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AN ELEMENTARY PROOF OF GLOBAL OR ALMOST GLOBAL
EXISTENCE FOR QUASI-LINEAR WAVE EQUATIONS
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Abstract. We give a new, elementary proof of the global or almost global existence
theorem of S.Klainerman. Our result also covers the almost global existence theorem of
M. Keel, F. Smith, and C.D. Sogge. The proof is carried out in line with S.Klainerman and
T.C. Sideris.

1. Introduction. Since the classic work of John [9] on the finite-time blow-up of
smooth solutions to quadratic quasi-linear wave equations in three space dimensions with
small data, a large amount of effort has been made to clarify the relation among the life-span
(the maximal existence time of unique local solutions), the structure of quadratic nonlinear
terms, and the number of space dimensions. One of the most striking results in this direction
is due to Klainerman [15], [17], who proved the global existence theorem in space dimensions
n > 4 and the “almost global” existence theprén three space dimensions, for small data.

As is explained widely in excellent monographs such as [3], [7], [11], [22], [26] and [28],
the heart of the method of Klainerman is an effective use of the Killing vector fields as well
as the scaling operatef; + x - V to prove global Sobolev inequalities in the Minkowski
spaceR"*1, known by the name of the Klainerman inequality [17]. Thanks to the good
commutation relation between the d’Alembertigih— A and the generators of the Poincaré
group, the Klainerman inequality plays a central role in the proof of global or almost global
existence of small amplitude solutions.

Interestingly enough, the method of vector fields has been evolving into new versions,
as is seen in, e.g., [2], [8], [10], [14], [18], [19], [23]-[25], [27] and [29] from motives for
studying the Cauchy problem of nonlinear ¢glagquations as well as the initial-boundary
value problem of quasi-linear wave equations in an exterior of a compact, nontrapping or
star-shaped set with a smooth boundary. See also technical innovations in Keel, Smith and
Sogge [13] and Metcalfe [20], where they have further evolved the method of vector fields to
consider semi-linear wave equations in eixdedomains as well as in the Minkowski space.
The common feature of the revised methods lies in that the use of Lorentz boosts, which
is ill-suited for the analysis of these problems, is completely avoided. The lack of Lorentz
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boosts in the list of vector fields are compensated for by direct estimates of the fundamental
solution [2], [8], [10], [14], [19], [29] or bysomewhat weak Sobolev-type inequalities [6],
[18], [23]-[25] to get somd.*-decay estimates of local solutions. The main purpose of
this paper is to develop the recent superb version of Klainerman and Sideris [18], and cover
the global or almost global existence theorem of Klainerman without the use of the Lorentz
boosts. Since the operatdr contains at most one scaling operator in the definition of the
generalized energy for = 3 in (2.4), our almost global existence theorem actually covers
Theorem 1.2 of Keel, Smith and Sogge [14]. The author believes that the present method
will evolve into an efficient technique of thenalysis of the initial-boundary value problem

for quasi-linear wave equations in an exterior of a 3-D compact and star-shaped set with a
smooth boundary.

We describe technical features in the present paper at length. Our analysis is in line with
that of Sideris [24] and Sideris and Tu [25], who have significantly improved an intriguing and
striking method of Klainerman and Sideris [18]. Via the Klainerman-Sideris inequality (see
(5.1) below) we can obtain some weighte&(R")-estimates of the second and higher-order
derivatives, as long as a local solution is sufficiently small in a suitable sense. The weight
involved has the form ofct — r) for a wave-propagation speedand the time decay thereby
obtained of thd.2-norms compensates effictiynfor some weak time decay of tHe®-norms
which can be obtained via the Sobolev-typequality such as (4.2) below. It is noted that
we can handle semi-linear terni&* (x, u) of (3.3) by our analysis with an effective applica-
tion of the Hardy inequality as in Hidano [6], though the Klainerman-Sideris inequality does
not lead to weighted.2(R")-estimates of the first derivatives. We also add two comments.
First, it is possible to deal with non-divergence nonlinear terms by our analysis thanks to
significant technical improvements of Sideris [24], though the innovative paper of Klainer-
man and Sideris [18] discussed only nonlinear terms of the divergence form. Secondly, the
present analysis needs no direct estimatetheffundamental solution and, employing our
techniques, we have recently given a unified proof of the previous excellent results in two
or three space dimensions of Agemi and Yokoyama [2], Hoshiga and Kubo [8], Kovalyov
[19] and Yokoyama [29] whose proofs built heavily upon direct estimates of the fundamental
solution. See [6].

This paper is organized as follows. In the next section we give the notation used in this
paper. In Section 3 the main results are stated. Section 4 is devoted to the proof of some
Sobolev-type inequalities. After weightéd-norms are shown to be bounded by generalized
energies in Section 5, we complete the energy integral argument in Sections 6 and 7 to prove
almost global and global existence theorem.

2. Notation. We explain the notation used in this paper. kedenote the space di-
mensions. We shall consider systemsnofquasi-linear equations. Repeated indices are
summed if lowered and raised. Greek indices range fromzQdad Latin indices from 1 tex.
Points inR’errl are denoted byx%, x1, ..., x") = (¢, x). In addition to the usual partial dif-
ferential operators, = 9/9x* (¢ = 0, ..., n) with the abbreviatio® = (g, 91, ..., 9,) =
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(9, V), we shall use the generators of the Euclid rotatihs= (£212, ..., £21,, £223, ...,

Q2n_1,) With 2 = xI o — _xkaj (1 < j < k < n), and the generators of the space-

time scalingS = x%d,. The set of these = (n2 4+ n + 4)/2 vector fields is denoted by
=o, I'1,...,T_1) = (3, £2,S). We also denoté&™ \ {S} by I = (I, I'1, ..., I,_2) =

(0, £2). For multi-indicess = (ao, ..., ay—1) andb = (bo, ..., b,_2), we denote

2.1) re=rfo..rr, rb=rb...rrz.

The D’Alembertian, which acts on vector-valued functiamsR’errl — R™, is denoted by

. 92
(2.2) O=diag01,...,0n), k= o7~ c2A.

Associated with this operator, the energy is defined as
1 m

(2.3) E1u(t)) = = Z/ 1u* (2, x)1? 4 2| Vuk(r, x)|%dx .
2 k=l R’l

We also introduce two types of generalized energy as
Ecu@®) = ) Elu@) i n=3,

la]<k—1

(2.4) lav-1l=1
Ecw®)= Y Ei(Il'u@) if n>4,
la|<k—1
(2.5) Ecw®)= Y Ei(Il"u()
la|<k—1

fork =2,3,....
Two types of auxiliary norm

ZZ 3 et = FPuk )]l agey 1= 3,

k= lla\ 2|b|<k—2

Z S 3 et = ATt Ol oy« 1 = 4,

k=1|a|=2|b|<k—2

(2.6) M (u() =

(2.7) M (u(t)) = Z D et = TPut Ol 2rery

k=1|a|=2|b|<k—-2

(henceM, (u(t)) = M, (u(r)) for n = 3) will play an intermediary role in the energy integral
argument below. Here and later on as well we use the notatipa= /1 + |A|2 for a scalar
or vectorA. For simplicity we shall often denote the’ (R")-norm by]|| - ||z».

3. Results. We consider the Cauchy problem for a system of quasi-linear wave equa-
tions

(3.1) Ou = F(u,d%u) in R{™
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(n > 3) subject to the smooth, compactly supported initial data
(3.2) u@=¢, 0u@=y.

We may suppose that the nonlinear tefhis quadratic, because higher-order terms have no
influence over the theory of large-time existence of small amplitude solutions. We assume
the k-th component of the vector functiaf to be of the formF* (du, 82u) = G*(u, u) +

H*(u, u), where

(3.3) GFu, v) = Gf.‘]r"‘ﬂyaau"aﬁay vl H*u,v) = H ' 9507

for real constantﬁ;f.‘]i“ﬁy, Hi';’“ﬁ. Since our proof is based on the energy integral method, we

naturally assume the symmetry condition

(3.4) ij];aﬁy - Gfs];ayﬁ = GiPr
The main theorems of this paper are stated as follows.

THEOREM 3.1. Letn = 3and« > 6. Thereexists a constant § > 0 with the following

property: If the initial data satisfy E,}/Z(M(O)) < ¢ for ¢ < 8, then the existence time of a

unique, local smooth solution to (3.1) and (3.2) exceeds A exg B/¢], where A and B are
positive constants independent of ¢.

THEOREM 3.2. Letn > 4 andlet « belarge so that

(3.5) [%}+[%}+25K—[2]_1.

There exist positive constants § and Co with the following property: If the initial data satisfy

(3.6) E?u(0)) expdCoEY*(u(0))] < 8 <,L =K — [%} - 1> ,

then there exists a unique, smooth global solution to (3.1) and (3.2).

4. Preliminaries. In addition to the well-known facts
(4.1) [0,0]=0, [£2,0]=0, [§,0]=-20,
we shall need the following Sobolev-type inequalities.
LEMMA 4.1. (i) Letn > 3. Theinequality
42) "2 e — )l (1 x)] < CERlR) 1 () + CMij2142(u(0))

holds.
(i) Letn = 3. Theinequality

(4.3) (r)|out, x)| < CE3u())
holds.
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(i) Letn=4and0 < ¢ < 1/2. Theinequality

3
@4 (@0l < C Y IRUON5IL4u@ TS +C Y 198u@)]l 2

2

la]<2 la]=1
holds.
(iv) Letn > 3. Theinequality
[n/2]4+1
(4.5) NP a0l <C Y IRUDlg +C Y 13u)],2
lal<[n/2] lal=1

holds.

PrROOF The inequality (4.3) was shown by Sideris (see (3.20b) of [24], and also (6.2) of
Sideris and Tu [25]). The proof of (4.4) starts with the following radius-angular mixed-norm
inequality which has been shown in Hidano [4]:

1/2 1
(n/2)=s 2 . - n
(4.6) r (/;111 [v(rw)| da)) < C||v||H5 . <5< >

Sets = 1 — ¢. It then follows from the Sobolev embedding on the unit sptrim R* that

1/2
P, x)) < C Z rl+€(/ |.Q“u(t,x)|2da)>
53

(4.7) lal=2
= C Y 12U e = C Y IR2UO512 UM 7> 0.
lal<2 la|<2 2

Let us introduce a smooth cut-off functiah e C8°(R4), & =1for|x| <1, & = 0 for
|x| > 2. For|x| < 1 we see

lu(t, x)| = |@X)ut, x)| < Cl[Pu)| y3

3
< Clu®ll2qep<p +C Y 108u@ll2
la]=1
(4.8) :
' <C sup |u(t, )| +C Y [9¢u)l 2
1<|x|<2 la|=1

3
<C Y IR UONL I U +C 3 13tu®le.

lal<2 lal=1
which together with (4.7) leads to (4.4).

In order to show (4.5) we make use of the following inequality due to Nakanishi (see
Proposition 3.7 of [21]):

1/q
(4.9 r(”/p)_l</ . |U(rw)|qda)) < C||v||H11 ,
sn— 4
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forl<p<n,n/p—m—-1)/q = 1. Choosingg = 2 and modifying (4.7) and (4.8) properly,
we can easily show (4.5).

The inequality (4.2) remains to be proved. Getting back to (4.9) with 2, we see for
r>0

r27 et —r)dud (1, x)|

<crmt ¥ </

) 1/q
[£29((cjt — r)du’(t, x))l"da))

n—

la|<[n/2]
<C Y et =29l 0l
(4.10) lal<[n/2]
' sCY, Y et =nath 0y

la|=1lal+|bl<[n/2]+1

<Cy. Y RPNl

lal=1lal+|b|<[n/2]+1

+CY > et = a2l @)l e
lal>2]al+{b|<[n/21+2

Let us again introduce a smooth cut-off functidne C5°(R"), ® = 1for|x| < 1,® = 0for
|x| > 2. Forr < 1 we see, assumingt > 3 without loss of generality,

l(cjt —r)du’ (1, x)| < (L+ ¢ (x)du’ (t, x)|

[n/2]+1
< C(L+c;n)|@0u! )|l s < CA+cjt) Y 1198 (@ou! (1)) 2
la|=1
[n/2]+1
SC(1+c-t)< 180w (1) 2 + sup |aul(r, x)|)
(4.11) J |aX=:l <+ 2P,
[n/2]4+2
<C Y Mejt=nau Olz+C > > 18P )l
la|=2 la|>1]al+|b|<[n/2]+1

+CY T et =t 2Pu @)l 2,

lal=2a|+|b|<[n/2]+2

where we have employed (4.10) at the last inequality. The inequality (4.2) is an immediate
consequence of (4.10) and (4.11). a

The next corollary follows directly from (4.4) and (4.5).
COROLLARY 4.2. (i) Letn=4and0 < ¢ < 1/2. Theinequality

(4.12) () 10u(, x)| < CEJ ()
holds.
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(i) Supposen > 5. Theinequality
(4.13) (N2 Ygu(r, x)| < CEL Dy ()

holds.

5. Weighted L2-estimates.  Since weighted.2-normsM, («(t)) appear on the right-
hand side of the Sobolev-typeeiqualities presented in the previous section, it is necessary
to bound the weighted normig, (u(1)) or M, (u()) by E,}/z(u(t)) for the completion of the
energy integral argument. The next crucial inequality, which is due to Klainerman and Sideris,

is the starting point of our proof.
LeEmMA 5.1 (Klainerman-Sideris inequality)Let « > 2.
(i) Letn = 3. Theinequality

(5.) M () < CEY?() +C Y |t +nOCu)ll 2

la]<k—2

holds for any smooth function « : R — R™ with the finite right-hand side.
(i) Letn > 4. Theinequality

(5.2) M () < CEY?() +C Y |t +rnOrut)ll 2
la|<k—2
holds for any smooth function u : R’jfl — R™ with thefinite right-hand side.

PROOF See Lemma 3.1 of Klainerman and Sideris [18] and Lemma 7.1 of Sideris and
Tu [25]. Note that their proof is obviously valid for all > 2. |

LEMMA 5.2. Let u be a smooth solution of (3.1) and (3.2). Set«’ = [(k — 1)/2] +
[n/2] + 2. Thenfor all |a| <k — 2

It 4+ 1O u)|) 2

. 1/2

< CEY 1/2

W) EX?u(t)) + CMy () EX () + CE ) “(u(t) M (u(2)) .

Hereand later onaswell ['¢ = [ for n = 3, ' = I'“ for n > 4.

PROOF. We may focus on the estimate of tié-norm of :JI“u, because that of
rO7 % is treated in an easier way. Spt= [(x — 1)/2]. It is necessary to estimate the
contribution from the quasi-linear parts

(5.4) O u! (10?1 u’ (1) 2,  |bl+|c] <k —2
as well as the contribution from the semi-linear parts

(5.5) Horlul (ar<u/ (1)) ,2, bl + el <k —2.
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Setcop = min{c;/2; j = 1,..., m}. We shall start with the estimate of (5.5). Let us assume
|b] < p without loss of generality. It follows from (4.2), (4.3) and (4.5) that
(10w ar<ul| 2

< Cliteit = rdlu' 05wl | 2 oy + ClrdFu' 95U | 2, o

< Cll{eit = r)aT u' || oo + [lra L u || L) 101 ul | 2

< C(EY 12120 + Mipiin21020u(0)) Eil2 1 (u(0))

< C(E) . 214020(®) + Mp ynj2102() E (1))

< C(EYP () + Mo @) EX% () .

For the estimate of (5.4) we separate two cafigss p or |c| < p — 1. For the former case
the estimate is carried out as

110 u 921 <u’|| 2

< Claru'(cjt — r)d2T ul || 2 gy + CllrAT U 021 ul || 22 o)

(5.6)

(5.7) < CIarul || g Nl (cjt — r)0?Tu’ | 2 + Cllralbu’ || Lo |92 1 Cul | 2
1/2 1/2
< CEQA i 2@O) (Mic2(u(0) + Eif 3 (1))
1/2

< CE2(u(n) (M (1) + EY? (1)) .
On the other hand, fgr| < p — 1, we proceed as
Orbu 921 <ul |2
< CIATrPut || 2(ll(ejt — r)d2 T ul || oo + 7820 U || L)
< CEY @) (2 2130®) + Mici /2143 (1))
< CEM2u@) (EY2 () + Mo (@) ,

where we have used (4.2), (4.3) and (4.5) at the second inequality. The proof of Lemma 5.2
has been completed. ]

(5.8)

LEMMA 5.3. (i) Letrn = 3and« > 5. Suppose that, for a local smooth solution u
of (3.1) and (3.2), the supremum of Ei/ 2(u(t)) onaninterval [0, T)

(5.9) g0:= sup E;/%u())
O<r<T

is sufficiently small. Then
(5.10) M (u(t)) < CEY2(u(r)), 0<t<T

holds.
(i) Letn > 4andlet « belarge so that

(5.11) [";1}+[%}+25K—1—[%}
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Set uw = k — 1 — [n/2]. Suppose that, for a local smooth solution « of (3.1) and (3.2), the
supremum of Ei/ 2(u(t)) on aninterval

(5.12) 0= sup E;/?u(r)
O<t<T

is sufficiently small. Then the following hold:
(5.13) M, (u(®) < CE/*(u(t)), 0<t<T,
(5.14) M, (u(r)) < CEY?u(r)), 0<r<T.

PrRoOOF Part (i) is an immediate consequence of (5.1) and (5.3). We may focus on the
proof of Part (ii). Set

[ <[ [

Recalling (5.11), we see simply but crucially < «" < u < «. We first employ (5.1) and
(5.3), settingec = 1 in the notation of lemmas 5.1 and 5.2, to get

My () < CEM@@®)+C > It +n0ru®)| 2
la|l<pu—2
(5.15) < CEY2(u()) + CEY*(u(0) EY(u(1))
+ My () E2(0) + CE,J(t)) My, (u (1)
< CEY2(u(t)) + CeoE Y/ ?(u(t)) + CeoM (u(t)) ,
which yields (5.13). Getting back to (5.1) and (5.3) and notihe ., we find
M () < CEP@@®)+C Y |l +n0ru@|

la|<k—2

(5.16) < CEM?(u(t)) + CEX?(u() EY?(u (1))

+ CM,o (D)) EY? () + CE? () M (u (1))
< CEY?(u(t)) + CeoEY2(u (1)) + CeoM, (u(1))

which leads to (5.14). The proof has been completed. |

6. Energy estimatesn = 3.  Carrying out the estimates of the nonlinear term care-
fully, we shall find in the case = 3 that the generalized energy norm in (2.4), which contains
at most one scaling operat8r indeed works well for our energy integral argument of the
almost global existence. For the proof of the global existence theorem in higher dimensions,
we shall get a pair of coupled differential inequalities for a higher-order enérgy(¢)) and
alower-order energ¥, (u(1)), u = k —[n/2] —1. Since the equation (3.1) is quasi-linear, we
must actually consider modified energies (see (6.1)) which are equivalent to the original ones
for small solutions. Allowing the higher-order (modified) energy to grow polynomially in
time but bounding the lower-order (modified)exgy uniformly in time, we shall accomplish



280 K. HIDANO

our energy integral argument. This strategslalready been employed in previous papers,
such as Sideris and Tu [25].

Taking account of the difference between the definitions of the generalized energies (see
(2.4)), we shall carry out the energy integral argumenifef 3 in this section, and put it off
for n > 4 until the next section.

Three spacedimensions. Suppose: > 6. For the initial datdg, ¥) with components
@ ) € CPR® x CPR? (k = 1,...,m), letus assum&/2(u(0)) < & for a suf-
ficiently smalle such that 8 < &g (as foreg, see (5.9)). By the standard local existence
theorem we know that a unigue smooth solution exists locally in time. SupposBtisahe
largest time such thﬁ,}/z(u(t)) < 3¢for0 <t < Tp. Itis shown thatE,}/z(u(t)) < 3¢ for
0 <t < Aexp B/¢] for suitable constanta andB independent of. Therefore the existence
time of the local solution exceedsexd B/¢].

Suppose & ¢ < Tp in what follows. Introducing the modified energy

N 1 - . ‘
(61)  Eew®) =Ecw®) =5 > > G /R o' 95 M ul 05 M uk dx

lal=xk—1 k=1
la7|=1

(;7]5/ =diagl, —1, —1, —1)) and following Sideris and Tu [25] on pages 484-485, we get
E (u() <C Z Z Z 10rPu!02reul || 2105 u¥ ) 2

i,j.k lal<k—1 [bl+lc|<lal.ca
la7|<1 b7+c7<1

+CY Y Y artuarcud 2195wt e

i,j,k lal<k—1 |b|+|c|<l|a]
la7|<1  by+c7=<l

(6.2)

Since it follows easily from the Sobolev embedding that
1 .
(6.3) EEK(u(t)) < Ecu() <2Ecu(), 0=<t<To

for the small solutionu under consideration, we may replace the n(E&{Z(u(t)) with
EY?u(1)) in the estimates below.

Setg = [«/2] andco = min{c;/2: j =1, ..., m} as before. We start with the estimate
of the first term on the right-hand side of (6.2), which is the contribution from the quasi-linear
part.

Quasi-linear part. We separate two casd$] < g or |c| < g — 1.

Case |b| < ¢q. If I’ contains the operatdt, then we have by (4.3)
10 u’92reu’||, 2
< COHIr U (cjt — 12T U || 2 ooy + 0PI PU 9P T U | 12,2 o)

(6.4) < COHIL U oo lliest — )T ul || 2 + [1(r)d T ul | Lo |92 U || 2)
< O M ER @) M s2(0) + i) 4u(®) Eil2 ()

< CIO L EJS ) EY2®) + M (1)) < Cit)  Ecu)).
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If "> does not contail, then we obtain by (4.2) and (4.3)

l0rPu’92reu’|| 2
< CO) 7 (eit — AT U 02 Iu? || 2 gy + 10N AT U 02T || 202 o)
<€) Mleit = rTPul Lo + 1) dTPu | L) 1927 U || 12

< O HE)ia@®) + Mpa@@)) Eid 2 pw(®) < C) ™ Ec(u(®)) .

(6.5)

Caselc| < g —1. If '’ containsS, then we easily have
10rbu?92reul|| ;2
< COy O Ut (cjt — )02 Tl || 2 ooy + 17U (102 T U7 || 202 or)
(6.6) <) Hartut | (et — r)a*rul || + () 320 ul || )

< C() B ) (EG 4@®) + Migra(u ()

< O EY2(u(0) (B 2 @(0) + My 3u() < C{t)  Ecu(r)) .

If "> does not contail, then we see, noting| < « — 2 in this case,

10rbu92reu|| ;2

1 . . _. .

< C(t)_1< Z(cit — r)arPu'ro?reu’ + ||a1“bu'<r>azrcu-/||L2(,>CO,)>
r L2(r<cot)
1 _ , . .

©7 - C(t)l< Z(eit —r)oltul|  + ||a1"bu’||L2>||(r>azrcuf||Loo
r L2
_ 1/2 1/2

< O HER 1) + Mippe2@)) E A 4u(0))

1/2 1/2

< COOHE L) + Mc (@) E,\5w®) < C) P Ecu(®),

where we have used the Hardy inequality at the third inequality.

Semi-linear part.  In estimating the second term on the right-hand side of (6.2), we may
assumeb| < ¢ (¢ = [k/2]) without loss of generality. I"? contains the operatct, then
we have, notingc| < ¥ — 2 in this case,

lortuar<ul| 2

.1 -
< C(t)_l( rdlbu! =(cjt — r)arcu’
r

+ (r)drtuldreu’ ||Lz(r>coz)>

L2(r<cot)
68 - C(t>—1||(r>arbu"||Loo< }<c,-t—r)af€u-" + ||31:'Cuj||L2>
r L2
< O E2 ) (31 ®) + Mie 2 ()

< CLE/B ) (EAw®) + Mc () < Cit)  Ecu)).
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If '’ does not contait, then, using (4.2), we get
lorbuldareul|,.
< C(O) M eit = 1A W AT u || 2, _ ooy + 0PV PU AT U || 2,2 0y

(6.9) < C{) (et — r)dTPu || oo + 1(r)d T Pu’ || o) 18T || 2

< () HEA 3 (®) + Mipppa@(n) Ep 1 ()

< O ESBw)EF2 ) < Ciy Ec(u() .

Conclusion of theproof. Using the equivalence (6.3), we have from (6.2), (6.4) through
(6.9)

(6.10) EL(u(@) < Ce(t) *E @), 0<t<Top,
which yields
%Ex(u(r» < Ec(u(t) < Ecu(0)(1+ 1) < 2E(u(0)(1+1)".
Therefore,
(6.11) EY2(u(r)) < 2EY?u(0))(1 4 1)5¢ < 2e(1+1)B¢

for a suitable constanB. Choosingr so that 21 + )84 < 3, we seeE,}/z(u(t)) < 3g,
which implies that there exist suitable constaatand B, and the existence time of the local
solution exceedd exf B/¢] for all smalle > 0. We have completed the proof of the theorem
forn = 3. O

7. Energy estimatesn > 4. Choose an integar large so that

(7.1) [%}+[%}+25K—[g]_1.

Setu = k — [n/2] — 1. Let us assume that the initial data satisfy
3
(7.2) EY2(u(0)) expCoEY 2 (u(0))] < 2°

for a sufficiently smalls such that 2 < ¢g (see (5.10) as fotg), whereCp is a constant
appearing in (7.18) below. Let us spell out the plan of our energy integral argument. Suppose
thatTy is the largest time such that the local solution satisﬂé@(u(t)) < 2efor0 <t < Tp.

It will be shown thatEt/z(u(t)) < 2¢ for 0 < t < Tp. Therefore we can continue the local
solution to all time.

Suppose O< ¢ < Tp in what follows. As in Sideris [24], and Sideris and Tu [25], we
carry out the energy integral argument by deriving a pair of coupled differential inequalities
for a higher-order energ¥, (u(r)) and a lower-order energ¥,, (u(¢)). As we did in the
previous section, it is of course necessary to introduce the modified energy

- 1 " . .
(7.3) Eu@®) =E(u()) — = Glffaﬁyn‘S O’ 957U’ 95 Mu*dx
2 iy ¢
Rﬂ
lal=l—-1k=1
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(nf, =diagd, -1,...,-1)forl =1, 2,..., k. We note that it is easy to verify
1 -
(7.4) EEZ(M(I)) S E@®) <2E/m®), l=u,«

under the smallness of the lower-order en&dz{/z(u(t)). Allowing the higher-order energy
E,(u(1)) to grow polynomially in time but bounding the lower-order dfig(u(z)) uniformly
in time, we complete the energy integral argument.

The starting point of the proof is the standard energy inequality

Ew@®)<CY > > > ortu’o?reul||zoreut| .

i, j.k |a|<l—1 Ibl+lc|<lal
c#a

+CY D > lartutarcul| o ut, .

i,k la|<l=11bl+|c|<lal

(7.5)

Note that we may use Lemma 5.3 (ii) freely be|dvecause (5.11) is autatically satisfied
thanks to (7.1).

Higher-order energy. Choosd = « in (7.5) and sey = [«/2]. We have a simple but
crucial inequalityg + [n/2] + 2 < p because of (7.1). Seb = min{c;/2: j =1,...,m}
as before. The right-hand side of (7.5) is estimated as in the proof of (5.6) through (5.8).
Therefore our proof here is a little sketchy.

We start with the estimate of the second term on the right-hand side of (7.5). Assuming
|b] < g without loss of generality, we have

lortu'arcul|, .
< CO (it = AT u dr ul || 2 ogpy + 1) U AT U || 2,2 )
(7.6) < C{) (it =)l ut || oo + [(r)d T ul | L) 197 | 2
< OO HES R 2102 + M iins2142(0) EY?(u(0))

< Cit) P E ) E A @) .

For the estimate of the first term on the right-hand side of (7.5) we separate two |b4ses:
or|c| < g — 1. In the former case we proceed as in (5.7) to obtain

10rbu92reu’|| 2
< C O U (cjt — )02 T u || 2 gy + 1) AT U 02T || 122 or))
_ 1/2 1/2
< CO T ER? 212 O) My 12u(0)) + E ()

< Cit) L E ) EY () .

(7.7)
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Otherwise,we have| < ¢ — 1 and

10rPu’92r<ul|| ;2
<) Hartut | 2(Icjt — r)d®ru || g + |(r) 920 ul | 1)
_ 1/2 1/2
< CO T ER S ) (B 2103@(0) + Miclin/2143(u(1)))

< C EYPu) EY A (u()

(7.8)

as in (5.8). Collecting (7.5) through (7.8), we finally have
(7.9) Ecu®) = CO) EPu@)Ecw(®), 0=t <To.

Lower-order energy. Takel = p in (7.5). Making use of the Hardy inequality effec-
tively, we improve the decay estimates presented above, Vulien u. Let0 < n < 1/2.
Employing (4.2), (4.4), (4.5) and (4.12), we getfbf+ |c| < u — 1,|b] < [1/2]

lortu'oreul| .

< c<r>—1—"<

.1 .
ricit —r)dru! =(cjt — ryorcu’
r

L2(r<cot)

+ I artuta reus ||Lz<r>co,>)
(7.10) L y L iy
< C)y Y (eit — YA ul ||z + 17 10T ul | o)

X (100wl || 2 4 | (cjt — r)d?Tu’||}2)
< CO N E A 21020 0) + Mipin/2142(0)) (51 @(0) + M 2(u (1))
< COTTEPw)EY ().
For the estimate of the first term on the right-hand side of (7.5) we separate two [¢4ses:
[w/2] or|c| < [m/2] — 1. For the former case we proceed as

10rPu’92reul|| ;2

< CO T (eit — )l u (ejt — r)d2T ul | 2 oy
+ AP 92U | 2 o)

< C) M eit = nrPul |l (cjt — r)a®reu’|| 2
+ IO U | e 920w || 2)

< CO N E Y 21020 0) + Mipl /2142 (1))
x (E3o@() + Mic2(u()

< CO " E @) ES @) -

(7.11)
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Otherwise, we have| < [1/2] — 1 and
l0rPu’ 92reu’||,

1 . :
< C(t)_l_’7< “(cit = r)dTPulr(cjt — r)92reu’
r

L2(r<cot)

+10rbu (9% reud | Lz(mo,))

(7.12) = C<t>ln< 1-<Cil‘ —rarty

r

(it — r)d?Iul || Lo
L2

+ 180 U || 21 )82 MU ||Loo>

< CO T (ERE (@) + Myppy2(u(0))

1/2
% (Eina1a@(©) + Migl (/2143 (0)))
< COTTEYP W) EY ().
Gathering (7.5), (7.10) through (7.12) together, we have shown

(7.13) E; (u(t) < Ct) EF () Ep(u(®) .

Conclusion of the proof. It follows from (7.4) and (7.9) that
(7.14) E (u(t) < Ce(t) 'Ec(u(t)), 0<t<To,
which yields

(7.15) %Ek(ua)) < Ecu@®) < Ec(0)()* < 2E.mO)(1)*, 0<t<Tp.

We insert the inequalit)E,}/z(u(t)) < 2E,}/2(u(0))(t)ce (0 <t < Tp) into (7.13), thereby
obtaining

(7.16) E, (u®) < Cy B2 W(0) Eyu(t), 0<t <To.

If necessary, we choosestill smaller so thaCe < n holds above. We finally find

1 - -
7.17) SEn@(®) < Ey(u(t) < Ey(0)) exdCEY?u(0))]

< 2E,(u(0)) exdCEY?u(0))], 0<t<Tp.
The last inequality, combined with (7.2), proves

3
(7.18) EY2(u()) < 2EY?u(0)) explCoE/?(u(0)] < 56, 0<t<To.
We therefore conclude thﬁﬁ/z(u(t)) < 2¢ on the closed intervdD, Tp]. The proof has been
completed. |
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