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SUB AND SUPERCRITICAL CASES
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Abstract. We study the validity of geometric optics i for nonlinear wave equa-
tions in three space dimensions whose solutions, pulse like, focus at a point. If the amplitude
of the initial data is subcritical, then no nonlinear effect occurs at leading order. If the am-
plitude of the initial data is sufficiently big, then strong nonlinear effects occur; we study the
cases where the equation is either dissipative or accretive. When the equation is dissipative,
pulses are absorbed before reaching the focaltp@hen the equation is accretive, the family
of pulses becomes unbounded.

1. Introduction. This paper is the last of a series of three, after [2] and [4]. In these
three papers, we consider the asymptotic behavier-as 0 of solutions of the initial value
problem

Ou® + ald,u®|”?~t9,u® = 0, (t,x) € [0, T] x R,

e _ J+1 r—ro
(1.1) Ul,_o = ¢ Uo(r, . ),

r—ro
Q| _y = e’Ul(r, - )

whered := a,Z—Ax, a is a complex number, = |x|,rg > 0, and 1< p < oco. The functions
Up andU; are real-valued, infinitely differentiable, bounded, and therezig & 0 such that
forallr > 0,

(1.2) suppU; (r, -) C [—zo, zo] -

The last assumption implies that at time= 0 the solutions are families of spherical pulses
supported in & (¢) neighborhood of = rp. The initial data are spherically symmetric, thus
in the limit s — 0, a caustic is formed, reduced to the focal pdintc) = (rg, 0). Before
going further into details, we rescale our parameters as in [4]. Intradube® =: u* instead

of u® so that the solutions have derivatives of ordefl) away from the caustic. Define
a = (p —1)J. Theinitial value problem (1.1) is transformed to
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Ou® + ae®|9,uf|P"18,u® =0, (t,x)€[0,T] x R®,
(1.3) =10 r 1o
ut|,_o= 8Uo<r, . ) , |, _o = Ul(r, . ) .

In [4], formal arguments, inspired by the linear case: 0, led to the following distinctions,
in the spirit of those computed formally in [5],

a+2>p a+2=p a+2<p
a>0 linear caustic, nonlinear caustic, | supercritical caustic,
linear propagation linear propagation linear propagation
a=0 linear caustic, nonlinear caustic, | supercritical caustic,
nonlinear propagation nonlinear propagation nonlinear propagation

In [2], we studied the case “linear caustic, nonlinear propagation”; we proved that non-
linear geometric optics provides a good approximatiord,of away from the focal point
(t,r) = (ro, 0), and that the nonlinear term is negligible near the focus. In [4], we analyzed
the case “nonlinear caustic, linear propagation”. In some sense, it is the exact opposite of
the previous case; the nonlinear term is negligible outside the focal point, but has a relevant
influence nearrg, 0), which is described by a nonlinear scattering operator. Moreover, this
scattering operator broadens the pulses (at leégté#ndU; are small), which leave the focus
with algebraically decaying tails.

In this paper, we discuss the remaining cases of the above table. In the last three cases,
we treat only the case of real, that is, when Equation (1.3) is dissipative or accretive (in
particular, we do not treat the case of conservative equations).

The first case, “linear caustic, linear propagation”, suggests that the nonlinear term is
everywhere negligible; we prove that this is so. In the last three cases, we assume that the
coupling constant: is real. For the “supercritical caustic” cases, strong nonlinear effects
are expected near the focal point. We prolvat when the equation is dissipative & 0),
then the dissipation is so strong near the focus that the pulses are absorbed. This result is
the pulse analogue of [6] and [7], which peaVabsorption in the case of wave trains (the
initial profiles U; are assumed to be periodic with respect to their last variable instead of
compactly supported). More precisely, in [6] and [7], it is proved that the exact sohiftioh
the dissipatived > 0) wave equation (1.1) withi = 0, is approximated as follows,

e r+ x| r—|x]
oru(t,x) ~ u(t,x)+U_|t,x, +Ut|1t,x, ,
e—0 & &

where the profiled/.. are periodic with respect to their lagariable, with mean value zero.
The absorption of oscillations is given . = 0 past the caustic. Thus, only the average
term remains, included ifyu. For an almost periodic function, the notion of average is given

by

f = lim 1
L Tt 2T

T
/ )6 .
-T
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When f is compactly supported, the above limit is zero, and pulses formally have mean value
zero. Thus, the absorption of pulses is the formal analogue of the absorption of oscillations.

Our present framework makes it possible to analyze very precisely the corresponding
phenomenon for pulses; they are absorbed when approaching the caustic, thabisfa@een
reaching it. We prove that this phenomenon occurs for the last three cases of the table, “super-
critical caustic, linear/nonlinear propagation” and “nonlinear caustic, nonlinear propagation”.

The present paper along with [2] and [4] prove that the distinctions derived formally in
[4] and recalled in the above tables are correct. Let us give an interpretation of these results
when the nonlinearity is fixed, and when one modulates the amplitude of the initial data in
(1.1). Consider a fixeg > 2, and modify the value af. For a unified complete presentation,
we assume that the equation is dissipative, 0.

1) IfJ > (p—2)/(p—1),thenthe pulse is not affected by the nonlinearity at leading
order. It remains too small to ignite the nonlinearity.

(2) IfJ =(p—2)/(p—1),thenthe nonlinear term is negligible away from the focus,
but the caustic crossing, described by a scattering operator, has enlarged the support of the
pulse, and decreased its amplitude. The pulse is too small to see the nonlinearity outside the
focal point, but the amplificationear the caustic makes the nonlinear term relevant there.

(3) IfJ < (p—2/(p—1),then the pulse is absorbed at the focus. It is sufficiently
big to make the nonlinear effects so strong that the dissipation is complete before the focus.
Whenp = 2, the nonlinear term is negligible if > 0, and ifJ = 0, the pulses are absorbed.
When 1< p < 2, the same method would prove that the nonlinear term is negligiBle-if0,
and the casd = 0 was treated in [2].

Before stating precisely our results, we make a change of unknown, as in [2] and [4].
Since the initial data are spherical, so is the solution. With the usual abuse of notation,

Wb (t,x) = ub(t, |xl), wb(t,|x]) € Cin (R X Ry).
Introducev® := (v, v ), where
1.4) at(t,r) :=ruf(t,r), va = (08, £ 0,)u’, vi € C*®[R xR)).
Then (1.3) becomes
@ 005 = er P gl +05),  g(y) = —a2 PlyP Ny,
(1.5) " +v9)|,_, =0,

r—ro r—ro
€ —
v;|t:0 = P;(r, A ) :|:8P1<r, - >,

P=(r,z) = rUa(r,z) £ro,Uo(r, z),
Pi(r,z) == Uo(r,2) +rdUo(r,2) .
We prove asymptotics far®; asymptotics foo,u® are deduced by (1.4),
ve 4+
2r

where

du(t,r) =
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For the subcritical case, introduce the solution of the linear equation
(0r = 3r)(Ui)free =0,
(V) free + (Ui)free)}rzo =0,

r—rg
(V)free|,_g = Px| 7 .
¥ t=0 P

Itis given explicitly by the formulae,

r+t—r
(v )free(t, r) = P(r+t, 70),

(1.6)

&

r—t—r t—r—r
R R I ()

& &

The pulse(v? )free cOrresponds to an incoming wave, and )sree is the sum of two outgoing
waves, one fronP,, and the other from the focusing of the incoming wave.

THEOREM 1.1 (Subcritical case).Assumethat « > maxO0, p — 2).

(1) Ifa>p—2>0,thenthereexistseg > 0 suchthat for any ¢ €10, o], (1.5)hasa
unique global solution v® € C1([0, oo[xR;.). Moreover, the following asymptotics holds in
L¥(Ry x Ry),

V(1) = (Vtreelt, 1) 4+ O (eMNa+2=p)y
eV (1, 1) = 80, (V. ree(t, 1) + O (eMNEF+2-P))

2 Ifa>0andl < p < 2,letT > 0. Then there exists ¢(T)) > 0 such that for
any ¢ €]0, £(T)], (1.5)hasa unique solution v¢ € C1([0, T'] x R.). Moreover, the following
asymptoticsholdsin L*°([0, T] x Ry),

V(1 7) = (W)treelt, 1) + O (™M) (0 (e + ¢¥| loge|) if p = 2),
£ (1,7) = 80, (V) ree(t, ) + O (™) (O (e + 6%|logel) if p=2).

THEOREM 1.2 (Supercritical case)Assumethat0 <o < p—20ra =0=p — 2
(1) If theeguationisdissipative, a > 0, then the pulses are absorbed before reaching
thefocus. If T > ro,

lim sup([v.(T) | Lo o<r<1) + 105 (D)l 0<r<1)) = 0.

e—0

More precisely, for A > 0, define T' (A, ¢) asfollows; if 0 < o < p —2,then T (A, ¢) :=
ro — zoe — A&/ (=2 andif« = 0 = p — 2, then T (A, &) = ro — zoe — A. For any
T=T()=T(®,e),

lim_lim sup([[v (T) | L 0<r<1) + IV (T) Iz 0<r<1)) = 0.

A—=0 .0

(2) If the equation is accretive, a < 0, there exists T* < rg such that the family

(v, v%) isnot bounded in L°([0, T*] x R})2.
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ro — 20¢

T(A,¢€)

62/ (P=2) Yo r

FIGURE 1. Geometry of the propagation in the super-critical case.

REMARK. For 0 < ¢ < 1 andx positive, T (1, &) < ro — zog, and so the first part
of the theorem shows that the absorption mechanism takes place before the incoming wave
reaches the focus. Indeed, the pulses are initially supportéld ia ro| < zoe}, and so by
finite speed of propagation, they do not reach the origin befoterg — zoe (see Fig. 1).
Notice that in the dissipative case, our estimates afe in r}, which includes the focusing
region, and its domain of influence. The key to the proof of Theorem 1.2 is to construct an
approximate solution which is more accurataritihe approximation of nonlinear geometric
optics and which permits us to penetrate withh accuracy to small distances from the focal
pointr = 0.

REMARK. If we considered wave trains, that i3, (r, -) periodic instead of compactly
supported, Theorem 1.1 would still hold. Theopf we give works in both cases. On the
other hand, the proof of Theorem 1.2 relies on the compact support assumption. We construct
approximate solutions that solve ordinary differential equations along the rays of geometrical
optics (see Section 5), and can be computed explicitly. In the dissipative case, these approxi-
mate solutions are absorbed before they stop being good approximations, proving thereby the
absorption of the exact solution. In the case of wave trains, the computation of the counterpart
of these approximations is a project for the future.

REMARK. As we mentioned above, in the supercritical cases, our framework is re-
stricted. We assume that the coupling constaatreal, while we do not make this assumption
in Theorem 1.1. It would be interesting know what happens when, for instaneds pure
imaginary; no absorption can happen, for the equation in that case is conservative. A partial
answer is given in [1], in the case= 0 = p — 2, on a system which is a simplified model
for (1.3); an arbitrary phase shift appears, varying likedotn the supercritical framework,
a = 0andp > 2, one may expect even more pathological behaviors.

In Section 2, we prove two stability results. In Section 3, we discuss existence results,
and establish estimates for the subcriticake. Theorem 1.1 is proved in Section 4, and
Theorem 1.2 is proved in Section 5.
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The results of Theorem 1.2 were announced in [3].

2. General stability results. In this section, we state two general approximation ar-
guments. The first one will allow us to prove Theorem 1.1 and the second one, Theorem 1.2.
Ouir first result is an easy estimate, proved in [4].

DEFINITION 2.1. Fort > 0, we denote by™ (resp.I'[) the set of all speed minus
one (resp. plus one) characteristics connecting points on the initiafslire0} to points at
timer. We also denoté™” = I"" U I'{.

For a characteristig € I'’, we use the convention that

[

stands for the integral of alongy, parameterized by the time variable,

t
/f=/ f (s, r(s)ds,
y 0

where(s, r(s))sc[o,;] iS @ parametrization of. In particular, if f is nonnegative, then so is
the above integral.

LEMMA 2.2 ([4], Lemma 2.1). Supposethat w and f = (f+, f—) are bounded contin-
uous functionson [0, T'] x [0, ool satisfying in the sense of distributions

(0 £0)we = fr, wy(t,0)4+w_(r,00=0 for 0<t=<T.
Denote by
My(t) = [lwx(@)lLo0,00] -
Thenfor 0 <t < T onehas
Mx(t) < max{M(0), M_(0)} + sup / |f-|+ sup / | /il
y_ert Jy- yrelry Jy+

To prove Theorem 1.2, we use a result in the spirit of Gronwall's lemma. The assumption
0 < T < é guarantees that the support of the solution does not tbueh0}.

PROPOSITION 2.3. Supposethat0 < 7 < §,andw = (w—, wy) € CNL>([0, T] x
R, ) satisfies

(2.1) :wtiar)wiZfi(t”’)(w—+w+)+5i,

W4|r=0 = WO+ ,

with suppwo+ C [8, +oo[. Suppose that

T T
(2.2) C1=C1(f) :=/0 sup |f_|dt+/ sup | fildt < co.

)/_Eri y+el"i
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Then

sup lwe(llzx < Cay <||w0i||L°° + sup / ISiI>,
Y+

O<r<T T yiepiT
with C2 = max(C1e%¢1, C2e31),
WARNING. Note that in Hypothesis (2.2), the supremum is inside the integral. The

estimate would not be true with the supremum outside.

PrROOF. Let (¢,r) € [0, T]1x]0, oo[, and denote by_ = y_(z, r) the characteristic
from (O, ¢ + r) to (¢, r). Duhamel’s principle foiw_ reads

w_(t,r) = wo_(t +7r) +/

V—

f,x(w,+w+)+/ S_.

V—

Gronwall's lemma, along with assumption (2.2), yields, for ary[O, T,

||w(t)||L°°§eCl(||w0||L°°+ SUD/ |f—wi]+ sup |S|)

y_ertJy y_el Jy-
(2.3)
< €C1(||w0—||L°° + C1 sup [[w4(s)|lLe + sup IS—|> .
0<s<t y_el' Jy-
Similarly,

(2.4) lwy ()l 2 S€C1(||w0+||L°°+ SUD/ [ [+ w-| + SUD/ |S+|).
v+ Ve

y+el} yrell

For thew_ integrals on the right in (2.4), use estimate (2.3) to find

[frw—| < / |fi|€c1<||w(0)|| + C1 max ||lwy(T)|| + sup |S|>ds1
Vv Vv O<r=s yoers Jy.

wherey. is parameterized by the timec [0, ¢]. Introduce

M (7) := sup [lwx(s)]l,

O<s<t
and take the supremum erin (2.4) to obtain

w0 sclecl<2(||wi<0>||+ sup/ |S¢|>
Y+

yrell

+
+ sup / | f-(s. 1) My (s)ds + sup |f_<s,r)|m+<s)ds).
v+

y+ert y-el Jy-
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Therefore,
Mm@l §C16C1(2<|Iw¢(0)||+ sup/ |Si|)
+ yrelL Jv+
+ sup [ f+ (s, r) my(s)ds + SUD/ | /- (s, r)|m+(s)ds>
yrell Jv+ y_elt Jy-
sclecl(2<||wi(0)u+ sup |Si|)
+ yrelf Jvx

t t
+ /0 SUP |f(s. 1) My (s)ds + / sup |f_(s. 7| m+(s>ds).

yrell 0 y_ert
Applying Gronwall's lemma, using assumption (2.2), yields
m(T) = Clezcl(||w+(0)|| + [w-(0)[| + sup [S—|+ sup / |S+|> .
y_er? Jy- yeell Jr+

This inequality, along with (2.3), proves the proposition. a

The following example contains the core of the proof of Theorem 1.2.

EXAMPLE 2.4. Consider the case

fi@t,ry =t P15t (e, )P,

wherev? solves an initial value problem of the form (compare with (5.1) below),

(0 = 99 = F*(5°) . #,0=P- (r, = ro) :
&
Recall that sup@—_(r,-) C [—=zo0, zo]. For wgi, consider pulses with the same support as
58_‘120. Then by finite speed of propagation, we can téke= ro — zpe in Proposition 2.3.
For 0 <t < 4%, the maximum off{ at timet is estimated by

1-p~e p-1
8a£ P ”‘Uéi ”LOO(OSTSD ’

wherer is such that + ¢t = §° = rg — zoe. Therefore we have

t

L L L
/ sup |f£|dt+/ sup |f{ldr < 2||ﬁi||i;%o<t<9/ £ (8° — ' Pdi
0 y_ert 0 ypert - Jo

@ =¥ "rif p>2,

~ p—1

Thus, wheri?. remains bounded arif is chosen so that* (8¢ — 7¢)2~7 (resp.c®| log(8¢ —
79 if p = 2) is bounded independent @fthen we can use Proposition 2.3. This is the case
in particular if7¢ = T, . defined in Theorem 1.2.



FOCUSING OF SPHERICAL NONLINEAR PULSES 401

3. Existence results. In this section, we prove two kinds of results concerning the
existence of solutions to (1.5); local existencelLiff before the wave meets the boundary
{r = 0}, and global existence i 1> when the boundary condition has to be taken into
account. The reason appears in Theorems 1.1 and 1.2; in Theorem 1.2, the phenomena we
want to prove occubefore the pulses reach the boundary, while Theorem 1.1 includes the
caustic crossing.

In the first case, we are interested in a problem

- (3 £ 3,0 = e“rPg(v +15), r>0,

UfF‘t:O = U(€)¢ ’

where suppg.. C [6%, +oof for somes® > 0, andvg. € L*(Ry). Then by finite speed
of propagation, the term!~” is harmless at least up to tinéé. In that case, local in time
existence of solutions to (3.1) is easy.

LEMMA 3.1. Fixe = 0,p > 1. Letvg € L™(Ry) such that suppug_. C [§°, +oo]
for some §° > 0. Thenthere exists 7, with 0 < 7° < §°, and a unique solution (v, v) €
L*® N C([0, T?] x Ry)? to theinitial value problem (3.1).

When the incoming wave® reaches the origifr = 0}, a boundary condition is needed
in order to solve the above system. We are interested in that given in (1.5), that is,

(vs— + vi)|r:0 =0.

Consider the mixed problem

(@ £ 30 = e Pgv +08), r>0,
(3.2) v +1v9)|,_o =0,

U:SF ’r:O = USZF ’
The boundary condition compensates the singulafity’ whenr gets close to zero. Indeed,
Taylor's formula yields, foiC! solutions,

e + ), r) =rd, (e +vi)(t, r)+o(r), asr - 0.
Now from the differential equation, we also have
O (S +vl) =8 (v —vl),
and so if we know that the time derivativesifremain bounded, then the singularnify ? is
compensated. We have precisely,
4r

r+¢
This is the strategy we used in [4], Propositi®.4, to prove local existence, in the case 2.

Notice that at this stage, the dependence up@unimportant, and thgt > 1 suffices for
local existence.

(3.3) |(E +v)(t. )| < (2| + V5| + led v | + [ed, v (¢, r) forall r,r > 0.
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LEMMA 3.2. Fixa > 0,p > 1 Letvg € WH>(Ry) such that
(3.4) vo_(0) +v5,(0) =0, 3,v5_(0) — d,v5,(0) =0.
Then there exists 7¢ > 0 and a unique solution (v¢, v%) € Ct N W ([0, T¢] x R})? of
(3.2).

As recalled in the beginning of this section, such a result will be needed only in the proof
of Theorem 1.1, and not in the proof of Theorem 1.2, From now on in this section, we assume
a > max0, p — 2). In [4], we also proved that the solutions of (3.2) withk= 1 andp > 2
are global, provided that the initial datg. are sufficiently small.

PrRopPoOsSITION 3.3 ([4], Proposition 3.5).Fix e > 0, p > 2. There are constants K1
and K; > 0 such that for all initial data yo € C1([0, 00)) satisfying

1Yo, 0 YollLe(o,00p < K1,
and the compatibility conditions
Yo+ (0) +vo-(0) =0, 9,%04(0) — 3,%0-(0) =0,
thereisa unique solution ¥ € C1([—o0, oo] x [0, oo[) of
@ £ 0 = Pg(y- +vp),
(3.5) Y-(t,00+ ¢4(,0)=0,
1//ﬂt:O = 1ﬁ0:|c .
In addition,
1%, W Il oo ([—00,00]x[0,000) < K1 V0, 30l Lo ([0,00[) -

The idea is then to find a scaling such that we can use the above proposition to prove
global existence for (1.5) when> p — 2 > 0, along with useful estimates. Try

(3.6) Vit ) = Y@ Oy peyyes VA 0) =T V(e 60)
Thenvy/§ solve the differential equations
(@ £ )9 = e (ep) PP gl + YY) .

Choosey so that the powers af cancel,
o
p—1

a+1l—-p+(p—ly=0&y=1-—
Sincey is negative,
WO, 18 95O)llze -0 ase — 0,

so that we can apply Proposition 3.3, forsufficiently small. Moreover, it provides®>
estimates fon?, ¢9;v%.. We deduce thad, vy € L from the differential equations and
(3.3).
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COROLLARY 3.4. Assumea > p — 2 > 0. Then there exists ¢g > 0 such that for
0 < & < &g, (1.5)hasa unique solution (v, v%) € C1N W12 (Ry x Ry)2. Moreover, there
exists C such that for any ¢ € ]0, &g,
lvi, edvillLeRr xRy < C.

We now have to prove global existence whea < 2 andx > 0. Since local existence
is known (Lemma 3.2), global existence is a consequenegdbri estimates, which follow
from (3.3) and Lemma 2.2. Define

mi () = sup (vi(s)llLe + lledvi(s)llre) .

O<s<t

By assumptionm?_(0) are bounded independent«E 10, 1]. Lemma 2.2 and (3.3) yield, for
T >0,
m®(T) +m’(T) < C(MZ(0) + M’ (0) + Ay (e, T)(ME(T) + M (T))P)
< Co+ C(hp(e, TY(ME(T) + mi(T)"),
with
TP ifl<p<2,

hp(e, T) = .

e*log(l+T/e) ifp=2.

In particular, for fixedl' > 0,%,(s, T) — 0 ase — 0. Therefore, for an§y’ > 0, there exists
&(T) > 0 such that for any €10, (T)], v® exists and
me(T) + m°.(T) < 4Co.
If m®(T) 4+ mé (T) < 4Co, then it follows that
MZ(T) + m(T) < Co+ Chy(e, T)(4Co)”
and therefore for < ¢ < &(T),
mZ(T) + mi(T) < 2Co.

This proves that in faan® (7)) + m¢ (T) < 4Co, since if that were not true, there would be a
first T, wherem?® (T') + m® (T') = 4Co, and at that value df the above estimate leads to the
contradiction €9 < 2Co.

PrROPOSITION 3.5. Assumethate > Oand1l < p < 2. Let T > 0. Then there exists
&(T) > Osuchthatfor 0 < ¢ < &(T), (1.5)has a unique solution

e, v5) € CtNWh([0, T] x Ry)?.
Moreover, there exists C such that for any ¢ €10, e(T)],
v, €9, v Lo, 71xR,) < C .
4. The subcritical case. Now Theorem 1.1 is a straightforward consequence of

Lemma 2.2, Corollary 3.4 and Proposition 3.5. In the statement of Theorem 1.1, we dis-
tinguished three casep; > 2, p = 2 and 1< p < 2. The distinction betweep > 2 and
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p < 2 appeared in the previous section, in Corollary 3.4 and Proposition 3.5. It corresponds to
the question of the integrability at infinity of the mapping> 1. The further distinction
p = 2 corresponds to the local integrability of this mapping.
Define the remaindapy = vy — (v{)free. It SOIVes the mixed problem,
(@ £ 3w = e rt P gt +v5),

(W’ +wS)|,_y =0,

r—ro
2 _
w]F|t:0 = :|:8P1<r, - ) .

Let I be an interval of the fornf0, T'[, with T € Ry U {+00}. From Lemma 2.2, we have

(4.1)

l,
lwillz=xry) < 2| PillL= +2supsup | *rPge +vf).
tel yert Jy

Using (3.3), we also have
80[
(4.2) [willLeuxr,) < Ce + C(fglpyseurefy W) 10, €30I oo (1 xR, -

Differentiating (4.1) with respect to time yields, using the differential equation (4.1), to find
the initial data

(3 £ 3)edws = e*riPg (Ve + v )ed (ve +0%),
£ (we +wh)|, o =0,

r—ro

edws|,_o = e(e9, P1+ 0, P1) (r,

> +e gl + v —o-
Since the initial data fovs. are supported ifv — ro| < zoe, the termr1=7 in the initial data
for 9w is harmless regarding > estimates. From Lemma 2.2 and (3.3), we have

o
P min(L,a) € e &P
||Satw:|:||L°°(l><R+) S,S + <§g]pyseu]g/y (r—i—s)Pl)”U , €07V ||L°°(I><R+)'

Thecase p > 2. Assumex > p — 2 > 0. Then we have

8(:(
supsup/ - < et
>0 yelt Jy (r+e)yr

and from Corollary 3.4, there existy such that ife €]0, eol, [|[v°, £d,v° [ L~(r, xR,) IS
bounded. This proves the first part of Theorem 1.1.

Thecasep =2. If o > p —2 =0, then from Prop. 3.5, for ever§y > 0, there exists
e(T) such that ife €]0, e(T)], [[v®, €9, v® || Lo ([0, 7[xR,) F€Mains bounded. Moreover, for any
fixedT > 0, we have

g¥ o T
sup < Ce"log—.
yerT yr—l—e &
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Thecasel < p < 2. Ifa > 0and 1< p < 2, then the only difference with the
previous case is that the mapping> =7 is locally integrable, and hence the bound

&¥ &¥
sup/ —— < sup - < Ce*T?7.
yerT Jy (r+e)P~ yerT Jy ree

This completes the proof of Theorem 1.1. O

5. The supercritical case. We conclude by proving Theorem 1.2, using Proposi-
tion 2.3. Before going into details, we explain how to construct the approximate solutions
that lead to the result. Assume for instance that O and, since we are in a supercritical
casep — 2 > «. The hypothesia > 0 suggests that the nonlinear term in (1.5) is negligible,
whenr is not too small. This is the outline of the proof of Theorem 1.1, and we could prove
in this way that(v®.)free iS @ good approximation far}. at least forrg — ¢ > £/(P=2_ This
boundary layer is larger than in the critical case- p — 2 > 0 studied in [4], and nonlinear
effects possibly occur sooner. Considering the ease0 gives us a further hint. We proved
in [2] that a good approximation at leading order was given by

(3 & 8,) (W) app=r P g((v5)app »

that is, solutions of ordinary differential equations along the rays of geometrical optics. A
natural generalization of this approach to the ease0 leads to

(0 £ 0,) (v)app= e*r* P g((vapp » (1, 7) € ([0, 70 — z06[xRY) ,

r—ro
(Ui)app‘t=o=Pﬂc<rv . )

We consider the region < rg — zoe so that no boundary condition is needed{en= 0},
since the compact support 8 and the finite speed of propagation méak&)app zero in the
region{r +t < ro — zo¢} (See Figure 1).

Introduce the functioiF,, defined fory > x > 0, by

Yo ds _2
— Y
Fp(xa )’) _/ Spil - y ]
* log=, ifp=2.
X

(5.1)

(2P —y27P), ifp>2,

Then (5.1) can be solved explicitly,

P_(r+t,2

&
t’ =
(2 )app(t, ) (14 a27P(p — De*Fy(r,r + )| P_(r + 1, 2)|P~ )Y/ (=D

’

Z=(r+t—rg)/e

Pi(r—t,z)

e
t, =
(v+)app( r) (1+a2-7(p — 1)8“Fp(l’ —t,7)|PL(r —1t, Z)Ipfl)l/(pfl)

Z=(r—t—ro)/e

We have

Supfv® app= {Ir +t —rol < zoe}, SUPEV})app= {Ir —1 —ro| < zoe}.
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Since for anyy > 0 and anyp > 2, F,(x, y) — 4+o0c asx — 0, the sign ot is crucial.
(1) Ifa > O (dissipative case), then® )apptends to zero before reaching the focus.
(2) Ifa <O (accretive case), then batht )app and (v’ )app blow up in finite time.
In the accretive caseép’ )app may blow up at timel'™* < ro, that is, before any focusing.
To avoid useless distinctions, we assume = 0, so that the only “interesting” phenomena
occur wherr approachesg.
The explicit formulae show that whgn> 2, fore®r?=7 « 1,

(WD) app(t, 1) = (VD)tree(t, 1) + 0(8ar2_p) .

Assume firstp — 2 > « > 0. LetA > 0. We prove thatvi )app gives a good approximation

of the exact solution in the region> 1¢%/(?=2 before the focus. Notice that in this region,
(v])appand(vy)free have ceased to be close to each other; the nonlinear effects are significant.
By finite propagation speed, this area is defined by

t<rg— A/ P=2) _ 206 =Thre.
We prove thatvi )appremains a good approximation of the exact solution up to #ine

PROPOSITION 5.1. Assume p —2 > « > 0,and let 2 > 0. Then (v%)appis a good
approximation of the exact solution at least for ¢ € [0, 7). .1,
v — W) appll (0.7, . 1xRy) = O/ P72y (O(e) if p=2).

PROOF OFPROPOSITIONS.1. The proof relies on Proposition 2.3, which we apply as
in Example 2.4.
By finite propagation speed, both the exact and approximate solution are zero in the
region
{(t,r) € [0, Th el xRy r+1 <Thel.
Define the remaindery = vi — (v§)app Before rays reach the bounddgry= 0},

(@ £ 3w = e*r P (g(v° + %) — g((v))app) »

r—ro
e _
wi|t:0 = ZFSP]_(}’, . > )

In order to apply Proposition 2.3, write the right hand side as
£ r P (ge + ) — g((WD)app) = “r P (g(E + v5) — g((v)app+ (v )app)
+ g((v)app+ (v )app — 9((v)app) -
Using Taylor’s Theorem, the first term satisfies
e r P (g(vF 4+ v%) — g0 app+ (V5)app) = e%r P (wf + wh) fE (L 7)
where f* is uniformly bounded on any set on which the famili€ésand(v®)appare uniformly
bounded. The point now is that this term has exactly the properties mentioned in Example 2.4;

in particular, the assumptions ofdprosition 2.3 are satisfied up to tirie= 7, .
Define the source term

SE@t, ) = e*rP(g((E ) app+ (V) app) — 9((v)app) -
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Then sup@s. C supfvs)app and

(@ £ 8w = e*rP £, r)(we + wh) + S5,

r—ro
e _
wh| _o= :F£P1<r, . > )

From the explicit expression @b )app We see that for any fixed > 0, there existg’;, > 0
independent of such that

(5.2)

(5.3) ” (Ui)apPHLoo([o,Tm]ng = G
We shall prove that there igA) > 0 such that for €]0, e(1)],
(5.4) lwi Lo (0,75 .1xRy) =< Crel™ =2 (Cre if p=2).

This implies the error estimate of Proposition 5.1. For the sake of readability, we will omit
the distinctionp = 2, and keep the notatiart—*/(?=2) with an obvious convention.

From Lemma 3.1y¢, hencew?, is defined, bounded and continuous, locally in time. At
timer = 0, itis of ordere, so there exists’ > 0 such that

lwé Nl Loe(o,r1xRy) < 2¢l|P1llpoe
and we have, possibly increasing the valu€pf

lwé Iz 0,5 1xRy) < Cyele/(r=2)

So long asw?. is pointwise bounded by@,, f* remains uniformly bounded. As noticed in
Example 2.4, there exist& (1) such that

T)L,s
/ supe®r=P | fEldr < Co(0).
yel

Now consider the source terms. On sgpapp (of size Zpe, and transverse to any <
F,T(’\’s)), r > ro/2, therefore the singular termd—” is bounded and

sup IS¢ | < Ccelte.

y_erTte Jy-

More delicate is the treatment 6f . Because sufp® )app is of size Zpe and transverse to
anyy; € I, one has

1e%/P=2) £ 2706
sup S5 | < Ce® / riPdr = Ce% F, (0% P=2 )%/ P=2 4 270¢) .
7+ A

T(x, a/(p—2)
yrel] (x.8) &

If p> 2,
(P — 26 Fp(re®/P=2 36/ P2 4 2g9e) = e ((e®/ P=2)27P — (ke P72 4 2206)77)

2-p
=P (1 - <1 + %81“/(1’3) >

- O(Alfpglfa/(pfz)) )
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The casep = 2 yields the same estimate. From Proposition 2u:3, remains pointwise
bounded by Z, fort € [0, T (%, )], for ¢ €]0, e(1)]. This yields (5.4), and completes the
proof of Pioposition 5.1. ]

Proposition 5.1 describes the behavior of the exact solutiamp to timeT (1, ¢). The
outline of the end of the proof in the dissipative case is as follows. At time T'(A, ¢),
the approximate solutiow®)app is of ordera?=2/=Dif p > 2 (1/|loga| if p = 2).
Letting e go to zero, withk sufficiently small, shows that® becomes arbitrarily small when
approaching the focal point. Since the equation is dissipative, this means ikatbsorbed.
The end of the proof of Theorem 1.2 relies on energy estimates; Bot, define

d
_ = — s|9 = 7~lggns.
9g—1(s) 75 Is| qls| gns

Theng, is a non-increasing odd function efwhich is homogeneous of degrge
In (1.5), multiply the equation satisfied by by g,—1(v%), and the equation satisfied by
v by g;—1(v$). Summing up these yields

3 (V19 4+ (v 1) + 9, (v |7 — [vE D)
=—a2 Pri-r (gg—1(v) + gg—1(v3)) gp (V= +05)/(p + 1).

The signs of bothy, 1 (v?) + g,—1(v%) andg, (v + v?) are equal to the sign of the larger
of v&. Therefore, whemn > O (dissipative case),

(5.5) 3 (v |7 + [T = 8 (Jv2 |7 — v} |T) < 0.
For a fixedr > 0, integrate this inequality from = 0 tor = ¢. Recall that whem = 0, we

have|v? | = [v% |, and so this yields

t
/ O (WEI? + WD (@, rydr — 2|9, 1) + [V 17, 1) < 0.
0

Therefore,
(5.6) 0 /Ot(lvslq + D@, rdr < 208 |9(t, 1) .
Letax > 0. From Proposition 5.1, for& ¢ < T; .,
W19, 1) = (v )appl? (2, 1) + O (407 (P=2)) |
Fort > (ro + z0€)/2, (v°.)app(t, 1) = 0 and
W |9(t, 1) = 0(8(1(1*0!/(17*2)))_

LetT > T, . and integrate (5.6) between= T, . andr = T. Then

IIUS_(T)II‘L;(O,T) + IIUi(T)IIZq(O)T) = ”Ug_(T)L,s)“Zq(O’TAyg) + ||U.€|.(T)\,e)||1q(0)rk‘6)

+ C)ITe41~2/(p=2)
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and
vE. (Dllzao.ry + W5 (T a0, 1) < IWE(Toe)llLa. 1) + V5 (Tie)llLa 0.7,
+CuTHagt—e/r=2)
Lettingg — oo yields
WE(T) Lo,y + W (T L.y < W (Ta ) llLeo.1 ) + 15 (The)llLe .73 ,)
+ C(n)el e/ P=2)

Using Proposition 5.1 again, and the fact that SwpPapp C {|r —t — ro| < zoe}, we also
have

I0E (Dl + WDl < 10Daph o) 20,1, + C e/ P72
From the explicit expression f@p® )app,

A(P=2/(p=1) if p>2,
(57) ”(Ui)app(T)\,e)||L°°(0,T;Hg) S C X { 1/| |Og)»| |f p= 2’

whereC does not depend on Thusifp > 2,
I (D)L=, + V(D llLe.r) < CAPT2/P™D 4 C et~/ P2
Therefore, for any” > rg and anyA > 0,

(5.8) lim sup(lv. ()l 20,7y + IV(T) I 0,7)) < CAP=2/ =D

e—0
Letting A — 0 yields the first part of Theorem 1.2 fpr> 2. The casg = 2 is straightfor-
ward.
When the equation is accretive & 0), the energy estimate (5.5) becomes

(5.9) A (|7 + i, r) — 3 (W2]? — Wi, r) = 0.

Since we assume; = 0, (v )app blows up in finite time, while(v% )app does not. The
mechanism occurs quite in tharse way as the cancellation@f)appin the dissipative case.
For a fixedr > 0, integrating (5.9) between = 0 andr = oo yields, by finite speed of
propagation,

oo o
/ A (|7 + LD (@, rydr = 3:/ (W21 + i |T)(, r)dr > 0.
0 0

Letro > T > T, . and integrate the above inequality between T, . andr = T. Then

e R,y + 105D R, = WG rm, + 105 Tl o, -
Lettingg — oo yields

08 (D)llLry) + (T lzeRry) = 105 (The) LR, -

From Proposition 5.1, it follows that

liminf (|02 (T) Iz Ry + W (Tl R,)) = iminf |(v)app(Ti o)L= R, -
e—0 e—0
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Letting A — 0 yields the last part of Theorem 1.2 wittf = rg, using the explicit form of
(v)app As we already mentioned, the result may hold with < rg if (v$)app blows up
before(v? )app, in which case the proof is essentially as above.

REFERENCES

[1] R. CARLES AND D. LANNES, Focusing of a pulse with arbitrary phase shift for a nonlinear wave equation,
Bull. Soc. Math. France 131 (2003), 289-306.

[2] R. CARLES AND J. RaUCH, Focusing of spherical nonlinear pulsesktt3, Proc. Amer. Math. Soc. 130
(2002), 791-804.

[3] R. CARLES AND J. RaucH, Absorption d’'impulsions non linéaires radiales focalisantes dahis3, C. R.
Acad. Sci. Paris Sér. | Math. 332 (2001), 985-990.

[4] R.CARLES ANDJ. RAUCH, Focusing of Spherical Nonlinear Pulsesifit3 II. Nonlinear Caustic, Rev. Mat.
Iberoamericana 20 (2004), to appeatr.

[5] J.HuUNTER ANDJ. KELLER, Caustics of nonlinear waves, Wave motion 9 (1987), 429-443.

[6] J.-L.JoLv, G. METIVIER AND J. RAUCH, Focusing at a point and absorption of nonlinear oscillations, Trans.
Amer. Math. Soc. 347 (1995), 3921-3969.

[7] J.-L.JoLy, G. METIVIER AND J. RaucH, Caustics for dissipative semilinear oscillations, Mem. Amer. Math.
Soc. 144 (2000), viii+72.

INSTITUT DE RECHERCHE ENMATHEMATIQUES DE RENNES DEPARTMENT OFMATHEMATICS
UMR 6625 CNRS WIVERSITY OF MICHIGAN
UNIVERSITE DE RENNES 1 ANN ARBOR

CAMPUS DE BEAULIEU MI 48109

F-35 042 RENNES CEDEX USA

FRANCE E-mail address; rauch@umich.edu

E-mail address: remi.carles@math.univ-rennesl.fr



