as the subsheaf ofOX-
morphismsJ /J 2 → OX factoring throughJY,X . In other words, ifX is a hypersurface
in M then

TXM = Hom(J /J 2,JY,X) = L|X ⊗OX
JY,X ,

as claimed. �

By virtue of Lemma 4.7 we can make sense of quasi-symmetric algebras ofTXM if X

is a hypersurface inM. The two extremes in the range of quasi-symmetric algebras are the
following two definitions:

qSymX⊂X(TXM) := ReesOX
(JY,X)⊗OX

L
qSymX⊂M(TXM) := qSymOX

(JY,X)⊗OX
L
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and the corresponding Segre class-like notions:

šMa(X,M) := p∗
∑

c(O(1))i ∩ [Proj(qSymX⊂X(TXM))]
šSM(X,M) := p∗

∑
c(O(1))i ∩ [Proj(qSymX⊂M(TXM))]

wherep denotes the projection from the corresponding Proj, andO(1) is the tautological line
bundle. We remark that the two Proj equal BlY X, qBlY X as schemes—only the tautological
bundles are affected upon tensoring byL.

We have defined a ‘checked’ notion of Segre class in view of artificially taking a dual
that brings us back to thetangent world. So we set

sMa(X,M) := (−1)dimX
∑
r≥0

(−1)r šMa(X,M)r

sSM(X,M) := (−1)dimX
∑
r≥0

(−1)r šSM(X,M)r

where subscripts mark dimensions; that is, we change the sign of components in the checked
Segre classes of every othercodimension inX.

EXAMPLE 4.8. If X is a nonsingular hypersurface, then all notions of Segre class co-
incide: s(NXM) = s(X,M) = sMa(X,M) = sSM(X,M) = c(L)−1 ∩ [X]. If X may be
singular, but satisfies the×-condition (see §3.10), thensSM(X,M) = s(JY,X ⊗ L).

4.8. Summarizing, we have extracted normal data from our hypersurfaceX in M by
defining a coherent sheafTXM in a rather simple-minded way from the exact sequence of
differentials ofX; adapting toTXM the construction of §2; and defining from the resulting
blow-up algebra a notion of Segre class. These classes achieve precisely what we set out to
do, that is, they yield the Chern-Mather and Chern-Schwartz-MacPherson classes by the same
method behind the classes of Fulton and Fulton-Johnson (cf. Definitions 4.5 and 4.6). That is:

THEOREM 4.9. Let X be a hypersurface in a nonsingular variety M . Then
• cMa(X) = c(T M) ∩ sMa(X,M),
• cSM(X) = c(T M) ∩ sSM(X,M).

PROOF. We will give the argument for the second equality; the first is treated similarly.
Tensoring byL the epimorphism

Sym((Ω1
M ⊗ L)∨|X) � qSymOX

(JY,X)

from §3.7 we obtain

Sym((Ω1
M)∨|X) � qSymX⊂M(TXM) ,

inducing the embedding

qBlY X ↪→ P (T ∗M)
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realizing the characteristic cycle ofX (by Theorem 3.2), and showing that the restriction of
O(−1) to qBlY X is the universal bundleO(−1) of Proj(qSymX⊂M(TXM)). By Lemma 4.2,
the shadow of the blow-up algebra qBlY X is computed by

c(T ∗M) ∩ (c(O(−1))−1 ∩ [qBlY X]) = c(T ∗M) ∩ šSM(X,M) .

This equals(−1)dimXčSM(X), by Theorem 4.4. The equality forcSM(X) follows by changing
the sign of the components of every other codimension. �

4.9. At this point it is only too natural to pose the problem of defining quasi-symmetric
algebras for coherent sheaves so as to validate Theorem 4.9 for more general schemesX,
following the same strategy (that is, by obtaining Segre classes from the quasi-symmetric
algebras ofTXM). The advantage in formulas such as those in Theorem 4.9 is not only theo-
retical: these formulas can be implemented in procedures for symbolic computation programs
such asMacaulay2. At present a routine is implementedthat computes Chern-Schwartz-
MacPherson classes of projective schemes ([Alu03]), exploiting the hypersurface case in order
to compute classes in the general case, by a computationally expensive ‘inclusion-exclusion’
procedure.

An upgrade of Theorem 4.9 to more general schemes would bring about a drastic im-
provement in the speed of such routines.

Regarding a possible definition of quasi-symmetric algebras for coherent sheaves, this
would presumably pivot on a good notion of Rees algebra of a module; such notions have
been introduced and studied by several authors—for example Micali, [Mic64]. Even in the
simpler case of ideals treated here, it would be quite interesting to relate our construction with
the ideals defined by Micali in loc. cit., interpolating between the symmetric and the Rees
algebras.
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