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FOCUSING OF SPHERICAL NONLINEAR PULSES IN R1+3, III.
SUB AND SUPERCRITICAL CASES

RÉMI CARLES AND JEFFREYRAUCH

(Received January 10, 2003)

Abstract. We study the validity of geometric optics inL∞ for nonlinear wave equa-
tions in three space dimensions whose solutions, pulse like, focus at a point. If the amplitude
of the initial data is subcritical, then no nonlinear effect occurs at leading order. If the am-
plitude of the initial data is sufficiently big, then strong nonlinear effects occur; we study the
cases where the equation is either dissipative or accretive. When the equation is dissipative,
pulses are absorbed before reaching the focal point. When the equation is accretive, the family
of pulses becomes unbounded.

1. Introduction. This paper is the last of a series of three, after [2] and [4]. In these
three papers, we consider the asymptotic behavior asε → 0 of solutions of the initial value
problem 

�uε + a|∂tuε|p−1∂tuε = 0 , (t, x) ∈ [0, T ] × R3 ,

uε
∣∣
t=0 = εJ+1U0

(
r ,
r − r0

ε

)
,

∂tuε
∣∣
t=0 = εJU1

(
r ,
r − r0

ε

)
,

(1.1)

where� := ∂2
t −�x , a is a complex number,r = |x|, r0 > 0, and 1< p < ∞. The functions

U0 andU1 are real-valued, infinitely differentiable, bounded, and there is az0 > 0 such that
for all r ≥ 0,

suppUj (r, ·) ⊂ [−z0, z0] .(1.2)

The last assumption implies that at timet = 0 the solutions are families of spherical pulses
supported in aO(ε) neighborhood ofr = r0. The initial data are spherically symmetric, thus
in the limit ε → 0, a caustic is formed, reduced to the focal point(t, x) = (r0,0). Before
going further into details, we rescale our parameters as in [4]. Introduceε−Juε =: uε instead
of uε so that the solutions have derivatives of orderO(1) away from the caustic. Define
α := (p − 1)J . The initial value problem (1.1) is transformed to
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�uε + aεα|∂tuε|p−1 ∂tu

ε = 0 , (t, x) ∈ [0, T ] × R3 ,

uε
∣∣
t=0 = εU0

(
r,
r − r0

ε

)
, ∂tu

ε
∣∣
t=0 = U1

(
r,
r − r0

ε

)
.

(1.3)

In [4], formal arguments, inspired by the linear casea = 0, led to the following distinctions,
in the spirit of those computed formally in [5],

α + 2> p α + 2 = p α + 2< p

α > 0 linear caustic, nonlinear caustic, supercritical caustic,
linear propagation linear propagation linear propagation

α = 0 linear caustic, nonlinear caustic, supercritical caustic,
nonlinear propagation nonlinear propagationnonlinear propagation

In [2], we studied the case “linear caustic, nonlinear propagation”; we proved that non-
linear geometric optics provides a good approximation of∂tuε away from the focal point
(t, r) = (r0,0), and that the nonlinear term is negligible near the focus. In [4], we analyzed
the case “nonlinear caustic, linear propagation”. In some sense, it is the exact opposite of
the previous case; the nonlinear term is negligible outside the focal point, but has a relevant
influence near(r0,0), which is described by a nonlinear scattering operator. Moreover, this
scattering operator broadens the pulses (at least ifU0 andU1 are small), which leave the focus
with algebraically decaying tails.

In this paper, we discuss the remaining cases of the above table. In the last three cases,
we treat only the case ofa real, that is, when Equation (1.3) is dissipative or accretive (in
particular, we do not treat the case of conservative equations).

The first case, “linear caustic, linear propagation”, suggests that the nonlinear term is
everywhere negligible; we prove that this is so. In the last three cases, we assume that the
coupling constanta is real. For the “supercritical caustic” cases, strong nonlinear effects
are expected near the focal point. We provethat when the equation is dissipative (a > 0),
then the dissipation is so strong near the focus that the pulses are absorbed. This result is
the pulse analogue of [6] and [7], which proved absorption in the case of wave trains (the
initial profilesUj are assumed to be periodic with respect to their last variable instead of
compactly supported). More precisely, in [6] and [7], it is proved that the exact solutionuε of
the dissipative (a > 0) wave equation (1.1) withJ = 0, is approximated as follows,

∂tu
ε(t, x) ∼

ε→0
∂tu(t, x)+ U−

(
t, x,

t + |x|
ε

)
+ U+

(
t, x,

t − |x|
ε

)
,

where the profilesU± are periodic with respect to their last variable, with mean value zero.
The absorption of oscillations is given byU± ≡ 0 past the caustic. Thus, only the average
term remains, included in∂tu. For an almost periodic function, the notion of average is given
by

f = lim
T→+∞

1

2T

∫ T

−T
f (θ)dθ .
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Whenf is compactly supported, the above limit is zero, and pulses formally have mean value
zero. Thus, the absorption of pulses is the formal analogue of the absorption of oscillations.

Our present framework makes it possible to analyze very precisely the corresponding
phenomenon for pulses; they are absorbed when approaching the caustic, that is evenbefore
reaching it. We prove that this phenomenon occurs for the last three cases of the table, “super-
critical caustic, linear/nonlinear propagation” and “nonlinear caustic, nonlinear propagation”.

The present paper along with [2] and [4] prove that the distinctions derived formally in
[4] and recalled in the above tables are correct. Let us give an interpretation of these results
when the nonlinearity is fixed, and when one modulates the amplitude of the initial data in
(1.1). Consider a fixedp > 2, and modify the value ofJ . For a unified complete presentation,
we assume that the equation is dissipative,a > 0.

(1) If J > (p− 2)/(p− 1), then the pulse is not affected by the nonlinearity at leading
order. It remains too small to ignite the nonlinearity.

(2) If J = (p− 2)/(p− 1), then the nonlinear term is negligible away from the focus,
but the caustic crossing, described by a scattering operator, has enlarged the support of the
pulse, and decreased its amplitude. The pulse is too small to see the nonlinearity outside the
focal point, but the amplification near the caustic makes the nonlinear term relevant there.

(3) If J < (p − 2)/(p − 1), then the pulse is absorbed at the focus. It is sufficiently
big to make the nonlinear effects so strong that the dissipation is complete before the focus.
Whenp = 2, the nonlinear term is negligible ifJ > 0, and ifJ = 0, the pulses are absorbed.
When 1< p < 2, the same method would prove that the nonlinear term is negligible ifJ > 0,
and the caseJ = 0 was treated in [2].

Before stating precisely our results, we make a change of unknown, as in [2] and [4].
Since the initial data are spherical, so is the solution. With the usual abuse of notation,

uε(t, x) = uε(t, |x|) , uε(t, |x|) ∈ C∞
even inr (Rt × Rr ) .

Introducevε := (vε−, vε+), where

ũε(t, r) := ruε(t, r) , vε∓ := (∂t ± ∂r )ũ
ε , vε∓ ∈ C∞(Rt × Rr ) .(1.4)

Then (1.3) becomes
(∂t ± ∂r )v

ε± = εαr1−pg(vε− + vε+) , g(y) := −a2−p|y|p−1y ,

(vε− + vε+)
∣∣
r=0 = 0 ,

vε∓
∣∣
t=0 = P∓

(
r,
r − r0

ε

)
± εP1

(
r,
r − r0

ε

)
,

(1.5)

where
P∓(r, z) := rU1(r, z)± r∂zU0(r, z) ,

P1(r, z) := U0(r, z)+ r∂rU0(r, z) .

We prove asymptotics forvε ; asymptotics for∂tuε are deduced by (1.4),

∂tu
ε(t, r) = vε− + vε+

2r
.
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For the subcritical case, introduce the solution of the linear equation
(∂t ± ∂r )(v

ε±)free = 0 ,

((vε−)free + (vε+)free)
∣∣
r=0 = 0 ,

(vε∓)free
∣∣
t=0 = P∓

(
r,
r − r0

ε

)
.

(1.6)

It is given explicitly by the formulae,

(vε−)free(t, r) = P−
(
r + t,

r + t − r0

ε

)
,

(vε+)free(t, r) = P+
(
r − t,

r − t − r0

ε

)
− P−

(
t − r,

t − r − r0

ε

)
.

The pulse(vε−)free corresponds to an incoming wave, and(vε+)free is the sum of two outgoing
waves, one fromP+, and the other from the focusing of the incoming wave.

THEOREM 1.1 (Subcritical case).Assume that α > max(0, p − 2).
(1) If α > p− 2> 0, then there exists ε0 > 0 such that for any ε ∈ ]0, ε0], (1.5)has a

unique global solution vε ∈ C1([0,∞[×R+). Moreover, the following asymptotics holds in
L∞(R+ × R+),

vε±(t, r) = (vε±)free(t, r)+O(εmin(1,α+2−p)) ,
ε∂tv

ε±(t, r) = ε∂t (v
ε±)free(t, r)+O(εmin(1,α+2−p)) .

(2) If α > 0 and 1 < p ≤ 2, let T > 0. Then there exists ε(T ) > 0 such that for
any ε ∈]0, ε(T )], (1.5)has a unique solution vε ∈ C1([0, T ] × R+). Moreover, the following
asymptotics holds in L∞([0, T ] × R+),

vε±(t, r) = (vε±)free(t, r)+O(εmin(1,α)) (O(ε + εα| logε|) if p = 2) ,

ε∂tv
ε±(t, r) = ε∂t (v

ε±)free(t, r)+O(εmin(1,α)) (O(ε + εα| logε|) if p = 2) .

THEOREM 1.2 (Supercritical case).Assume that 0 ≤ α < p − 2 or α = 0 = p − 2.
(1) If the equation is dissipative, a > 0, then the pulses are absorbed before reaching

the focus. If T ≥ r0,

lim sup
ε→0

(‖vε−(T )‖L∞(0≤r≤T ) + ‖vε+(T )‖L∞(0≤r≤T )) = 0 .

More precisely, for λ > 0, define T (λ, ε) as follows; if 0 ≤ α < p − 2, then T (λ, ε) :=
r0 − z0ε − λεα/(p−2), and if α = 0 = p − 2, then T (λ, ε) := r0 − z0ε − λ. For any
T = T (ε) ≥ T (λ, ε),

lim
λ→0

lim sup
ε→0

(‖vε−(T )‖L∞(0≤r≤T ) + ‖vε+(T )‖L∞(0≤r≤T )) = 0 .

(2) If the equation is accretive, a < 0, there exists T ∗ ≤ r0 such that the family
(vε−, vε+) is not bounded in L∞([0, T ∗] × R+)2.
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FIGURE 1. Geometry of the propagation in the super-critical case.

REMARK. For 0 < ε ≤ 1 andλ positive,T (λ, ε) < r0 − z0ε, and so the first part
of the theorem shows that the absorption mechanism takes place before the incoming wave
reaches the focus. Indeed, the pulses are initially supported in{|r − r0| ≤ z0ε}, and so by
finite speed of propagation, they do not reach the origin beforet = r0 − z0ε (see Fig. 1).
Notice that in the dissipative case, our estimates are in{t ≥ r}, which includes the focusing
region, and its domain of influence. The key to the proof of Theorem 1.2 is to construct an
approximate solution which is more accurate than the approximation of nonlinear geometric
optics and which permits us to penetrate withhigh accuracy to small distances from the focal
point r = 0.

REMARK. If we considered wave trains, that is,Uj(r, ·) periodic instead of compactly
supported, Theorem 1.1 would still hold. The proof we give works in both cases. On the
other hand, the proof of Theorem 1.2 relies on the compact support assumption. We construct
approximate solutions that solve ordinary differential equations along the rays of geometrical
optics (see Section 5), and can be computed explicitly. In the dissipative case, these approxi-
mate solutions are absorbed before they stop being good approximations, proving thereby the
absorption of the exact solution. In the case of wave trains, the computation of the counterpart
of these approximations is a project for the future.

REMARK. As we mentioned above, in the supercritical cases, our framework is re-
stricted. We assume that the coupling constanta is real, while we do not make this assumption
in Theorem 1.1. It would be interesting to know what happens when, for instance,a is pure
imaginary; no absorption can happen, for the equation in that case is conservative. A partial
answer is given in [1], in the caseα = 0 = p − 2, on a system which is a simplified model
for (1.3); an arbitrary phase shift appears, varying like logε. In the supercritical framework,
α = 0 andp > 2, one may expect even more pathological behaviors.

In Section 2, we prove two stability results. In Section 3, we discuss existence results,
and establish estimates for the subcriticalcase. Theorem 1.1 is proved in Section 4, and
Theorem 1.2 is proved in Section 5.
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The results of Theorem 1.2 were announced in [3].

2. General stability results. In this section, we state two general approximation ar-
guments. The first one will allow us to prove Theorem 1.1 and the second one, Theorem 1.2.
Our first result is an easy estimate, proved in [4].

DEFINITION 2.1. Fort > 0, we denote byΓ t− (resp.Γ t+) the set of all speed minus
one (resp. plus one) characteristics connecting points on the initial line{t = 0} to points at
time t . We also denoteΓ t = Γ t− ∪ Γ t+.

For a characteristicγ ∈ Γ t , we use the convention that∫
γ

f

stands for the integral off alongγ , parameterized by the time variable,∫
γ

f =
∫ t

0
f (s, r(s))ds ,

where(s, r(s))s∈[0,t ] is a parametrization ofγ . In particular, iff is nonnegative, then so is
the above integral.

LEMMA 2.2 ([4], Lemma 2.1). Suppose thatw and f = (f+, f−) are bounded contin-
uous functions on [0, T ] × [0,∞[ satisfying in the sense of distributions

(∂t ± ∂r )w± = f± , w+(t,0)+w−(t,0) = 0 for 0 ≤ t ≤ T .

Denote by

M±(t) := ‖w±(t)‖L∞([0,∞[) .

Then for 0 ≤ t ≤ T one has

M±(t) ≤ max{M+(0),M−(0)} + sup
γ−∈Γ t−

∫
γ−

|f−| + sup
γ+∈Γ t+

∫
γ+

|f+| .

To prove Theorem 1.2, we use a result in the spirit of Gronwall’s lemma. The assumption
0< T < δ guarantees that the support of the solution does not touch{r = 0}.

PROPOSITION 2.3. Suppose that 0< T < δ, and w = (w−, w+) ∈ C ∩ L∞([0, T ] ×
R+) satisfies {

(∂t ± ∂r )w± = f±(t, r)(w− +w+)+ S± ,
w±|t=0 = w0± ,

(2.1)

with suppw0± ⊂ [δ,+∞[. Suppose that

C1 = C1(f ) :=
∫ T

0
sup
γ−∈Γ t−

|f−|dt +
∫ T

0
sup
γ+∈Γ t+

|f+|dt < ∞ .(2.2)



FOCUSING OF SPHERICAL NONLINEAR PULSES 399

Then

sup
0≤t≤T

‖w±(t)‖L∞ ≤ C2

∑
±

(
‖w0±‖L∞ + sup

γ±∈Γ T±

∫
γ±

|S±|
)
,

with C2 = max(C1e
2C1, C2

1e
3C1).

WARNING. Note that in Hypothesis (2.2), the supremum is inside the integral. The
estimate would not be true with the supremum outside.

PROOF. Let (t, r) ∈ [0, T ]×]0,∞[, and denote byγ− = γ−(t, r) the characteristic
from (0, t + r) to (t, r). Duhamel’s principle forw− reads

w−(t, r) = w0−(t + r)+
∫
γ−
f− × (w− + w+)+

∫
γ−
S− .

Gronwall’s lemma, along with assumption (2.2), yields, for anyt ∈ [0, T ],

‖w−(t)‖L∞ ≤ eC1

(
‖w0−‖L∞ + sup

γ−∈Γ t−

∫
γ−

|f−.w+| + sup
γ−∈Γ t−

∫
γ−

|S−|
)

≤ eC1

(
‖w0−‖L∞ + C1 sup

0≤s≤t
‖w+(s)‖L∞ + sup

γ−∈Γ t−

∫
γ−

|S−|
)
.

(2.3)

Similarly,

‖w+(t)‖L∞ ≤ eC1

(
‖w0+‖L∞ + sup

γ+∈Γ t+

∫
γ+

|f+.w−| + sup
γ+∈Γ t+

∫
γ+

|S+|
)
.(2.4)

For thew− integrals on the right in (2.4), use estimate (2.3) to find∫
γ±

|f±w−| ≤
∫
γ±

|f±| eC1

(
‖w−(0)‖ + C1 max

0≤τ≤s ‖w+(τ )‖ + sup
γ̃−∈Γ s−

∫
γ̃−

|S−|
)
ds ,

whereγ± is parameterized by the times ∈ [0, t]. Introduce

m±(t) := sup
0≤s≤t

‖w±(s)‖ ,

and take the supremum onr in (2.4) to obtain

‖w+(t)‖ ≤ C1e
C1

( ∑
±

(
‖w±(0)‖ + sup

γ±∈Γ t±

∫
γ±

|S±|
)

+ sup
γ+∈Γ t+

∫
γ+

|f+(s, r)| m+(s)ds + sup
γ−∈Γ t−

∫
γ−

|f−(s, r)| m+(s)ds
)
.
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Therefore,

‖m+(t)‖ ≤ C1e
C1

(∑
±

(
‖w±(0)‖ + sup

γ±∈Γ t±

∫
γ±

|S±|
)

+ sup
γ+∈Γ t+

∫
γ+

|f+(s, r)| m+(s)ds + sup
γ−∈Γ t−

∫
γ−

|f−(s, r)| m+(s)ds
)

≤ C1e
C1

(∑
±

(
‖w±(0)‖ + sup

γ±∈Γ t±

∫
γ±

|S±|
)

+
∫ t

0
sup
γ+∈Γ t+

|f+(s, r)| m+(s)ds +
∫ t

0
sup
γ−∈Γ t−

|f−(s, r)| m+(s)ds
)
.

Applying Gronwall’s lemma, using assumption (2.2), yields

m+(T ) ≤ C1e
2C1

(
‖w+(0)‖ + ‖w−(0)‖ + sup

γ−∈Γ T−

∫
γ−

|S−| + sup
γ+∈Γ T+

∫
γ+

|S+|
)
.

This inequality, along with (2.3), proves the proposition. �

The following example contains the core of the proof of Theorem 1.2.

EXAMPLE 2.4. Consider the case

f ε±(t, r) = εαr1−p|ṽε−(t, r)|p−1 ,

whereṽε− solves an initial value problem of the form (compare with (5.1) below),

(∂t − ∂r )ṽ
ε− = Fε(ṽε−) , ṽε−|t=0 = P−

(
r,
r − r0

ε

)
.

Recall that suppP−(r, ·) ⊂ [−z0, z0]. Forwε0± , consider pulses with the same support as
ṽε−|t=0. Then by finite speed of propagation, we can takeδε = r0 − z0ε in Proposition 2.3.
For 0< t < δε, the maximum off ε± at timet is estimated by

εαr1−p‖ṽε−‖p−1
L∞(0≤t≤t) ,

wherer is such thatr + t = δε = r0 − z0ε. Therefore we have

∫ t

0
sup
γ−∈Γ t−

|f ε−|dt +
∫ t

0
sup
γ+∈Γ t+

|f ε+|dt ≤ 2‖ṽε−‖p−1
L∞(0≤t≤t)

∫ t

0
εα(δε − t)1−pdt

≤ Cpε
α‖ṽε−‖p−1

L∞(0≤t≤t) ×
{
(δε − t)2−p if p > 2 ,

| log(δε − t)| if p = 2 .

Thus, wheñvε− remains bounded andT ε is chosen so thatεα(δε −T ε)2−p (resp.εα| log(δε −
T ε)| if p = 2) is bounded independent ofε, then we can use Proposition 2.3. This is the case
in particular ifT ε = Tλ,ε defined in Theorem 1.2.
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3. Existence results. In this section, we prove two kinds of results concerning the
existence of solutions to (1.5); local existence inL∞ before the wave meets the boundary
{r = 0}, and global existence inW1,∞ when the boundary condition has to be taken into
account. The reason appears in Theorems 1.1 and 1.2; in Theorem 1.2, the phenomena we
want to prove occurbefore the pulses reach the boundary, while Theorem 1.1 includes the
caustic crossing.

In the first case, we are interested in a problem{
(∂t ± ∂r)v

ε± = εαr1−pg(vε− + vε+) , r > 0 ,

vε∓
∣∣
t=0 = vε0∓ ,

(3.1)

where suppvε0∓ ⊂ [δε,+∞[ for someδε > 0, andvε0∓ ∈ L∞(R+). Then by finite speed
of propagation, the termr1−p is harmless at least up to timeδε. In that case, local in time
existence of solutions to (3.1) is easy.

LEMMA 3.1. Fix α ≥ 0, p > 1. Let vε0∓ ∈ L∞(R+) such that suppvε0∓ ⊂ [δε,+∞[
for some δε > 0. Then there exists T ε, with 0 < T ε < δε, and a unique solution (vε−, vε+) ∈
L∞ ∩ C([0, T ε] × R+)2 to the initial value problem (3.1).

When the incoming wavevε− reaches the origin{r = 0}, a boundary condition is needed
in order to solve the above system. We are interested in that given in (1.5), that is,

(vε− + vε+)
∣∣
r=0 = 0 .

Consider the mixed problem
(∂t ± ∂r )v

ε± = εαr1−pg(vε− + vε+) , r > 0 ,

(vε− + vε+)
∣∣
r=0 = 0 ,

vε∓
∣∣
t=0 = vε0∓ .

(3.2)

The boundary condition compensates the singularityr1−p whenr gets close to zero. Indeed,
Taylor’s formula yields, forC1 solutions,

(vε− + vε+)(t, r) = r∂r (v
ε− + vε+)(t, r)+ o(r) , asr → 0 .

Now from the differential equation, we also have

∂r (v
ε− + vε+) = ∂t (v

ε− − vε+) ,

and so if we know that the time derivatives ofvε remain bounded, then the singularityr1−p is
compensated. We have precisely,

|(vε− + vε+)(t, r)| ≤ 4r

r + ε
(|vε−| + |vε+| + |ε∂tvε−| + |ε∂tvε+|)(t, r) for all t, r ≥ 0 .(3.3)

This is the strategy we used in [4], Proposition 3.4, to prove local existence, in the casep > 2.
Notice that at this stage, the dependence uponε is unimportant, and thatp > 1 suffices for
local existence.
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LEMMA 3.2. Fix α ≥ 0,p > 1. Let vε0∓ ∈ W1,∞(R+) such that

vε0−(0)+ vε0+(0) = 0 , ∂rv
ε
0−(0)− ∂rv

ε
0+(0) = 0 .(3.4)

Then there exists T ε > 0 and a unique solution (vε−, vε+) ∈ C1 ∩ W1,∞([0, T ε] × R+)2 of
(3.2).

As recalled in the beginning of this section, such a result will be needed only in the proof
of Theorem 1.1, and not in the proof of Theorem 1.2. From now on in this section, we assume
α > max(0, p − 2). In [4], we also proved that the solutions of (3.2) withε = 1 andp > 2
are global, provided that the initial datav0± are sufficiently small.

PROPOSITION 3.3 ([4], Proposition 3.5).Fix α ≥ 0, p > 2. There are constants K1

andK ′
1 > 0 such that for all initial data ψ0 ∈ C1([0,∞)) satisfying

‖ψ0, ∂rψ0‖L∞([0,∞[) ≤ K1 ,

and the compatibility conditions

ψ0+(0)+ ψ0−(0) = 0 , ∂rψ0+(0)− ∂rψ0−(0) = 0 ,

there is a unique solution ψ ∈ C1([−∞,∞] × [0,∞[) of
(∂t ± ∂r )ψ± = r1−pg(ψ− + ψ+) ,
ψ−(t,0)+ ψ+(t,0) = 0 ,

ψ∓|t=0 = ψ0∓ .
(3.5)

In addition,

‖ψ, ∂tψ‖L∞([−∞,∞]×[0,∞[) ≤ K ′
1 ‖ψ0, ∂rψ0‖L∞([0,∞[) .

The idea is then to find a scaling such that we can use the above proposition to prove
global existence for (1.5) whenα > p − 2> 0, along with useful estimates. Try

vε±(t, r) = εγ ψε±(τ, ρ)
∣∣
τ=t/ε,ρ=r/ε , ψε±(τ, ρ) = ε−γ vε±(ετ, ερ) .(3.6)

Thenψε± solve the differential equations

(∂τ ± ∂ρ)ψ
ε± = εα(ερ)1−pε(p−1)γ g(ψε− + ψε+) .

Chooseγ so that the powers ofε cancel,

α + 1 − p + (p − 1)γ = 0 ⇔ γ = 1 − α

p − 1
.

Sinceγ is negative,

‖ψε±(0)‖L∞
ρ
, ‖∂τψε±(0)‖L∞

ρ
→ 0 asε → 0 ,

so that we can apply Proposition 3.3, forε sufficiently small. Moreover, it providesL∞
estimates forvε±, ε∂tvε±. We deduce that∂rvε± ∈ L∞ from the differential equations and
(3.3).
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COROLLARY 3.4. Assume α > p − 2 > 0. Then there exists ε0 > 0 such that for
0< ε ≤ ε0, (1.5)has a unique solution (vε−, vε+) ∈ C1 ∩W1,∞(R+ × R+)2. Moreover, there
exists C such that for any ε ∈ ]0, ε0],

‖vε±, ε∂t vε±‖L∞(R+×R+) ≤ C .

We now have to prove global existence when 1< p ≤ 2 andα > 0. Since local existence
is known (Lemma 3.2), global existence is a consequence ofa priori estimates, which follow
from (3.3) and Lemma 2.2. Define

mε±(t) = sup
0≤s≤t

(‖vε±(s)‖L∞ + ‖ε∂t vε±(s)‖L∞) .

By assumption,mε±(0) are bounded independent ofε ∈ ]0,1]. Lemma 2.2 and (3.3) yield, for
T > 0,

mε−(T )+ mε+(T ) ≤ C(mε−(0)+ mε+(0)+ hp(ε, T )(mε−(T )+ mε+(T ))p)
≤ C0 + C(hp(ε, T )(mε−(T )+ mε+(T ))p) ,

with

hp(ε, T ) =
{
εαT 2−p if 1 < p < 2 ,

εα log(1 + T/ε) if p = 2 .

In particular, for fixedT > 0,hp(ε, T ) → 0 asε → 0. Therefore, for anyT > 0, there exists
ε(T ) > 0 such that for anyε ∈ ]0, ε(T )], vε exists and

mε−(T )+ mε+(T ) ≤ 4C0 .

If mε−(T )+ mε+(T ) ≤ 4C0, then it follows that

mε−(T )+ mε+(T ) ≤ C0 + Chp(ε, T )(4C0)
p ,

and therefore for 0< ε ≤ ε(T ),

mε−(T )+ mε+(T ) ≤ 2C0 .

This proves that in factmε−(T )+ mε+(T ) < 4C0, since if that were not true, there would be a
first T∗ wheremε−(T )+ mε+(T ) = 4C0, and at that value ofT the above estimate leads to the
contradiction 4C0 < 2C0.

PROPOSITION 3.5. Assume that α > 0 and 1 < p ≤ 2. Let T > 0. Then there exists
ε(T ) > 0 such that for 0< ε ≤ ε(T ), (1.5)has a unique solution

(vε−, vε+) ∈ C1 ∩W1,∞([0, T ] × R+)2 .

Moreover, there exists C such that for any ε ∈ ]0, ε(T )],
‖vε±, ε∂t vε±‖L∞([0,T ]×R+) ≤ C .

4. The subcritical case. Now Theorem 1.1 is a straightforward consequence of
Lemma 2.2, Corollary 3.4 and Proposition 3.5. In the statement of Theorem 1.1, we dis-
tinguished three cases;p > 2, p = 2 and 1< p < 2. The distinction betweenp > 2 and
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p ≤ 2 appeared in the previous section, in Corollary 3.4 and Proposition 3.5. It corresponds to
the question of the integrability at infinity of the mappingr �→ r1−p. The further distinction
p = 2 corresponds to the local integrability of this mapping.

Define the remainderwε± = vε± − (vε±)free. It solves the mixed problem,
(∂t ± ∂r)w

ε± = εαr1−pg(vε− + vε+) ,
(wε− + wε+)

∣∣
r=0 = 0 ,

wε∓
∣∣
t=0 = ±εP1

(
r,
r − r0

ε

)
.

(4.1)

Let I be an interval of the form[0, T [, with T ∈ R+ ∪ {+∞}. From Lemma 2.2, we have

‖wε±‖L∞(I×R+) ≤ 2ε‖P1‖L∞ + 2 sup
t∈I

sup
γ∈Γ t

∫
γ

εαr1−pg(vε− + vε+) .

Using (3.3), we also have

‖wε±‖L∞(I×R+) ≤ Cε + C

(
sup
t∈I

sup
γ∈Γ t

∫
γ

εα

(r + ε)p−1

)
‖vε, ε∂t vε‖pL∞(I×R+) .(4.2)

Differentiating (4.1) with respect to time yields, using the differential equation (4.1), to find
the initial data

(∂t ± ∂r )ε∂tw
ε± = εαr1−pg ′(vε− + vε+)ε∂t (vε− + vε+) ,

ε∂t (w
ε− +wε+)

∣∣
r=0 = 0 ,

ε∂tw
ε∓
∣∣
t=0 = ε(ε∂rP1 + ∂zP1)

(
r,
r − r0

ε

)
+ εαr1−pg(vε− + vε+)

∣∣
t=0 .

Since the initial data forvε± are supported in|r − r0| ≤ z0ε, the termr1−p in the initial data
for ε∂twε∓ is harmless regarding toL∞ estimates. From Lemma 2.2 and (3.3), we have

‖ε∂twε±‖L∞(I×R+) � εmin(1,α) +
(

sup
t∈I

sup
γ∈Γ t

∫
γ

εα

(r + ε)p−1

)
‖vε, ε∂t vε‖pL∞(I×R+) .

The case p > 2. Assumeα > p − 2> 0. Then we have

sup
t≥0

sup
γ∈Γ t

∫
γ

εα

(r + ε)p−1 ≤ Cεα+2−p ,

and from Corollary 3.4, there existsε0 such that ifε ∈ ]0, ε0], ‖vε, ε∂t vε‖L∞(R+×R+) is
bounded. This proves the first part of Theorem 1.1 .

The case p = 2. If α > p − 2 = 0, then from Prop. 3.5, for everyT > 0, there exists
ε(T ) such that ifε ∈]0, ε(T )], ‖vε, ε∂t vε‖L∞([0,T [×R+) remains bounded. Moreover, for any
fixedT > 0, we have

sup
γ∈Γ T

∫
γ

εα

r + ε
≤ Cεα log

T

ε
.
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The case 1 < p < 2. If α > 0 and 1< p < 2, then the only difference with the
previous case is that the mappingr �→ r1−p is locally integrable, and hence the bound

sup
γ∈Γ T

∫
γ

εα

(r + ε)p−1
≤ sup
γ∈Γ T

∫
γ

εα

rp−1
≤ CεαT 2−p .

This completes the proof of Theorem 1.1.

5. The supercritical case. We conclude by proving Theorem 1.2, using Proposi-
tion 2.3. Before going into details, we explain how to construct the approximate solutions
that lead to the result. Assume for instance thatα > 0 and, since we are in a supercritical
case,p− 2> α. The hypothesisα > 0 suggests that the nonlinear term in (1.5) is negligible,
whenr is not too small. This is the outline of the proof of Theorem 1.1, and we could prove
in this way that(vε±)free is a good approximation forvε± at least forr0 − t � εα/(p−2). This
boundary layer is larger than in the critical caseα = p − 2 > 0 studied in [4], and nonlinear
effects possibly occur sooner. Considering the caseα = 0 gives us a further hint. We proved
in [2] that a good approximation at leading order was given by

(∂t ± ∂r)(v
ε±)app = r1−pg((vε±)app) ,

that is, solutions of ordinary differential equations along the rays of geometrical optics. A
natural generalization of this approach to the caseα ≥ 0 leads to

(∂t ± ∂r )(v
ε±)app = εαr1−pg((vε±)app) , (t, r) ∈ ([0, r0 − z0ε[×R∗+) ,

(vε±)app
∣∣
t=0 = P±

(
r,
r − r0

ε

)
.

(5.1)

We consider the regiont < r0 − z0ε so that no boundary condition is needed on{r = 0},
since the compact support ofP± and the finite speed of propagation make(vε±)app zero in the
region{r + t < r0 − z0ε} (see Figure 1).

Introduce the functionFp , defined fory ≥ x > 0, by

Fp(x, y) =
∫ y

x

ds

sp−1 =


1

p − 2
(x2−p − y2−p) , if p > 2 ,

log
y

x
, if p = 2 .

Then (5.1) can be solved explicitly,

(vε−)app(t, r) = P−(r + t, z)

(1 + a2−p(p − 1)εαFp(r, r + t)|P−(r + t, z)|p−1)1/(p−1)

∣∣∣∣
z=(r+t−r0)/ε

,

(vε+)app(t, r) = P+(r − t, z)

(1 + a2−p(p − 1)εαFp(r − t, r)|P+(r − t, z)|p−1)1/(p−1)

∣∣∣∣
z=(r−t−r0)/ε

.

We have

supp(vε−)app = {|r + t − r0| ≤ z0ε} , supp(vε+)app = {|r − t − r0| ≤ z0ε} .
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Since for anyy > 0 and anyp ≥ 2,Fp(x, y) → +∞ asx → 0, the sign ofa is crucial.
(1) If a > 0 (dissipative case), then(vε−)app tends to zero before reaching the focus.
(2) If a < 0 (accretive case), then both(vε−)app and(vε+)app blow up in finite time.

In the accretive case,(vε+)app may blow up at timeT ∗ < r0, that is, before any focusing.
To avoid useless distinctions, we assumeP+ ≡ 0, so that the only “interesting” phenomena
occur whent approachesr0.

The explicit formulae show that whenp > 2, for εαr2−p � 1,

(vε±)app(t, r) = (vε±)free(t, r)+O(εαr2−p) .
Assume firstp − 2 > α ≥ 0. Letλ > 0. We prove that(vε±)app gives a good approximation
of the exact solution in the regionr ≥ λεα/(p−2) before the focus. Notice that in this region,
(vε±)appand(vε±)free have ceased to be close to each other; the nonlinear effects are significant.
By finite propagation speed, this area is defined by

t ≤ r0 − λεα/(p−2) − z0ε = Tλ,ε .

We prove that(vε±)app remains a good approximation of the exact solution up to timeTλ,ε.

PROPOSITION 5.1. Assume p − 2 > α ≥ 0, and let λ > 0. Then (vε±)app is a good
approximation of the exact solution at least for t ∈ [0, Tλ,ε],

‖vε± − (vε±)app‖L∞([0,Tλ,ε]×R+) = O(ε1−α/(p−2)) (O(ε) if p = 2) .

PROOF OFPROPOSITION5.1. The proof relies on Proposition 2.3, which we apply as
in Example 2.4.

By finite propagation speed, both the exact and approximate solution are zero in the
region

{(t, r) ∈ [0, Tλ,ε] × R+ ; r + t ≤ Tλ,ε} .
Define the remainderwε± = vε± − (vε±)app. Before rays reach the boundary{r = 0},

(∂t ± ∂r )w
ε± = εαr1−p(g(vε− + vε+)− g((vε±)app)) ,

wε±
∣∣
t=0 = ∓εP1

(
r,
r − r0

ε

)
.

In order to apply Proposition 2.3, write the right hand side as

εαr1−p(g(vε− + vε+)− g((vε±)app)) = εαr1−p(g(vε− + vε+)− g((vε−)app+ (vε+)app)

+ g((vε−)app+ (vε+)app)− g((vε±)app)) .

Using Taylor’s Theorem, the first term satisfies

εαr1−p(g(vε− + vε+)− g((vε−)app+ (vε+)app)) = εαr1−p(wε− +wε+)f ε(t, r) ,
wheref ε is uniformly bounded on any set on which the familiesvε and(vε)appare uniformly
bounded. The point now is that this term has exactly the properties mentioned in Example 2.4;
in particular, the assumptions of Proposition 2.3 are satisfied up to timeT = Tλ,ε.

Define the source term

Sε±(t, r) := εαr1−p(g((vε−)app+ (vε+)app)− g((vε±)app)) .
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Then suppSε± ⊂ supp(vε∓)app, and
(∂t ± ∂r )w

ε± = εαr1−pf ε(t, r)(wε− + wε+)+ Sε± ,

wε±
∣∣
t=0 = ∓εP1

(
r,
r − r0

ε

)
.

(5.2)

From the explicit expression of(vε±)app, we see that for any fixedλ > 0, there existsCλ > 0
independent ofε such that ∥∥(vε±)app

∥∥
L∞([0,Tλ,ε]×R+) ≤ Cλ .(5.3)

We shall prove that there isε(λ) > 0 such that forε ∈]0, ε(λ)],
‖wε±‖L∞([0,Tλ,ε]×R+) ≤ Cλε

1−α/(p−2) (Cλε if p = 2) .(5.4)

This implies the error estimate of Proposition 5.1. For the sake of readability, we will omit
the distinctionp = 2, and keep the notationε1−α/(p−2), with an obvious convention.

From Lemma 3.1,vε, hencewε, is defined, bounded and continuous, locally in time. At
time t = 0, it is of orderε, so there existstε > 0 such that

‖wε±‖L∞([0,t ε]×R+) < 2ε‖P1‖L∞ ,

and we have, possibly increasing the value ofCλ,

‖wε±‖L∞([0,t ε]×R+) ≤ Cλε
1−α/(p−2) .

So long aswε± is pointwise bounded by 2Cλ, f ε remains uniformly bounded. As noticed in
Example 2.4, there existsC2(λ) such that∫ Tλ,ε

0
sup
γ∈Γ t

εαr1−p ∣∣f ε∣∣ dt ≤ C2(λ) .

Now consider the source terms. On supp(vε+)app (of size 2z0ε, and transverse to anyγ ∈
Γ
T (λ,ε)
− ), r > r0/2, therefore the singular termr1−p is bounded and

sup
γ−∈Γ T (λ,ε)−

∫
γ−

|Sε−| ≤ Cε1+α .

More delicate is the treatment ofSε+. Because supp(vε−)app is of size 2z0ε and transverse to

anyγ+ ∈ Γ T (λ,ε)+ , one has

sup
γ+∈Γ T (λ,ε)+

∫
γ+

|Sε+| ≤ Cεα
∫ λεα/(p−2)+2z0ε

λεα/(p−2)
r1−pdr = CεαFp(λε

α/(p−2) , λεα/(p−2) + 2z0ε) .

If p > 2,

(p − 2)εαFp(λεα/(p−2), λεα/(p−2) + 2z0ε) = εα((λεα/(p−2))2−p − (λεα/(p−2) + 2z0ε)
2−p)

= λ2−p
(

1 −
(

1 + 2z0

λ
ε1−α/(p−2)

)2−p)
= O(λ1−pε1−α/(p−2)) .
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The casep = 2 yields the same estimate. From Proposition 2.3,wε± remains pointwise
bounded by 2Cλ for t ∈ [0, T (λ, ε)], for ε ∈ ]0, ε(λ)]. This yields (5.4), and completes the
proof of Proposition 5.1. �

Proposition 5.1 describes the behavior of the exact solutionvε up to timeT (λ, ε). The
outline of the end of the proof in the dissipative case is as follows. At timet = T (λ, ε),
the approximate solution(vε)app is of orderλ(p−2)/(p−1) if p > 2 (1/| logλ| if p = 2).
Letting ε go to zero, withλ sufficiently small, shows thatvε becomes arbitrarily small when
approaching the focal point. Since the equation is dissipative, this means thatvε is absorbed.
The end of the proof of Theorem 1.2 relies on energy estimates. Forq ≥ 1, define

gq−1(s) := d

ds
|s|q = q|s|q−1 sgns .

Thengq is a non-increasing odd function ofs, which is homogeneous of degreeq.
In (1.5), multiply the equation satisfied byvε− by gq−1(v

ε−), and the equation satisfied by
vε+ by gq−1(v

ε+). Summing up these yields

∂t (|vε−|q + |vε+|q)+ ∂r (|vε+|q − |vε−|q)
= − a2−pr1−p (

gq−1(v
ε−)+ gq−1(v

ε+)
)
gp(vε− + vε+)/(p + 1) .

The signs of bothgq−1(v
ε−) + gq−1(v

ε+) andgp(vε− + vε+) are equal to the sign of the larger
of vε±. Therefore, whena > 0 (dissipative case),

∂t (|vε−|q + |vε+|q)− ∂r (|vε−|q − |vε+|q) ≤ 0 .(5.5)

For a fixedt > 0, integrate this inequality fromr = 0 to r = t . Recall that whenr = 0, we
have|vε−| = |vε+|, and so this yields∫ t

0
∂t (|vε−|q + |vε+|q)(t, r)dr − |vε−|q(t, t)+ |vε+|q(t, t) ≤ 0 .

Therefore,

∂t

∫ t

0
(|vε−|q + |vε+|q)(t, r)dr ≤ 2|vε−|q(t, t) .(5.6)

Let λ > 0. From Proposition 5.1, for 0≤ t ≤ Tλ,ε,

|vε−|q(t, t) = |(vε−)app|q(t, t)+O(εq(1−α/(p−2))) .

For t > (r0 + z0ε)/2, (vε−)app(t, t) = 0 and

|vε−|q(t, t) = O(εq(1−α/(p−2))) .

Let T > Tλ,ε and integrate (5.6) betweent = Tλ,ε andt = T . Then

‖vε−(T )‖qLq(0,T ) + ‖vε+(T )‖qLq(0,T ) ≤ ‖vε−(Tλ,ε)‖qLq(0,Tλ,ε) + ‖vε+(Tλ,ε)‖qLq(0,Tλ,ε)
+ C(λ)qT εq(1−α/(p−2)) ,
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and

‖vε−(T )‖Lq(0,T ) + ‖vε+(T )‖Lq(0,T ) ≤ ‖vε−(Tλ,ε)‖Lq(0,Tλ,ε) + ‖vε+(Tλ,ε)‖Lq(0,Tλ,ε)
+ C(λ)T 1/qε1−α/(p−2) .

Lettingq → ∞ yields

‖vε−(T )‖L∞(0,T ) + ‖vε+(T )‖L∞(0,T ) ≤ ‖vε−(Tλ,ε)‖L∞(0,Tλ,ε) + ‖vε+(Tλ,ε)‖L∞(0,Tλ,ε)

+ C(λ)ε1−α/(p−2) .

Using Proposition 5.1 again, and the fact that supp(vε+)app ⊂ {|r − t − r0| ≤ z0ε}, we also
have

‖vε−(T )‖L∞(0,T ) + ‖vε+(T )‖L∞(0,T ) ≤ ‖(vε−)app(Tλ,ε)‖L∞(0,Tλ,ε) + C(λ)ε1−α/(p−2) .

From the explicit expression for(vε−)app,

‖(vε−)app(Tλ,ε)‖L∞(0,Tλ,ε) ≤ C ×
{
λ(p−2)/(p−1) if p > 2,
1/| logλ| if p = 2,

(5.7)

whereC does not depend onλ. Thus ifp > 2,

‖vε−(T )‖L∞(0,T ) + ‖vε+(T )‖L∞(0,T ) ≤ Cλ(p−2)/(p−1) + C(λ)ε1−α/(p−2) .

Therefore, for anyT ≥ r0 and anyλ > 0,

lim sup
ε→0

(‖vε−(T )‖L∞(0,T ) + ‖vε+(T )‖L∞(0,T )) ≤ Cλ(p−2)/(p−1) .(5.8)

Lettingλ → 0 yields the first part of Theorem 1.2 forp > 2. The casep = 2 is straightfor-
ward.

When the equation is accretive (a < 0), the energy estimate (5.5) becomes

∂t (|vε−|q + |vε+|q)(t, r)− ∂r (|vε−|q − |vε+|q)(t, r) ≥ 0 .(5.9)

Since we assumedP+ ≡ 0, (vε−)app blows up in finite time, while(vε+)app does not. The
mechanism occurs quite in the same way as the cancellation of(vε−)app in the dissipative case.
For a fixedt > 0, integrating (5.9) betweenr = 0 andr = ∞ yields, by finite speed of
propagation,∫ ∞

0
∂t (|vε−|q + |vε+|q)(t, r)dr = ∂t

∫ ∞

0
(|vε−|q + |vε+|q)(t, r)dr ≥ 0 .

Let r0 > T > Tλ,ε and integrate the above inequality betweent = Tλ,ε andt = T . Then

‖vε−(T )‖qLq(R+) + ‖vε+(T )‖qLq(R+) ≥ ‖vε−(Tλ,ε)‖qLq(R+) + ‖vε+(Tλ,ε)‖qLq(R+) .

Lettingq → ∞ yields

‖vε−(T )‖L∞(R+) + ‖vε+(T )‖L∞(R+) ≥ ‖vε−(Tλ,ε)‖L∞(R+) .

From Proposition 5.1, it follows that

lim inf
ε→0

(‖vε−(T )‖L∞(R+) + ‖vε+(T )‖L∞(R+)) ≥ lim inf
ε→0

‖(vε−)app(Tλ,ε)‖L∞(R+) .
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Letting λ → 0 yields the last part of Theorem 1.2 withT ∗ = r0, using the explicit form of
(vε−)app. As we already mentioned, the result may hold withT ∗ < r0 if (vε+)app blows up
before(vε−)app, in which case the proof is essentially as above.
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