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Abstract. We investigateminimal extension sheaves on arbitrary (possibly non-
rational) fans as an approach toward a combinalttvirtual” intersection conomology. These
are flabby sheaves of graded modules over a sheadlghomial rings, satisfying three rela-
tively simple axioms that characterize the eguiant intersection cohomology sheaves on toric
varieties. As in “classical” intersection cohomology, minimal extension sheaves are models for
the pure objects of a “perverse category”; a Daposition Theorem holds. The analysis of the
step from equivariant to non-equivariant intersection cohomology of toric varieties leads us to
investigate “quasi-convex" fans (generalizing fans with convex or “co-convex" support), where
our approach yields a meaningful virtual irgection cohomology. We characterize such fans
by a topological condition and prove a version of Stanley’s “Local-Global" formula relating
the global intersection Poincaré polynomial to local data. Virtual intersection cohomology of
quasi-convex fans is shown to satisfy Poincaré duality. To describe the local data in terms
of the global data for lower-dimensional complete polytopal fans as in the rational case, one
needs a “Hard Lefschetz" type result. It requires a vanishing condition that is valid for rational
cones, but has not yet been proven in the general case.
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Introduction. A basic combinatorial invariant of eomplete simplicial fan A in R" is
its h-vector (ho, ..., h,): Itencodes the numbers of cones of the different dimensions. By the
classicalDehn-Sommerville relations, the equalityr; = h,—; holds, i.e., the vector ipalin-
dromic; furthermore, for a polytopal fan, it is known to beunimodal, i.e.,s; < h; 41 holds
for0 <i < n/2. If Ais evenrational, then thei-vector admits a topological interpretation
in terms of the associated comp&Esmooth toric varietyX 5: By the theorem of Jurkiewicz
and Danilov, the redl cohomology ringH*(X ) is a quotient of the Stanley-Reisner ring
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of A. In particular, this result implies that the Betti numbersxof are combinatorial invari-
ants of the famA (i.e., they are determined by the structurefofis a partially ordered set),
they “live” only in even degrees, and the equality= dim H% (X 4) holds for 0< i < n.

Since every simplicial fan is combinatorially equivalent to a rational one, this interpre-
tation allows to apply topological results about toric varieties to combinatorics. To give an
example, we mention that the Dehn-Sommerville equations are just a combinatorial version
of Poincaré duality. A deeper application is Stanley’s proof of the necessity of McMullen’s
conditions that characterize the possiileectors of simpliciapolytopal fans: To prove uni-
modality, it uses the “Hard” Lefschetz Thewn for the rational cohomology of the corre-
sponding projective toric variety.

We now considecomplete non-simplicial fans, looking first at therational case. Unfor-
tunately, the Betti numbers of the associated compact toric varieties no longer enjoy such good
properties as in the simplicial case: Poireduality fails to hold, non-zero Betti numbers in
odd degrees may occur, and worst of all, Betti numbers may fail to be combinatorial invariants.
Replacing singular cohomology with intersection cohomology, however, yields invariants that
share the essential properties of the clasgieadctor in the simplicial case: Intersection Betti
numbers satisfy Poincaré duality, they vanish in odd degrees, and they are determined by
the combinatorics of the fan. The last property follows from the two “Local-Global For-
mulae” that serve as a kind 6leitmotiv’: For a complete rational fart with associated
toric variety X o, one considers the global (intersection cohomology) Poincaré polynomial
P, = ZS’;OdimR IH9(X,) - 17 and its local counterpartg, := Z?”zodimRIHZ 14,
whereZH;, denotes the local intersection cohomology along the orbit corresponding to the
coneos € A. These polynomials are related by the first formula

Pat) = ) (2= 1P (1),
oeA
By the second formula, each local polynomil in turn is readily obtained from the global
one of a projective toric variety 4, of strictly smaller dimension associated to the “flattened
boundary fan”A, of the cones: One has

Py(t) = 1<q_1(1—1?) P4, (1)) for d:=dimo,

wheret<,_1 denotes truncation.
Combined, these formulae yield inductively that the global and local intersection coho-
mology Betti numbers

hi(A) :=dimIH?% (X ,), fori <n and 0 elsewhere, and
gi(0) :==dimZTH? = h;(A,) — hi_1(As), for0<i < dimo/2 and 0 elsewhere,

are combinatorial invariants that can t@emputed recursively, starting from = h; = §; ¢
(Kronecker index) in the case = 0. This observation was used by Stanley in [St] to de-
fine generalized- and g-vectors even for non-rational cones and fans. These invariants are
computable via linear functions in the numbers of flags of cones with prescribed sequences of
dimensions.
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In the case of a (completemplicial fan A, we may reverse the theorem of Jurkiewicz
and Danilov and take the quotient of the Stanley-Reisner ring as definition of a “virtual co-
homology algebra’H*(A) of the fan, thus obtaining virtual Betti numbers difi¥’ (A) that
coincide withk; (A) for 0 < i < n. Our main aim is to define a “virtual intersection coho-
mology” with analoguous properties for arbitrary fans.

Our approach toward such a theory builds on the previous stuetyudfariant intersec-
tion cohomology of toric varieties in [BBFK]. Coming back to complete rational simplicial
fans for a moment, we recall that the Stanley-Reiging itself has a topological interpreta-
tion, namely, it is theequivariant cohomology ring of the toric variety defined by such a fan:

For affine open toric subvarietieg, C X, there are natural isomorphism (X,) = A}

with the algebrad?, of real-valued polynomial functions an They induce an isomorphism
between the associated shea¥sand.A* on the “fan space’A, i.e., the fanA identified
with the (non-Hausdorff) orbit space of the toric variety; its open subsets correspond to the
subfans. Sincé{s(A) = H;(X4) and.A*(A) constitutes the algebra af-piecewise poly-
nomial functions on the support aof, we only have to notice that the latter is nothing but
the Stanley-Reisner ring af. The theorem of Jurkiewicz and Danilov may then be restated
as follows: A toric variety defined by a complete simplicial faredggivariantly formal, i.e.,
equivariant and non-equivariant cohomoladgtermine each other by Kinneth type formu-
lae: Since the graded algeb#a of real valued polynomial functions dr” is canonically
isomorphic to the cohomology ring*(BT) of the classifying spac8 T = (P,,C)" of the
torus, the equivariant cohomolod¥; (X ») carries the structure of at*-module, andX 4 is
called equivariantly formal if the natural mag; (X ) — H*(X) induces an isomorphism
A*/m @pe Hy(X4) = H* (X 2), Wherem := A>Yis the unique homogeneous maximal ideal
of A°.

These observations led us to study #ugivariant intersection cohomology presheaf
TH5 in the case of a not necessarily simplicial rational #an This presheaf turns out to
be very well behaved: In fact, it is a flablsheaf of 4°-modules as has been proved in
[BBFK], and it may be characterized by threeatlely simple properties that determine it up
to isomorphism. Its global sections yield the equivariant intersection cohnomadBggyX 1),

a gradedA*-module, and in the compact case, we again have equivariant formality: The
formulal H*(X ) = A*/m @4+ I H1(X ») holds. The axiomatic characterization now allows

to carry the whole construction over to the case of not necessarily rational fans and leads to
the notion of a so-called “minimal extension she&f'on A (such that® = A° is the sheaf

of piecewise polynomial functions for simplicial).

In particular, in the complete case, the role of the Stanley-Reisner ring is played by the
A*-moduleé&*(A) of global sections, and thértual intersection cohomology of a fan A is
definedad H*(A) := A*/m Q4+ £°(A).

In the present article, we systematize the investigation of the algebraic theory of such
minimal extension sheaves. We do hope that this will finally lead to a proof of the formula
h;(A) = dimg I H?% (A) that would provide an interpretation of the components of the gener-
alizedh-vector in the case of a complete and possibly non-rational fan. In the first section, we
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recall and extend some results of [BBFK]; in pautar, the virtual intersection Betti numbers

of a complete rational famt are seen to equal the intersection Betti number¥ gf The
second section is devoted to combinatorially pure sheaves over the fansgpdéese turn

out to be direct sums of simple sheaves, which are generalized minimal extension sheaves: To
each cona € A, we associate a simple pure sheéf, where&* coincides with the sheaf

oL* associated with the zero congand prove a Decomposition Theorem (Theorem 2.4) for
pure sheaves. As a corollary, we present a proof of Kalai's conjecture for virtual intersection
cohomology Poincaré polynomials, as proposed by Tom Braden (see also [BrMPh]).

In the third section, we provide a main technical tool for the following sections in study-
ing the cellulatCech cohomology of sheaves on the fan space. In the fourth section, we show
that the acyclicity of that complex with coefficients in a minimal extension sfeain a
purelyn-dimensional fam has both a surprisingly easy algebraic and topological reformula-
tion: It holds if and only if theA*-module&*(A) of global sections is free resp. if and only
if the support|d A| of the boundary fa® A is a real homology manifold, cf. Theorems 4.3
and 4.4. In particular that holds for fans with either convex or “co-convex” support, and that
motivates to call such fartgiasi-convex. For a rational famA, quasi-convexity is a necessary
and sufficient condition for the equalify*(A) = I H*(X ») to hold, whereX 4 is the asso-
ciated toric variety, i.e A is quasi-convex iffX 4 is I H-equivariantly formal. An equivalent
formulation of that fact is the vanishing of the odd-dimensional intersection Betti numbers
of X 4.

On the other hand, the freeness condition is used in order to have a satisfactory “Poincaré
Duality” theory both or€*(A) andI H*(A) = A*/m ®4. £°(A). As a corollary we prove a
conjecture of Bernstein and Lunts.

The fifth section deals with the computation of the virtual intersection Poincaré polyno-
mials P5 := Y. dimIH?/(A) - 1%/ For a quasi-convex fam, the polynomialP, can be
expressed, as in the rational case, in terms of the virtual local intersection Poincaré polyno-
mials P,, see Theorem 5.3. That is a consequerfah® above mentioned acyclicity of the
cellular complex, and the fact that the global section modilgs(A) and&*(A) and their
local counterpart§H:, := A°/m ®4+ £°(0) and&°(o) are related by Kunneth type formu-
lae. To obtain a recursive computation algorithm for as in the rational case, we relate the
Poincaré polynomiaP, to that of the “flattened boundary faml, of o, the polytopal fan
obtained by projecting the boundary @fto V,, /¢ , whereV,, := sparo) and¢ C V, is a
line meeting the relative interior of. To that end, we need the vanishing conditidhl = 0
for¢ > dimo > 0, see 1.7. In the case ofrational cone, that condition holds because it
is equivalent to the vanishing condition for the local intersection cohomology, aflong its
closed orbit, and we expect it even to hold in the non-rational case. The above vanishing con-
dition, together with Poincaré duality (see section 6), leads to a “Hard Lefschetz Theorem” for
the virtual intersection cohomologyH*( A, ) of the polytopal fanA,, see Theorem 5.6, and
that theorem provides the background for the descriptiaP,ah terms of P, . In particular,
if all the cones inA satisfy the above vanishing condition, we hayeA) = dim 1 HZ (A).
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Finally, the last section is devoted to Poincaré duality: On a minimal extension&heaf
a (non-canonical) internal “intersection produ€t’x £* — £* and an evaluation map may be
defined, leading to duality isomorphisiyA) = £°(A, 0A)* andI H*(A) = [H*(A, 0 A)*
for quasi-convex fans, see Theorem 6.3.

In order to make our results accessible to non-specialists, we have aimed at avoiding
technical “machinery” and keeping the presé¢iotaas elementary as possible. Many essen-
tial results of the present article are contained in Chapters 7—10 of our Uppsala ptetrint
current version has been announced in the notg.[fising the formalism of derived cate-
gories, closely related work has been done by Tom Braden in the rational case and by Paul
Bressler and Valery Lunts in the polytopal ca3em Braden sent us a manuscript presented
at the AMS meeting in Washington, January 2000. Even more recently, Paul Bressler and
Valery Lunts published their ideas in the e-print [Brel.u

For helpful discussions, our particular thanks go to Michel Brion, Volker Puppe and Tom
Braden. We also are indebtedttee referee for his comments.

0. Préiminaries.

0.A CoONEs AND FANS: Let V be a real vector space of dimension A non-zero
linear forma: V — R on V determines theipper halfspace H, := {v € V;a(v) > 0}.

A (strictly convex polyhedralyonein V is a finite intersectiow = ()._; Ho, of halfspaces
with linear forms satisfying);_,; ker o; = {0}. Let V, := o + (—0o) denote the linear span
of o in V, and define dinr := dim V,,. A cone of dimensiod is called ai-cone.

A cone also may be described as theset 3 "_; R-ov; of all positive linear combi-
nations of a finite set of non-zero vectaersin V. A cone spanned by a linearly independent
system of generators is callanplicial. Cones of dimensiod < 2 are always simplicial; in
particular, this applies to theero cone o := {0} and to everyay (i.e., a one-dimensional cone
R>ov).

A faceof a cones is any intersectiom = o Nker 8, whereg € V* is a linear form with
o C Hg. We thenwriter < o (andr < o for aproper face). Ifin addition dint = dimo —1,
we callr afacet of o and writer <1 o.

A fan in V is a non-empty finite set\ of cones such that each face of a conedin
also belongs taA and the intersection of two cones ihis a face of both. To a fam, one
associates itsupport |A| := Usen 0, @ closed subset iW. The fanA is generated by cones
o1, ...,0r if A consists of all cones that are a face of some generating cone. In particular,
a given coner generates the fafw) consisting ofe and its proper faces; such a fan is also
called anaffine fan and occasionally is simply denoted Furthermore, we associatedats
boundary fan 9o := (o) \ {0}, and itsrelative interior ¢ := o \ |30|.

Every fan is generated by the collectiadf"® of its maximal cones. We define

A¥:={o € A; dime =k} and Afk::UA’,

r<k

2) « Equivariant Intersection Cohomology of Toric Varieties’, UUDM report 1998:34.
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the latter being a subfan called theskeleton. The fanA is calledpurely n-dimensional if
AMX — A |n that case, we define itooundary fan 9 A as the subfan generated by those
(n — 1)-cones that are facets of precisely orreone inA. The boundary fan is supported
by the topological boundary dfA|. In contrast with the case of a single cone, we dse
denote the collection \ 0 A of interior cones.

A fanis calledsimplicial if all its cones are simplicial; this holds if and only if its maxi-
mal cones are simplicial. It is callewmpleteif it is supported by all ofv.

A subfan A of afanA is any subset that itself is a fan; we then wite< A (andA < A
if in addition A is a proper subfan). The collection of all subfans/dbtlearly satisfies the
axioms for the open sets of a topology dn the empty set being admitted as a fan. In the
sequel, we always endow with this fan topology and consider it as a topological space, the
fan space.

A refinement of a fanA is a fanA with |A] = |A| such that each core e A is contained
in some cone € A. If o is minimal with that property, we write = 7 (¢) and obtain in that
way the associated refinement mapA — A. Every purelyz-dimensional fanA admits a
refinement which can be embedded into a complete fan: For acgoaeA”, we fix a line’
meetings; and sep := —(£ N 0;); then the fanA; generated by; and all coneg + 7 for
T <1 07 iIs complete. Fon\”" = {01, .. ., 0, }, thefan-theoretic intersection

r r
ﬂA,’ = {ﬂn; T,'EA,'}.
i=1 i=1

is a complete fan including a refinementtfas a subfan.

A fan A in V is calledrational (or, more preciselyN-rational) if there exists a lattice
(i.e., a discrete additive subgroup) ¢ V of maximal rank such that N N # {0} for each
rayo € A.

0.B GRADED A°-MODULES:. Let A* denote the symmetric algebsa(V*) over the
dual vector spac&* of V. Its elements are canonically identified with polynomial functions
on V. In the case of a rational fam* is isomorphic to the cohomology algebke (BT)
of the classifying spac8T = (P,,C)" of the complex algebraig-torusT = (C*)" acting
on the associated toric variety. Motivated by that topological considerations, we edtdow
with the positive even grading determined by settitf§ := S9(V*); in particular,A? = V*
consists of all linear forms o#. Correspondingly, for a conein V, we letA; denote the
graded algebrd*(V}); if o is of dimensiom, thenA? = A* holds. The natural projection
V* — VX extends to an epimorphistr* — A? of graded algebras. We usually consider
the elements iM?, as functionsf: 0 — R; the above epimorphism then corresponds to the
restriction of polynomial functions.

For a gradedi*-moduleF*, we write F* for its residue class module

F* := F'/(m-F*) =R Qg F*,
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wherem := A>0 ¢ A* is the unique homogeneous maximal ideaofand whereR® :=
A*/m = A is the fieldR, considered as graded algebra concentrated in degree zero. Obvi-
ously F* is a graded vector space ovey which is finite dimensional ifF* is finitely gen-
erated over*. If F* is positively graded or, more generally, bounded from below, then the
converse holds: A familyfi, ..., f) of homogeneous elements it generateg'* over A®
if and only if the system of residue classgs;, ..., f,) modulom- F* generates the vector
spaceF*. In that case, we have tkF* < dim F*, where equality holds if and only if*
is a freeA*-module. The collectiotify, ..., f-) is part of a basis of the fre4*-module F*
overA*ifandonlyif (f4,..., f,) is linearly independent ové. Furthermore, every homo-
morphismg: F* — G* of finitely generated graded*-modules induces a homomorphism
@: F* — G* of graded vector spaces, which is surjective if and only i so. If F* is free,
then every homomorphism: F* — G* can be lifted to a homomorphisgt F* — G- (i.e.,
® = ¥ holds); if G* is free, therny is an isomorphism if and only if that holds for

A finitely generatedA*-module F* is free if and only if Tor!"(F*,R*) = 0. That
condition is obviously necessary, so let us show that it is also sufficient: As we have seen
above, there is a surjectiqm*)Y — F* whered := dimF*; let K* be its kernel. Since
Tor{" (F*,R*) = 0, the exact sequence

0> K-> (AY! > F* >0
induces an exact sequence
0—> K*— (Z')d — F*— 0.

By construction(A®*)¢ — F* is an isomorphism, so we haw&® = 0 and thus als&* = 0,
e, F* = (A" is free.

By means of the restriction map® — A, an A’ -module F; is an A*-module, and
there is a natural isomorphiskt, = F:/(m-F2) = F:/(m,-F2). Let us denote by;- the
orthogonal complement df, C V in the dual vector spacg*. We remark that, using the
Koszul complex for thed*-modulel (V,) := A* - Vj C Ac, one finds a natural isomorphism
of vector spaces

(0.B.1) Tord* (A, R) = AlvE

overR®* = A*/m.

0.C SHEAVES ON A FAN SPACE Sheaf theory on a fan space is particularly simple
since the “affine” open setg') < A form a basis of the fan topology whose elements can not
be covered by strictly smaller open sets. In fact(fet), 4 be a collection of abelian groups,
say, together with “restriction” homomorphism$: F, — F; for v < o, i.e., we require
0y =idandgj 007 =0 fory < v <. Thenthere is a unique sheafon the fan space
such that its group of sectiofs(c) := F({o)) agrees withF,,. The sheafF is flabby if and
only if each restriction map§_: (o) — F(do) is surjective. — In the same spirit of ideas,
sheaves on a fan space occur in the work of Bressler and Lunts [Hre&nion [Briz] and
McConnell [MCo].



8 G. BARTHEL, J.-P. BRASSELET, K.-H. FIESELER AND L. KAUP

In particular, we consider the shedf of graded polynomial algebras ahdetermined
by A*(o) := A, the homomorphisre? : A> — A3 being the restriction of functions an
to the facer < o. The set of sectiongl*(A) on a subfand < A constitutes the algebra of
(A-) piecewise polynomial functions dm | in a natural way.

If 7*is a sheaf of4*-modules, then everg*(A) also is anA*-module, and ifF* (o) is
finitely generated for every core e A, then so isF(A) for every subfamt < A: This is an
immediate consequence of the facts thatis a noetherian ring an#@*(A), a submodule of
@UEAmax}—.(O')-

For notational convenience, we often write

Fj :=F(A) and F;:=F*(0);
more generally, for a pair of subfand, Ag), we define
Fyag) = keNoh,: Fiy — Fiy).

the submodule of sections afi vanishing onAg. In particular, for a purely:-dimensional
fan A, we obtain in that way the module

. . A . . .
Flpon = ker(ogpa: Fi — Fy,)

of sections overA with “compact supports”.

To a sheafF* of A*-modules, we may associate theesheaf of gradedR*-modules
given by the assignment — F*(A). The associated she&t satisfies the equalitf* (o) =
F*(0) on the basic open sets. This fact does not carry over to an arbitrary open set, i.e., the
above presheaf need not be a sheaf. As an example, consider a complete simplicial rational
fan A. ThenA* is the constant shed®* on A, so A*(A) = R°, while A% = A*(4) =
H*(X ») has a hon-vanishing weight subspace in degnesire the compact toric varie/,
satisfiesH2' (X ») # 0.

0.D FAN CONSTRUCTIONS ASSOCIATED WITH A CONE In addition to theaffine
fan (o) and theboundary fan 9o associated with a corne, we need two more constructions.
Firstly, if o belongs to a fam, we consider thetar

sta(o) :={yed; o Xy}

of o in A. This set is not a subfan af — we note in passing that it is thebosure of the
one-point sefs} in the fan topology —, but its image

As = p(sta(@)) = {p(y); 0 <y}

under the quotient projection: V. — V/V, isafaninV/V,, called the' transversal fan”
of o in A.

Secondly, let be a non-zero cone. Fixing an auxiliary linén V passing through the
relative interiors, we consider théflattened boundary fan” A, = A, (£) that is obtained by
projecting the boundary fasv onto the quotient vector spadg /¢: If 7 : V, — V, /¢ isthe
guotient projection, then we set

(0.D.2) Ay =7m(do) ={n(t); T <0}.
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This fan iscomplete. Restricting the projectiorr to the support obo yields a (piecewise
linear) homeomorphism

7T|\30\: 00| = |Ag| = V5 /E
that in turn induces a homeomorphista — A, of fan spaces; in particular, the combi-
natorial type ofA, is independent of the choice éf Let T € A2 be a linear function

with T|¢ns > 0. It provides an isomorphismi R; furthermore, it gives rise to a decom-
positionV, = ker(T) & ¢ and hence, to an isomorphism K&j = V,, /£. ldentifying V,, and
(Vs /) x Rvia these isomorphisms yields a natural identification

At = B:[T],
where
(0.D.2) By = 7*(S*((Vo/0D)*)) C Ay,

is the algebra of polynomial functions a4 that are constant along parallelsétdMoreover,
the supportdo| of the boundary fan is the graph of the strictly conwex-piecewise linear
function

(0.D.3) fi=Tolps) t: Vol - R.

On the other hand, for a complete fainin a vector spacé’ and a strictly convext-
piecewise linear functiorf : W — R, the convex hully of the graph"s in W x Ris a cone
with boundarydy = I'y

1. Minimal extension sheaves. The investigation of a “virtual” intersection coho-
mology theory for arbitrary fans is couchea terms of a certain class of sheaves on fans
calledminimal extension sheaves. In this section, we introduce that notion and study some
elementary properties of such sheaves.

1.1 DerINITION. A sheaf€* of graded.A*-modules on a famt is called aminimal

extension sheaf (of R*) if it satisfies the following conditions:
(N) Normalization: One hasE; = A2 = R° for the zero cone.
(PF)  Pointwise Freeness: For each cone € A, the moduleE?, is free over A:,.
(LME) Local Minimal Extension modm: For each cone € A \ {0}, the restriction map-

ping

0o =035, E; — Ej,;
induces an isomorphism
0,: E5 — Ej,
of graded real vector spaces.

The above condition (LME) implies th&t is minimal in the set of all flabby sheaves of
gradedA*-modules satisfying conditions (N) and (PF), whence the name “minimal extension
sheaf”.

1.2 REMARK. Leté&* be a minimal extension sheaf on a fan
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i) The sheak" is flabby and vanishes in odd degrees.
ii) Foreach subfam < A, theA*-moduleE?, is finitely generated.
i) Foreach coner € A, there is an isomorphim of graded, -modules
(1.2.1) E. = A QrE, .

o

PrRoOOFE (i) and (ii): By the results of 0.B, condition (LME) implies thag is surjective
for each cone € A; hence, 0.C asserts flabbiness. To prove finite generation, we proceed
by induction. Let us assume that is finitely generated for dim < &, then so isE%
for each subfam < A=k, see 0.C. In particular, i& is a cone of dimensiok + 1, then
E;_ is finitely generated, whencE:; = E}_ is finite-dimensional, and thus the freg -
module E;, is finitely generated. Now an application of 0.C yields (ii). Sinteonly lives
in even degrees, the obvioRs-splitting F* = FeVeNg F°dd of 3 gradedd*-module actually
is a decomposition into grade#f-submodules. Hence, a finitely generat¢dmodule F*
vanishes in odd degrees if and onlyAf does. Thus, we may achieve the proof of (i) by
induction over the skeleta of as above.

(i) Theisomorphism (1.2.1) is an immediate consequence of the results quoted in 0.B
since theA; -moduleE;, is free and finitely generated. ]

On every fanA, a minimal extension sheaf exists, it can be constructed recursively, and it
is unigue up to isomorphism; hence, we may speak®minimal extension shed® = A&°
of A:

1.3 RroposITION(Existence and uniqueness of minimal extension sheavé).ev-
ery fan A, there exists a minimal extension sheaf £°; it is unique up to an isomorphism of
graded A°-modules. More precisely, for any two such sheaves£* and F* on A, every isomor-

phism E; = F; extendsto anisomorphisme: £° = Feof graded A°-modules.
As to the uniqueness @f, see Remark 1.8, (iii).

PrROOF For theexistence, we define the sheaf* inductively on thek-skeleton sub-
fans A=k, starting withE;, := R* for k = 0. Fork > 0, we assume tha* has been defined
on A= in particular, E3, exists for every cone € A, It thus suffices to defin&;, to-
gether with a restriction homomorphishy — Ej_. To that end, we fix aR*-linear section
s: Ey, — Ej of the residue class map;, — Ej, thatis homogeneous of degree zero.
According to (1.2.1), we set

. . TIe . . TIe 1®s . . .
(131 E; := A, ®rE), and ¢} :E,=A,Q®RE} — A, QrE;, — E}, .

For theuniqueness of minimal extension sheaves up to isomorphism, we use the same
induction pattern and show how a given isomorphisme*® — F* of such sheaves on<F
may be extended ta=*. It suffices to verify that, for each comee A*, there is a lifting of
Voo E, =, F;_ to an isomorphisny, : E, = F;. Using the results recalled in section
0.B, the existence of such a lifting follows easily from the properties of gragedodules:
We choose a homogeneous bdsis . . ., e,) of the freeA? -moduleE;.. SinceF" is a flabby
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sheaf, the imageg;, (¢il35) in F;, can be extended to homogeneous sectifins. ., f;

in F; with dege; = degf;. The induced restriction isomorphisft, =, F_ maps the
residue classeg, ..., f, to a basis ofFj, . It is inmediate that these sectioffs ..., f;

form a basis of the fred? -moduleF;, and that; — f; defines a liftingp, : E; =N F; of
Do - d
Simplicial fans are easily characterized in terms of minimal extension sheaves:

1.4 PRRoprosITION Thefollowing conditions for afan A are equivalent:

i) Aissimplicial,

i) .A*isaminimal extension sheaf on A.

PrROOE  “(ii) = (i)” Assuming thatA4* is a minimal extension sheaf, we show by
induction on the dimensia for each cone € A¢ that the numbet of its rays equald, i.e.,
thato is simplicial. This is always true faf < 2. As induction hypothesis, we assume that
the boundary fado is simplicial. On each ray of, we choose a non-zero vectgr Then
there exist unique piecewise linear functiofis= Ago with fi(v;) =6 fori,j=1,... k.
These functiong, . . ., fi are linearly independent ov®; whence dim Aga > k.

We proceed to prove the equality di2 = dimg A2 = d, thus obtaining the in-
equalityk < d that yields (i). Sinced* is a minimal extension sheaf, the induced restriction
homomorphismA:, — ‘A3, is an isomorphism. Fromi: = R°, we concludeA? = 0
and thuszga =0, i.e.,Aga is the homogeneous component of degree 2 in the graded mod-
ule mA3_. That component obviously is nothing bt - A9 = A?|;, = A2]y,. Hence,

k <dimA2 =dimA2|y, <dimA2 =d, whiled < k is obvious.

“(i) = (i) We again proceed by induction on the dimensibnproving that for any
simplicial cones with dimo = d, a minimal extension she&f on (o) in a natural manner
is isomorphic to the sheadl*. The casel/ = 0 being immediate, let us first remark that a
simplicial cone is the sumr = ¢ + t of any facetr <; o and the remaining ray. The
decompositiorV, = V, @ V; provides projectiong: V, — V, andq: V, — V; and thus
subalgebras

(1.4.1) D} := p*(S"(V})) and Dj :=gq*(5"(V}))
of A;, together with an isomorphism
(1.4.2) Ay = Dy ®r D .

As the facetr is simplicial and thusE: = D; holds by induction hypothesis, Lemma 1.5
below yields isomorphisms

E, = A, ®ps E; = A}, ®p: D} = A}, . i
1.5 LEMMA. If aconeo isthesumg + 7 of afacet r and a ray o, then the minimal
extension sheaf £° on (o) satisfiesin a natural way

E; = A, ®p; E; = D} QrE;.
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using an isomorphismasin (1.4.2) In particular, the restriction homomorphism E; — E:
induces an isomorphism E3, = E? of graded vector spaces.

PrROOF We use induction on dim. For a proper facg < t, wewritey := o+y < o;
furthermore, with the projectioq, : vV, = V,®V, — V, and the subalgebi@;, := g;(A3)
of Ay we have. P = D; ®r Dj,. By induction hypothesis, there are natural isomorphisms
Ey = A; ®ps E3, = D}, ®R Ej,. With a non-zero linear fornf' € A(Z, that vanishes oW,
we may writeDz) = R[T'] and thus

A = D:[T], A;; =D} [T] and E; = A]’; ®ps E}, =EJ[T|=E,®TE}[T].

Sincedo = (t) U{y; y < t}, thereis anisomorphisi; = E; @ T E;_[T]. To prove the
isomorphismE; = A3 ®p. E; of the assertion, we first note that th¢-module on the right
hand side is free. It thus suffices to show that the restriction homomorptis&p. £; —
E3_ induces an isomorphism moduta This homomorphism agrees with the natural map

A, ®ps E; = EXT) = E; ® TE}[T] —> E: ® TE},[T].

It is surjective, sinceE; — Ej_ is; hence, the restriction modute is surjective, too; fur-
thermore, it is injective since the compositiéi[7T] — E; @ TE; [T] — E; evenis an
isomorphism modulen. O

If Ais anN-rational fan for a latticeV C V of rankn = dimV, one associates ta a
toric variety X 4 with the action of the algebraic tords:= N ®z C* = (C*)". LetI H7(X »)
denote the equivariant intersection cohomologyXof with real coefficients. The follow-
ing theorem, proved in [BBFK], has been the starting point to investigate minimal extension
sheaves:

1.6 THEOREM. Let A bearational fanand £°* a minimal extension sheaf on A.
i) The presheaf
THY: A TH}(X )
isa minimal extension sheaf on the fan space A.
i) For eachcones € A, the (non-equivariant) intersection conomology sheaf ZH* of
X 4 isconstant along the corresponding T-orbit, and its stalks are isomorphic to E?, .
iii) If Aiscompleteor is affine of dimension , then one has

IH*(Xp) = EY .

Statement (iii) will be generalized in Theorem 4.3 to a considerably larger class of ratio-
nal fans, called “quasi-convex”.

For a non-zeraational coneo, the vanishing axiom for intersection cohomology to-
gether with statement (ii) yield8Z = 0forg > dimo. This fact turns out to be a cornerstone
in the recursive computation of intersection Betti numbers in Section 5. In the non-rational
case, we have to state it as a condition; we conjecture that it holds in general:

1.7. VANISHING CONDITION V(o): A non-zero cone o satisfiesthe condition V(o) if

E? =0 for g >dimo
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holds. A fan A satisfies the condition V(A) if V(o) holds for each non-zero coneo € A.

We add some comments on that condition. Note that the statements (ii) and (iii) in the
following remark are not needed for later results; in particular, the results cited in their proof
do not depend on these statements. — Statement (iii) has been influenced by a remark of Tom
Braden.

1.8 REMARK. i) Ifafan A is simplicial or rational, then conditiovi(A) is satisfied.
i) ConditionV(o) is equivalent to

E‘]

(0.90) = {0} for ¢ <dimo.
i) If A satisfiesv(A), then every homomorphis@r — F* between minimal exten-
sion sheaves on is determined by the homomorphist = E; — F; = R°.

PrRoOOF (i) The rational case has been mentioned above; for the simplicial case, see
Proposition 1.4.

(i) ReplacingV with V, if necessary, we may assume dim= n; hence, the affine
fan (o) is “quasi-convex” (see Theorem 4.4). According to Corollary 6.9, there exists an
isomorphism of vector spaces; = ng!_az). Hence, conditiorV(o') holds if and only if
Es,, = 0. It remains to show that this is equivalent to the vanishiiigf,,, = 0. To
that end, we may apply the following fact: LEt # O be a finitely generated*-module; if
r < oo is minimal with F” # 0, thenF” = F” andF<" = 0.

(i) We use the terminology of the proof of Proposition 1.3: We have to show that a
homomorphismyp,, : E5, — Fj_ extends in a unique way to a homomorphigpt E; —
F;. Statement (i) implies that the restriction homomorphistfs— Ei andFy — Fj
are isomorphisms fog < dimo. Since, as a consequence\dt ), the A*-modulesE; and
F; can be generated by homogeneous elements of degree belew timassertion follows.

O

2. Combinatorial puresheaves. Inthe case of arational fan, “the” minimal extension
sheaf is represented by the equivariant intersection cohomology sheaf (see Theorem 1.6) and
thus can be considered as an object of a class of “pure” sheaves. This observation holds also
for general minimal extension sheaves, regardless of rationality. The simple objects in this
class are generalizations of minimal extension sheaves. We introduce such objects and prove
an analogue to the decomposition theorem in intersection cohomology.

2.1 DeFINITION. A (combinatorially)puresheaf on a fan spactis a flabby sheaf
of graded4*-modules such that, for each cane= A, theA? -modulerF; is finitely generated
and free.

2.2 REMARK. Asaconsequence of the results in section 0.B and 0.C, we may replace
flabbiness with the following cal” requirement: For each core € A, the restriction
homomorphisnej, : F; — F;_induces a surjective map;, — Fj, .
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Pure sheaves are built up from simple objects, which are generalized minimal extension
sheaves:

(COMBINATORIALLY ) SIMPLE SHEAVES. For each cone € A, we construct induc-
tively a “simple” sheaf, £L* on A as follows: For a cone € A with dimt < dimo, we

set
. . Ay ifr=0,
oLy = oLN(1) = {0 otherwise

If ,£* has been defined at=" for somem > dima, then for each € A”t1, we set

oLy = A; ®Rr Uzi.)-[

T
and define the restriction may, justasin (1.3.1).
Let us collect some useful facts about these sheaves.

2.3 REMARK. i) The simple sheaf* := ,L* is pure; it is determined by the fol-
lowing properties:

a) F, =R,

b) for each cone # o, the reduced restriction map, — F?n is an isomorphism.

ii) The sheaf; £* vanishes outside of sto) and can be obtained from a minimal exten-
sion sheafy, £* on the transversal fad, in the following way: We choose a decomposition
V =V, @® W, and letD}, C A* denote the image of*((V/V,)*) in A* andD;,, the image
of §*(V;) with respect to the projection with kern#l. ThenA* = D; ®g Dy,, and on sto),
there is a decomposition

L= D) ®r(4,E%),
where we identifyA, with st(o).

iii) Forthe zero cone, the simple sheafL* is the minimal extension sheaf df.

iv) If Ais arational fan andY C X 4 the orbit closure associated to a canes A,
then the presheaf

yIHY: A — [TH3(Y NXx)
on A is a sheaf isomorphic toLe.
As main result of this section, we provide a Decomposition Formula for pure sheaves.

2.4 ALGEBRAIC DECOMPOSITIONTHEOREM. Every pure sheaf 7* on A admits a
direct sum decomposition

(2.4.0) F = PL erkKy)
ogeA
with K3 := K3 (F*) := ker (g9, : Fi, — F3,), afinite dimensional graded vector space.
Since a finite dimensional graded vector sp&¢dias a unique representation in the form
K* = @, R°[—¢;]™", the decomposition (2.4.1) may be written as

Fr = o L=,

1
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which is the “classical” version of the Decomposition Theorem.

ProoOFE The following result evidently allows an inductive construction of the decom-
position (2.4.1):

Let 7* be a pure sheaf on A. For each coneo € A of minimal dimension with F; # 0,
there is a decomposition 7* = G* @ H* as a direct sum of pure .A*-submodules where G* =
+L* ®r F2 and H* (where H: = 0).

We construct the decomposition recursively on each skelatet, starting withm =
dimo: We setk; := F?, and

F; = A QrK, if t=0,

o\ . 0 if t=0,
g*(r) = { 0 otherwise

and H'(7) = {]:o(f) otherwise

We now assume that we have constructed the decompositigh¥#n In order to extend it to
A=+ it suffices to fix a cone € A™*1 and to extend the decomposition frdi to the
affine fan(r). By induction hypothesis, there exists a commutative diagram

F? —> Fj, = Gy ® Hj,

Lol

K: — F. — Fj = G; @H;, .

We choose a first decompositidit = K: & N* & M* satisfyingN* = G, andM* =
Hj_. We may then lift it to a decompositioR; = G @ H; into free A3-submodules such
thatG: = N* andH; = K: & M* as well asG} |y, = G}, andH |y, = Hj,. |

2.5 GEOMETRIC DECOMPOSITIONTHEOREM. Let7: A — A bea refinement map
of fans with minimal extension sheaves £ and £°, respectively. Then there is a decomposition

(€ = &o PoL erk;

oceA=2

of A*-modules, where the K; are (positively) graded vector spaces, and the “ correction
terms’ are supported on AZ2,

PrROOFE For an application of the Algebraic Decomposition Theorem 2.4, we have
to verify that the flabby sheaf*(é') is pure. We still need to know that th&’.-modules
n*(é')(a) are free. Ifo is ann-dimensional cone, then the affine fér) is quasi-convex,
see section 4. According to Corollary 4.7, the same holds true for the refinemeat
7~ 1((o)) < A; hence, by Theorem 4.F;; is a freeA*-module. For a cone of positive
codimension, we may go over i¢.. — The fact thatr*(é') > g = A ona=t provides the
condition dimo > 2, while K% = 0 is an obvious consequence of the corresponding fact for
7+ (E°). O
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2.6 COROLLARY. Letw: A — A beasimplicial refinement of A. Then the minimal
extension sheaf £* on A can be embedded as a direct factor into the sheaf of functionson | A|
that are A-piecewise polynomial.

PrROOFE According to Proposition 1.4, the shedf is a minimal extension sheaf of.
By the Geometric Decomposition Theorem 2.5, we know #fats a direct subsheaf of
m4+(A®), which is the sheaf of functions ga\| that areAv—piecewise polynomial. O

We conclude this section with an application of the Algebraic Decomposition Theorem
2.4 to Poincaré polynomials

<0 <0
Pa(t) == Y dimEY 1%, Py(r) := Y dimE2 1%
q=0 q>0
which has been communicated to us by Tom Braden (cf. also [BrMPh]):

2.7 THEOREM (Kalai's Conjecture). For an affinefan A := (o) andafacet < o
with transversal fan A, thereis a coefficientwise inequality of polynomials

Ps > Pr - Py, .

PROOF Let & denote the minimal extension sheaf arand F*, the trivial extension
of £|syr) by zero toA. For a subfamt of A, we haveF;, = Ey. whereAg < A is the
subfan generated by the conesAm st(z). In particular, we see tha* is a pure sheaf and
hence, according to the Algebraic Decomposition Theorem 2.4, may be written in the form

F*=GLOK)D

Thus, if we denoteP (K *) the Poincaré polynomial of the graded vector spk¢ewe obtain
the inequality

P(Fy) = P(:Ly ® K}) = P(:L}) - P(K}).
The equalitiesk; = E: and F*, = E: are readily checked, so th#(K,) = P, and
P(F*) = P, holds. In the notation of 2.3 (ii), we have

A, =D:®rDy. Ly =D;®RE}

i.e., the Poincaré polynomial QE’A = E.A, coincides withPy, . O

3. Cellular Cech cohomology. In this section, we introduce and discuss a “cellular”
cochain complex associated with a sheaf on a fan and the corresponding cohomology. This
theory will later be used as a principal technical tool to reach one of the main aims of the
present article, namelyp characterize those fans for which the A*-module E3, of global
sections of a minimal extension she&afon A is free.

3.1. THE CELLULAR COCHAIN COMPLEX. To a sheafF of abelian groups on a fan
spaceA, we associate egllular cochain complex C*(A, F): The cochain groups are

cka, F) = EB F(o).

dimo=n—k
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To define the coboundary operatdr: C¥ — C*+1, we first fix, for each cone € A, an
orientation ofo) of V,, such that dx» is a constant function. To each faaek o, we then
assign the orientation coefficientor= 1 if the orientation of¥;, followed by some inward

pointing vector, coincides with the orientation'df, and of := —1 otherwise. We then set
5(fei= Y oY fole for f=(fo)eChA,F) and rea*?
o>1T

For a minimal extension sheé&f on A, the complexC*(A, £°) is, up to a rearrangement
of indices, aminimal complexin the sense of Bernstein and Lunts. We shall come back to that
at the end of Section 4.

More generally, we have to consider relative cellular cochain complexes with respect to
subfans.

3.2 DEFINITION. For a subfam of A and a sheaf on the fan spaca, we set
C'(A, A F):=C*(A; F)/C(A; F) and HY(A, A; F) = HI(C* (A, A; F))

with the induced coboundary operator:= §°(A, A; F). If A is purelyn-dimensional A a
purely (n — 1)-dimensional subfan af A, and A€ its “complementary” subfan generated by
the cones i@ A)*~1\ A, then the restriction of sections induces an augmented complex

- -1 0
CAAF): 0 Fa - CUA, AL F) 25 . — C"(A, A, F) - 0

with cohomologyH? (A, A; F) := HI1(C*(A, A; F)).

In fact, we need only the two cases = dA and A = ¢, where the complementary
subfan isA¢ = J resp. A° = dA. We mainly are interested in the case whérés an.A°-
module. Then, the cohomolody? (A, A; F) is anA*-module. — In the augmented situation
described above, we note th@?(A; F) = 0 and henc&€?(A, A; F) = C%A; F) holds.

For the constant shedf = R, we want to compare the cohomologff (A, 3A; R) with
the usual real singular homology of a “spherical” cell complex associated with a pirely
dimensional farA. To that end, we fix a euclidean norm &n(and hence ofv/ V,, for every
coneos € A); let Sy C V be its unit sphere, and for a subfanx A, let

Sa = |A|NSy.

For each non-zero comein V, the subsef,, := oNSy is aclosed cell of dimension dien—1.
Hence, the collectiolS, )\ (0} iS @ cell decomposition of 4, and the corresponding (aug-
mented) “homological” complex,(S,; R) of cellular chains with real coefficients essen-
tially coincides with the cochain complex*(A; R): We haveC?(A; R) = Cy—1-4(Sa; R
andé? = 9,14 forg <n — 1.

Let us call aacet-connected component of A each purely:-dimensional subfart being
maximal with the property that every twedimensional cones can be joined by a chain of
n-dimensional cones it where two consecutive ones meet in a facet.

3.3 REMARK. Let A be a purely:-dimensional fan.
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() If Aiscomplete on < 1,thenH*(A,9A;R) = 0.
(i) If Aisnotcomplete and > 2, then

HY(A,00;R) = Hyo1-4(Sa, S3a3R) for ¢ >0;

in particular,H?(A, dA; R) = 0 holds forg > n — 1.
(iiiy If s is the number of facet-connected componentd gthen

HoA,3A:R) = R,

PROOE The caser < 1 is straightforward. For > 2, the cohomology is computed
via cellular homology; in the complete case, one has to use the fact that such a fan is facet-
connected and that there is an isomorphism

HY(A;R) = Hy_1-4(Sy;R) for n>2 andgq > 1.

For iii), we note thatA is connected; hence, the global sections of the constant Brfeafn
a one-dimensional vector space. O

In order to study the cellular cohomology of a flabby sh&aif real vector spaces o,
we want to write such a sheaf as a direct sum of simpler sheaves: To aciong, we
associate itsharacteristic sheaf , .7, i.e.,

R if Aso,

o J(A) = { 0 otherwise

while the restriction homomorphisms areidr O.
The following lemma is an elementary analogue of the Algebraic Decomposition Theo-
rem2.4.

3.4 LEMMA. Every flabby sheaf F of real vector spaces on A admits a direct sum
decomposition
F = @Uj ®RrR KU
ogeA

with the vector spaces K, := ker(gg, : F(o) — F(00)).

ProoF The following arguments are analoguous to those in the proof of the Algebraic
Decomposition Theorem 2.4. Evidently, it suffices to decompose such a flabby/Slaesad
direct sum

(3.4.1) F=GCoH

of flabby subsheaveas and, whereG = ,J ® K, and’H (o) = 0 for some cone € A.
We then may use induction on the number of conesA, such thatF(z) # 0.
For (3.4.1), leb be a cone of minimal dimension, sdywith (o) # 0. We construct
the subsheave$ and™ on the skeletom=? as follows:
. _|Fe)=K, if t=0,
G(r): = {0 otherwise
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while
0 if =0

H(r) = {.7:(1) otherwise

We now suppose that the decomposition (3.4.1) has been constructtd@’onLet r be a
cone of dimensiom + 1. In particular, there is a decomposition

F(O1) =G01) ® H(d71) .

Since F is flabby, the restriction mapj_: F(r) — F(d7) is surjective. We can find a
decompositionF(r) = U @& W into complementary subspac&s W C F(r) such thaij,

induces an isomorphisry 5 G(d7) and an epimorphisn¥ —> H(dt). Now we set
G(t) := U andH(zr) := W. In that manner, we can defifg andH for all m + 1)-
dimensional cones and thus ar¥"+1, O

Cellular cohomology commutes with direct sums and the tensor product with a fixed
vector space. Hence, from Lemma 3.4 stems an isomorphism of graded vector spaces

(3.4.2) H (A, QA F) = @f]'(A,aA;aj) ®R Ko .

geA
We thus are led to compute the cohomology of characteristic sheaves.

3.5 REMARK. For a coneoc € A, its transversal fam,, and the characteristic
sheaf, 7, there are isomorphisms

H'(A;0J) = H'(As;R) and H*(A,04;,7) = H(As, 344; R).
In particular, Remark 3.3 ii) implies
HY(A,04;,7)=0 for ¢ > n—dimo—1
for each cone € A.

4. Quasi-convex fans. In this section, we study those fans for which the A*-
module E°, of global sections of a minimal extension shéafon A is free. The great in-
terest in that freeness condition is due to the “Kunneth formiily"= A* Qg E%;, Which
holds in that case. The name “quasi-convex” introduced below for such fans is motivated by
Theorem 4.4. Quasi-convexity allows us in sections 5 and 6 first to compute virtual intersec-
tion Betti numbers and Poincaré duality on the “equivariant” levg| and then to pass to
“ordinary” (virtual) intersection cohomologE'A. We give various characterizations of quasi-
convex fans: We first formulate the main result of this section, then restate it in topological
terms, and then proceed to the proof.

4.1 DEFINITION. Afan A is calledquasi-convex if the A*-moduleEs, is free.
Quasi-convex fans are known to be pureldimensional, see [BBFK; 6.1]. In the ratio-
nal case, quasi-convexity can be reformuldtetérms of the associated toric variety:
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4.2 THEOREM. Arational fan A is quasi-convex if and only if the intersection coho-
mology of the associated toric variety X 4 vanishesin odd degrees:

[H%Y(X ,:R) = P e (xR = 0.
q=0

In that case, there exists an isomorphism I H*(X ») = E .
PROOF See Proposition 6.1 in [BBFK]. O

4.3 THEOREM (Characterization of quasi-convex fans¥or a purely n-dimensional
fan A and its minimal extension sheaf £¢, the following statements are equivalent:

(8) Thefan A isquasi-convex,

(b) H*(A,0A;E*) =0,

(c) H*(As,dA,:R) = 0for eachconeo € A.

We put off the proof for a while, since we first want to dedudeplogical characteri-
zation of quasi-convex fans. In its proof and in the subsequent lemma, we use the following
notations:

For a coner in afanA, we setL, := S, C (V/V,)anddL, := Sya,; in particular,
we haveL, = Sx. It is important to note that the cellular compléx in the (k — 1)-
sphereSy, v, (for k := n — dimo) may be identified with théink at an arbitrary point of the
(n — k — 1)-dimensional stratuni, \ S;, of the stratified spac&,, while its boundary L,
is the link of such a point i§y, .

4.4 THEOREM. A purely n-dimensional fan A is quasi-convex if and only if the sup-
port |3 A| of its boundary fan is a real homology manifold. In particular, A is quasi-convex
if A iscompleteor if S, isa closed topological (n — 1)-cell, e.g., if the support |A| or the
complement of the support V \ |A| are convex sets.

PROOFE Foraconer € A\ 34, the transversal fan, is complete; thus Remark 3.3,
(i) implies H*(A,, 3A4; R) = 0, which means that condition (c) in Theorem 4.3 is satisfied
for such a cone. In particular, Theorem 4.3 implies that a complete fan is quasi-convex. It
remains to discuss the conesdm. If dimo is at leastn — 1, then again 3.3 (i) implies
the corresponding vanishing condition in 4.3 (c). Hence, it suffices to consider gores
@A)k for k > 2. The proof in that case is achieved by Lemma 4.5. In fact, part (ii) of
Remark 3.3 implies that

(4.4.1) HY(As,3A4;R) = Hy_1-4(Ly, dLs; R) forg >0,

while A% A4, 8A,; R) = 0ifand only if HO(A,, 3A,; R) = Hy_1(Ly, dL,; R) = R. O

4.5 LEMMA. For a non-complete purely n-dimensional fan A, the following state-
ments are equivalent:

(i) Thefan A isquasi-convex.

(i) Eachconeo indA satisfies the following condition:
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(i)y Thepair (Ly,dLy) isareal homology (k — 1)-cell modulo boundary for
k:=n—dimo.
(i) Eachconeo indA satisfiesthe following condition:
(i) Thelink L, hasthereal homology of a point.
(iv) Eachconeo indA satisfiesthe following condition:
(iv)s Theboundary of thelink 3 L, hasthe real homology of a sphere of dimen-
sionk — 2for k :=n — dimo.

PrROOF We already have seen in (4.4.1) that condition (c) of Theorem 4.3 and state-
ment (ii) are equivalent; thus we have reduced the equivalence>(i))” to Theorem 4.3.

In order to prove the equivalence of (ii), (iii), and (iv), we use inductiomoithe case
n = 0is vacuous, and in cage= 1, it is trivial to check that (ii), (iii), and (iv) hold. We
thus assume that the equivalence holds for every non-complete gudétyensional fan with
d < n—1. If we apply that to the fang, for o € A \ {0}, we see that the conditiofii ),
is satisfied for each cone € dA \ {0}, if and only if (i), resp. (iv), is. Hence it suffices
to derive the equivalence @i),, (iii), and(iv), under one of that assumptions. We need the
following result:

4.6 LEMMA. Let L := L,. If the condition (iii), is satisfied for each non-zero cone
o € A, then
(4.6.1) H,(L,L\dL) =0
holds.
PROOF Fori=-1,...,n—2,wesetll/; := L\ (dL);, where(dL); is thei-skeleton
of 3L = Sy,. By induction oni, we show thatH,(L, U;) = 0 holds. This is evident for
i = —1, and the case= n — 2 is what we are aiming at. For the induction step, we use the
homology sequence associated to the trigleU;, U;+1) and showH,(U;, U;+1) = 0. Let

A’ be the following "barycentric" subdivision af: For each cone € A \ 94, we choose
an additional ray, meetings. ThenA’ consists of the cones

T4 0y + -+ 0, Wherer € 94 andr <17,'1<1'~<1‘L'rWith7:i€Ao.

Let st(c) denote the open star 6§ with respect to the cellular decompositionlofnduced
by A’. Then, by excision, the inclusion

( U st U(sf(é)\Sg))c(U,»,U,-H)

oe(@A)i+2 oe(dA)it2

induces an isomorphism in homology, while

H,< U ste. U (st’(é})\Sg)) = P H.(st©6).5t(©6)\ S8) .

oe(dA)i+2 oe(dA)i+2 oe(dA)i+2

Furthermore, there is a homeomorphishist = ¢ (L, ) x S¢, wherec (L) denotes the open
cone ovell, with vertexv. By the Kiinneth formula, we thus obtain the firstisomorphism in
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the chain
H,(st(@),st(c)\ Ss) = H.(C(Ly),¢(Le) \ {v}) = H.(L,)[-1] = 0;

the second one follows from the homotopy equivalerads,) ~ v andé¢ (Ly) \ {v} ~ Lo,
and the final equality from the assumpti@in),, . O

We now continue the proof of Lemma 4.5.
“(ii), © (iii),” With L := L \ 9L, we conclude from (4.6.1) this chain of isomor-
phisms

H,(L) = H,(L) = H" 9(Sy, Sy \ L) = H" Y"4(L,9L) = H,_1_,(L, dL)* ,

where the first one follows from the above lemma, the second one, from relative Poincaré
duality (see, e.g., [Sp: Thm. 6.2.17]), the third one is obtained by excision, and the fourth one
is the obvious duality.

“(iii), = (iv),”: We may assume: > 3; we then have to show thatl. has the
same homology as am — 2)-dimensional sphere. From (iii) together with the equiva-
lent assumption (ii) and the exact homology sequence of the(pa#L), we derive that
H;_1(dL) = Hj(L,dL) =0forj #n —1,andH, (L) = H,_1(L,dL) = R.

“(iv), = (iii),”: It remains to verify that the reduced homologi(L) vanishes. We set
C:=s"1\ L and look at the Mayer-Vietoris sequence

o= Hypa(S"™Y — H, (L) — Hy(L) ® Hy(C) — Hy ("™ — Hy—1(3L) — - -

associated t6" ! = L U C. The hypothesis immediately yield%;(L) ® H,(C) = 0 for

g < n — 3, which settles the claim for these valuesqof The termH,_1(L) & H,—1(C)
vanishes since botti, and C, are (n — 1)-dimensional cell complexes "~ with non-

empty boundary. That is obvious fdr; for C, it is true sinceA has a refinement which

can be embedded into a complete fan, see 0.A. The aHpw (S" 1) - H,_»@9L) in

the exact sequence under consideration is thus injective; hence, it is even an isomorphism
of one-dimensional vector spaceghis implies that the mappingf,_»(L) & H,—2(C) —
H,_>(8"1) is injective, too, and that yieldd,_»(L) = 0. O

As a consequence, we see that quasi-convexity of a purdiynensional fan depends
only on the topology of its boundary:

4.7 COROLLARY. Let A and A’ be purely n-dimensional fans. If their boundaries
have the same support [0 A| = |3 A’|, then A is quasi-convex if and only if A’ is.

In particular, that applies to the following special cases:

i) Aisarefinement of A,

i) AandA are“complementary” subfans,i.e., AU A’ isacompletefan, and A and
A’ have no n-dimensional conesin common.

We now come to the proof of Theorem 4.3:
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4.8 PROOF OF THEOREM 4.3. For convenience, we briefly recall that we have to
prove the equivalence of the following three statements for a purdiynensional fam and
the minimal extension she&f on A:

(a) TheA*-moduleEs, = £°(A) is free,

(b) H*(A,0A;E%) =0,

() H*(A,,dAs; R) =0 foreach cone € A.

“(b) & (¢)": If we write
&= P.IoK,
oeA
according to Lemma 3.4, we obtain the following direct sum decomposition

H*(A,04:€) = P H(A5.045:R) & Ko
oceA
according to Remark 3.5 and the isomorphisrd@. Hence it is sufficient to see that none
of the vector spacek, = ker(oj, : E; — Ej ) is zero: SinceE; is a non-zero freei; -
module andE$ _ is a torsion module (see [BBFK: 6.1]), the restriction homomorphigm
never is injective.
“(b) = (a)": We shall use the abbreviations

C:=C"(A,04:&%), I':=imst, and Top:=Tor! .
By downward induction om, we verifiy the vanishing statement
(4.8.1) Tory(I",R*) = 0 for k>r.

That yields the quasi-convexity: Sind@ = E*, we obtain Tof(E%, R*) = 0; hence, ac-
cording to (0.B), the graded*-moduleE®, is free.
Obviously (4.8.1) holds for = n + 1. By assumption, the complex is acyclic; hence,
each sequence
0>I1">C - I'tt >0

is exact and thus induces an exact sequence
Tor1(I", R — Tor(I", R*) — Tor(C", R").

By induction hypothesis, its first term vanishes; thus, it suffices to verify the vanishing of the
last term fork > r: The moduleC” = @gimo—n_r Eo actually is a direct sum of shifted
modulesA;,, so Tog(C",R*) = 0fork > r, see (0.B.1).

“(a) = (b)" In addition to the above, we use the abbreviations

K" :=kers" and H" :=H'(A,0A;E)=K"/I".

In order to verify the vanishing off* := H*(A, dA; £*), we choose an increasing sequence
of subspace¥y:=0c Vi C --- C V, := V such thatV = V, & V, holds simultaneously
for eacho € A"™". Then the algebra®; := S*((V/V,)*) form a decreasing sequence of
subalgebras ofA*; moreover, there are isomorphisms = A: induced by the composed
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mappingsD; C A®* — A:. In particular, eaclC” = @, Ej is a freeD;-module. In
addition, we choose linear forntg, . .., 7, in A2 such thatD; = R[T4, ..., Ty—]1.
By induction onr, we prove the stronger statement

HY = 0 for ¢ <r, and I"isafreeD:-module.

Sincel® = E3, is free by hypothesis, the assertion holdsifet 0. So let us proceed from
to r + 1. The vanishing ofd” is a consequence of the fact that its support in &pexis
small: According to Lemma 4.10 below, the supportif is of codimension at least+ 2
in Spe¢A*) and thus, considered d@%-module, of codimension at least 2 in SpB¢). An
application of Lemma 4.9 to the exact sequence

0O—-I"—>K — H —0

yields the vanishingd” = 0.
It remains to prove that := /"*! =im 4" is a free module oveb* := D:_ ;. By 0.B,
this is equivalent to
Tor?”*(1,R) = 0.

Recall thatD; = D°[T] with T := T,_,. Thus, the formula
(4.8.2) Tor? (1,R) = Tor. (1, RIT])

provides the bridge to the induction hypothesis on the previous tev&@he multiplication
by T yields an endomorphism := ur of R[T] that has degree two, providing exact se-
quences

(4.8.3) 0— R[T] % R[T]— R— 0
and
Tor? (1, Ry — Tor?" (1, RT7) -5 Tor?" )1, RITY) .

The mapy is a homomorphism of degree two since it is induced by the multiplicatipn
Moreover, it isinjective: In the exact sequence @f*-modules

(4.8.9) 0— Kr—>Cr5—r>I—>0,

the moduleK” is isomorphic ta/” sinceH” vanishes. Hence, by induction hypothesis, the se-
quence (4.8.4) is fiee D:-resolution off, thus yielding Tof " (7, R*) = Tory” (1, R") = 0.
— Eventually, since Tdf "7, R*[T]) = TorP" (1, R*) is a finite-dimensional graded vector
space, the injective endomorphishof degree two is the zero map, whencefl'c(d, R*) = 0.

O

We still have to state and prove the two lemmata referred to above. The first one is a
general result of commutative algebra.

4.9 LEMMA. Let R be a noetherian normal integral domain and consider an exact
sequence
O—-R -M—-H->0
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of finitely generated R-modules. If M istorsion free and H non-zero, then sup H) is of
codimension at most 1 in SpecR.

PROOF We may assume that := suppH is a proper subset ok := SpecR.
Hence, H is a torsion module and thu¥ is a module of ranks. Let Q be the field of
fractions ofR. SinceM is torsion-free, there is a natural monomorphism

M=M®grR > Mg Q= Mp=Q°.

We may interpret the given monomorphigth — M as an inclusion. Hence, abasis of
R*® may be considered as@basis 0fM o, thus providing an identificatioh o = Q°.
We now fix a non-zero elemehte H and an inverse image = (q1,...,9s) € M C
0’ ofthat elemenk. A prime idealp of R lies in X \ Y if and only if the localized moduléf,
vanishes, or equivalently — since localization is exact —, if and only if the localized inclusion

(Rp)® < M, is an isomorphism. Hence,¢ Y impliesqs, ..., g; € Ry. Sincer is normal
and noetherian, the stipulation codittY) > 2 would yieldg1, ..., ¢s € R, i.e.,m € R*,
providing the contradictioh = 0. O

4.10 LEMMA. The support of the A*-module H9(A, dA; £*) in Spe¢A®) is of codi-
mension at least g + 2.

PROOF Foraprimeideap C A, Ietﬁg be the localization at of the A*-moduleH9.
We show that suppi? := {p € Spe€A*) ; H,l 3 0}, thesupport of H, is contained in the
union
(4.10.1) U Specd,

oceASn—q-2

of the “linear subspaces” Spa¢ C SpecA®. To that end, we consider a prime idgak

SpecA*). Since localization ofA*-modules ap is an exact functor, the localized cohomology
moduleﬁg is theg-th cohomology of the complex

Cp = C*(A.04:E;),
where the “localized” shedt; is determined by
8';(1) = E(1)p.

Let k = k(p) be the minimal dimension of a conee A such thatp belongs to Speet?).
Then&; (o) = 0 for a cone with dine < k, whence in particular a decomposition

&= P Teks.
dimo>k
see Lemma 3.4. According to (3.4.2) and Remark 3.5,
HY(A,04;&) = @ HUA,04;,7) ® K,
dimo>k

vanishes fog > n — k — 1. Consequently, if belongs to suppl?, thenk(p) <n — g — 2
holds, i.e.p appears in the union (4.10.1). O
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Theorem 4.3 provides a characterization of quasi-convex fans in terms of acyclicity of
the relative cellular cochain complex. An analoguous statement holds also for the augmented
absolute cellular cochain complex

(4.111) 0— F(A’aA)—)CO(A;f)_) _)C”(A"/’T)_)O

for the sheafF = £° on A. Up to a shift, that complex turns out to be a minimal complex in
the sense of Bernstein and Lunts: In [BeLu], a complex

70—z 2 7”+151+>1~'—_1> 7% 50
of gradedA*-modules is calledninimal if it satisfies the following conditions:
() Z°Z=R°[n],i.e., theA*-moduleA*/m = R* placed in degree-n;
(i) thereis a decompositiod ¢ = P, 1« Zo for0 < d < n;
(i) eachZ, is afree graded -module;
(iv) for each coner € A, the differentiald mapsZ, to
one obtains a subcomplex

Z, so fordimo =d,

T<10

§=d §-d+1
0— Z, = @Zr s ...—2Z,—0;

<10

(v) with I, := ker §;9*1, the differentials; ¢ induces an isomorphism
547y = Zog/MZy —> Iy i= Ip/ml,
of real vector spaces.
If the fan A is purelyn-dimensional, then the shifted cochain complex

Z*:=C(A, EnDIn] ie., Z7i=C"N(A, En))

is minimal: WithZ, := E_[n], conditions (i)—(iv) are immediate; condition (v) follows from
(LME) using the isomorphisni, = £*(do)[n] = Ej [n] of A% -modules.
The following result proves a conjecture of Bernstein and Lunts in [BeLu], p.129:

4.11 THEOREM. A purely n-dimensional fan A is quasi-convex if and only if the com-
plex C*(A, £*) is exact in degrees ¢ > 0 and H%(A, £°) = E}, 5, Specifically, for a
complete fan A, a minimal complex in the sense of Bernstein and Lunts is exact except in
degree —n.

PROOF We use the fact that the shegf is flabby, and we profit from the proof of
the equivalence (& (b) in Theorem 4.3: By the absolute version of (3.4.2), the complex
(4.11.1) is acyclic for the shedh if and only if it is acyclic for each characteristic sheaf
«J of o € A since none of the vector spacks vanishes, see the proof of Theorem 4.3,
(c) & (b). Foro ¢ 9A, the characteristic sheaf7 has been treated at the beginning of the
proof of Theorem 4.4. Far € 0A, we have, 7 (A, 0A) = 0, such that the absolute versions
of Remark 3.5 and formula (4.4.1) yield isomorphisms

HI(A, J) = HI(A,oJ) = HI(As,R) = Hy_1-4(Ls,R),
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wherek = codimo andL, is the link of some point € S5 N &. Eventually, statement (iii)
of Proposition 4.5 giveé#l,(L,, R) = 0. O

4.12 OROLLARY. For a minimal extension sheaf £* on a quasi-convex fan A, the

A*-submodule £, ; ,, of E7, isfree.

PROOF  Since the absolute cellular cochain complex is acyclic, we may proceed as in
the proof of Theorem 4.3. O

5. Poincaré polynomials. In the present section, we discuss the virtual intersection
Betti numbershy, (A) := dimFZAq andby, (A, dA) := dimffg_am of a quasi-convex fan,
where&* is a minimal extension sheaf af. It is convenient to use the language of Poincaré

polynomials.

5.1 DEFINITION. The (equivariant) Poincaré series of a fanis the formal power
series

Qa(n) = Y _dim EY - 1%,
q>0
its (intersection) Poincaré polynomial is the polynomial

oo o
Pa(t) = Y dimEY 12 =Y by (M)
q=0 q=0

For an affine fano’), we simply write

Oy = Q(U) and P, := P(g) .
Furthermore, for a subfant < A, the relative Poincaré polynomi# 4 ) is defined in an
analoguous manner.

We refer toP, as theglobal Poincaré polynomial ofA, while the polynomialsP, for
o € A are called itdocal Poincaré polynomials.

5.2 REMARK. Ifthe fanA is quasi-convex, then

0at) = 7 Pa(t);

1
(1-12)
for a coner, that implies

1
Qs(1) = W'PU(I)~
PROOF.  For a free graded*-moduleF*, the Kiinneth formulad* = A* ®g F* holds,
while the Poincaré series of a tensor product of graded vector spaces is the product of the
Poincaré series of the factors. Sin@g. = 1/(1—12)", the first formula follows immediately.
Going over to the base ring, yields the second one. O

The basic idea for the computation of the virtual intersection Betti numbers is to use a
two-step procedure. In the first step, the global invariant is expressed as a sum of local terms.
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In the second step, these local invariants agcdbed in terms of the global ones associated
to lower-dimensional complete fans.

5.3 THEOREM (Local-to-Global Formula). If A isa quasi-convex fan of dimension n
and A := A\ dA, then

Pa(t) = Y (2= 1" 9M7 P (1)
oeh
and
Piaan(® =Y (? ="M Py 1),

geA
PROOFE The augmented cellular cochain complex

0— Ey — C%A,04:E) — -+ > C"(A,04;E°) > 0
of 3.2 associated to the quasi-convex fais acyclic by Theorem 4.3. We set
Qi(t) == Y dimC(A,04; %)t = " Q5(1).
q=0 ceAnan—i

Then we obtain the equality
n
0a =) (D0 =) (D" 0,().
i=0 oeA
The first assertion follows from Remark 5.2. The second formula is obtained in the same way
using the acyclicity of the complex

0— E{p 44 — CUAE) — - — C(A,E) - 0,
see Theorem 4.11 and Corollary 4.12. O

For a non-zero cone, in order to reduce the computation Bf. to a problem in lower
dimensions, we come back to section 0.D: We choose &ligeV intersecting the relative
interior ¢ and consider the flattened boundary fap := 7 (30), wherer: V, — V, /L is
the quotient map. Then the direct image sheaf

(5.3.1) G = (o) T E((T]90) T H(T))

is a minimal extension sheaf ofi,. We use the identificatiod;, = B2 [T] of (0.D.2) and
the functionf e A%(A,) of (0.D.3). If we form residue classes of tA¢ -moduleskE; and
E3,, (with respect tan,, ) and of theB; -moduleG?,  (with respect tanp, ), then we obtain
isomorphisms of graded vector spaces

(5.3.2) E, Z Ej, = Gy /(f-Gy).

A first result is an estimate for the degree of the Poincaré polynomials:
5.4 COROLLARY. Let A bea quasi-convex fan and o, a non-zero cone.
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i) Therelative Poincaré polynomial P4 54y iS monic of degree 2n; if A is not com-
plete, then the absol ute Poincaré polynomial P, is of degree at most 2n — 2.
i) The“local” Poincaré polynomial P, isof degree at most 2dimo — 2.

PROOFE We proceed by induction on the dimensiof A: If (i) holds up to dimen-
sionn, then so does (i), see Theorem 5.3. If (i) is valid up to dimensienl, then (ii) holds
for dimo = n. Since this is evident for = 1, we may assume > 1. Going over to the
complete fanA, of dimensiom — 1, we use the isomorphism (5.3.2). Sir@%a = 0 holds
for ¢ > 2n — 2 according to the induction hypathis, assertion (ii) follows. O

For the second step in the computation of Betti numbers, we have to relate the local
Poincaré polynomiaP, to the global Poincaré polynomia,, of the complete (and thus
quasi-convex) fam, of dimension dime — 1. Here the vanishing conditiovi(s) of 1.7
plays a decisive role:

5.5 THEOREM (Local recursion formula). Let o be a cone.
i) Ifoissimplicial, then P, = 1.
ii) If the condition V(o) is satisfied and o is not the zero cone, then

Py (t) = Tedimo (1 — 12) P4, (1))

The truncation operatar.; is defined byr<k(zq agt?) = Zq<k aqt?. — Let us note
that for dimo = 1 and 2, the statements (i) and (ii) agree.

PROOF  Statement i) follows from the isomorphisif. = A; for a simplicial cone
o, see 1.4. In order to prove statement ii), we use the isomorphism (5.3.2). We thus have to
investigate the graded vector spa(_égo /fG® o or equivalently the kernel and cokernel of
the map

Hp: Gy =21 Gy, h> fh
induced by the multiplicatiop s : G% [—2] — G? . The formula ii) now is an immediate
consequence of the “Hard Lefschetz” type theorem 5.6 below. O

5.6 COMBINATORIAL HARD LEFSCHETZTHEOREM. Let A be a complete fan and
f € A?(4), astrictly convex function. If the condition V(y (f)) is satisfied, then multiplica-
tion with f,
ﬁiq: Fiq — FZAIHZ, h— ﬁ,
isinjectivefor 2q < n — 1 and surjectivefor 2g > n — 1.

Theorem 5.6 will be derived at the end of section 6 by means of the Poincaré Duality
Theorem 6.3.

6. Poincaré duality. Our aim in this section is to prove a “Poincaré Duality Theo-
rem” for the virtual intersection cohomology of quasi-convex fans. The first step is to de-
fine a — non-canonical and not necessarily associativé* -bilinear “intersection product”

&* x & — &° on a minimal extension she&f for an arbitrary fanA. On the level of global
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sections, it provides aA®-bilinear “product’Ey x Et, ;) — E¢, ; 4 for the “virtual equi-

variant intersection cohomology” of. If A is quasi-convex, then in addition, there exists an
evaluation mapping: E¢, ;) — A*[—2n]. The crucial result is the “equivariant Poincaré
Duality Theorem” 6.3 according to which the composition of the intersection product and the
evaluation map is a dual pairing af-modules. Passing to the quotients modulo the maximal
idealm, we reach our aim.

In the case of a simplicial fan, where the shdafof piecewise polynomial functions is a
minimal extension sheaf, such an “interesection product” is simply given by the multiplication
of functions. Hence, a possible approach to the general case is as follows: We choose a
simplicial refinementA of A. According to the Decomposition Theorem 2.5, we interpret
as a direct factor of the shedf of A-piecewise polynomial functions an. Then we restrict
the multiplication of functions frorod* to its direct facto€* and project onto it.

In order to keep track of the relation betweabe intersection product over the boundary
of a cone and the cone itself, we apply the above idea repeatedly in a recursive extension
procedure. The proof of Poincaré duality will follow the same pattern.

6.1 AN INTERSECTIONPRODUCT. The 2-dimensional skeletan=2 is a simplicial
subfan. Hence, up to scalar multiples, there is a canonical isomorphis& £* on A=2
(see 1.8). We thus define the intersection producti&A to correspond via that isomorphism
to the product of functions.

We now assume that the intersection product is defineci®fi and consider a cone
o € A"l So we are given a symmetric bilinear morphigif, x E5  — Ej_  of A} -
modules. As in section 0.D, we fix a lifecC V,, intersectings and denote;, the subalgebra
of A% consisting of the functions constant on parallelg tdVe recall thatej, = G is a
free B;-module, cf. Theorem 4.3 applied to the minimal extension sgeah the flattened
boundary fanA, . SinceE, is a freeA? -module, the restriction homomorphishl — Ej
admits a factorization

Ey < Ay ©n; Ej, > A% @y B, = B3,
through thefree A2 -module
(6.1.1) Fy = A5 ®ps Ej, -

Since the reduction af modulom, C A; is injective, the map: E; — F; is a “direct”
embedding, i.e., there is a decomposition

(6.1.2) F: = a(E))DK®

of free A;-modules. We may even assume tli&tis contained in the kernel of the natural
mappg: F; — Ej_ . We fix a homogeneous basfs, ..., f, of K*. The imagess(f;) of
these elements if;  are restrictions of elements € E;; hence, we may replad€* with
the submodule generated by the eleméfits «(g;) for1 <i <r.

On the other hand, by scalar extension, there is an induced product

F: x F: — F:.

(e
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It provides the desired extension of the intersection product frérto o via the composition

E:xE, “5 F2xF, — F, =a(E))®K* — a(E3) Z E

o
where the last arrow is the projection ot@E?, ) with kernelK*. This ends the description of
the extension procedure. To sum up, after a finite number of steps, we arrive at a symmetric
bilinear morphism
Ex& &
of sheaves of4*-modules, called amtersection product on the minimal extension sheaf £°.
In particular, we thus have defined a product

EY x Ey — EY

on the level of global sections that mapg x E? to E and thus induces a product

(A,34) (A,04)

EQ X Efpgn) = Efasa) -

In order to obtain a dual pairing in the case of a quasi-convexffawe compose that
induced product with an “evaluation” homomorphism

e E{p g = ATl—2n]

that can be defined as follows: Firstly, as a consequence of Corollary 5.4, we have

4 _JR for g =2n,
(4,04) 0 forg>2n.
Moreover, according to Corollary 4.12, tAe-moduleE? is free. Hence, there is a

(A,04)
homogeneous base € EZ, , ;. v2, ..., vy € EG 4 Of Ety 4.

Now sete(v;) := §;1. In fact, ¢ is unique up to multiplication by a real scalar.Afis a
simplicial fan, this homomorphismcan be described quite explicitly:

Following [Briz, p.13], we fix a volume fornw on the vector spackg. For each cone,
we choose a basisy, . . ., e;) of vectors spanning the rays such thatwe haa, . . ., ¢,) =
1. Let(e], ..., e,) be the dual basis, and sg} := ¢} - - - ¢;,. We then define the mapas the
composition

Elx9n = Alaaa C @A; - 0%, [f=(fo)oecar — Z E
oeA”" oeA”" Yo

mapping to the homogeneous fractional ideal generated by the rational functigngdf
degree—2n) in the quotient fieldQ(A*). We indicate why the rational functios( f) =
> s Jo/9o is even regular. The denominators are products of linear fégrmsnishing on
the facets € A", and since such a factéy does not appear in any denominaggrexcept
for t < o, it suffices to show thaE(r>lt f>/95 is regular along. If 7 <1 o liesindA,
then the corresponding functiofy vanishes orr and hence is divisible b¥,. Thus, we
may assume that is the common facet of two cones™, o~ in A. It suffices to discuss the
contribution f*/¢g* 4+ f~ /g~ of these two cones to the sum. @nthe linear form:, and
f1 — f~ vanish; an explicit computation yields the result.
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Since the intersection produ€t x £* — £* is a homomorphism of sheaves, we may
sum up the general situation as follows: For a quasi-convexifathere existfiomogeneous
pairings (i.e., a pair of elements of degr@eandq is mapped to an element of degree- g)

(6.1.3) Efy % Elg g — Efnga — A'l-21]
and
(6.1.4) Ey X Ef{y 50 = E{s 4 — R1=21].

Our aim is to prove that these are in fact both dual pairings. Fortunately, it suffices to
verify that property for one of them: By the very definition of quasi-convexity and Corol-
lary 4.12, theA*-modulesE®, and E? 5 on) are both free. We thus may apply the following
result.

6.2 LEMMA. Let E* and F* betwo finitely generated free graded A*-modules. Then
a homogeneous pairing
E* x F* — A°*[r]
isdual if and only if that holds for the induced pairing
E*x F* = A'[r] =R'[r].

PROOFE ReplacingF* with F*[—r], we may assume that= 0. With respect to fixed
homogeneous bases Bf and F*, the pairing is represented by a square ma#ixver A°.
We claim thatM is invertible if and only if that holds for its residue cla&modulom4: The
implication “=" is obvious, while for “=”, it suffices to prove that de¥/ lies in A° = R.
To that end, we arrange the basis forin increasing order with respect to the degrees, and
in decreasing order faF*. Since the induced pairing is dual, the homogeneous submodules
of E* and F* generated by basis elements of fixed opposite degrees have the same rank.
Hence, the matrix/ is a lower triangular block matrix with square blocks along the diagonal
all whose entries lie im°. Thus detV is the product of their respective determinants, so it
lies in A9, too. O

We come now to the central result of this section:

6.3 THEOREM (Poincaré duality). For a quasi-convex fan A of dimension n, the com-
position
Ey x E(.A,E)A) — E('A,M) — A*[—2n]
isadual pairing of finitely generated free A*-modules.
ProoFr For an affine simplicial fam, Poincaré duality obviously holds. The general

case follows by the next two Lemmata 6.4 and 6.5, using a two step induction procedure. The
proof of Lemma 6.5 will use the Lemmata 6.6 and 6.7.

6.4 LEMMA. If Poincaréduality holds for complete fansin dimensionsd < n, thenit
holds for n-dimensional affine fans.
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6.5 LEMMA. If Poincaréduality holdsfor every affinefan (o) of dimension at most n,
then it also holds for every quasi-convex fan A of dimension n.

PROOF OFLEMMA 6.4. Leto be ann-cone. As in (5.3.1)—(5.3.2), we identifly;
with the B;-moduleG?,  of global sections of a minimal extension sh&afon the flattened
boundary fanA, in V/£. SinceA, is (n — 1)-dimensional, we obtain a dual pairing

Ej, x Ej, — E3, — B3[2—2n] .
By extension of scalars as in (6.1), that induces dual pairings
F: x F: —F; -5 A*[2—2n],
F. x F, —F, — R'[2— 2n]
and, after a shift,
n[-2

F} x F31=2 — F3[-2] "5 at[-2n],
(6.4.1)
F: x F[-2] —F3[-2] — R°[—2n].
To achieve the proof, we show that there is a homomorptﬂsnE('maa) — F;[-2] and

a factorization of the induced pairing;, x Et, ,,, — R°[—2n] obtained in (6.1.4) in the
following form:

(6.4.2) Ey X Ely gy 23 oy x Fo[-2] — Foy[-2] — R[—2a].

We further show the existence of a homomorphismF?[—2] — F¢ such thatx and
induce isomorphisms

E; =cokern and Ej, ,,, =kerpu.

Finally, forgetting about the shifts, the mapis shown to be self-adjoint with respect to the
dual pairing (6.4.1) orFs.. Hence, the restriction to cokgrx ker y is a dual pairing, too;
and an application of 6.2 will finally complete the proof of the Lemma.

We interpretF;; as the module of sections of a sheaf4fmodules on the affine faf ).
To that end, we consider the subdivision

Y = 0cU{T: =90+ 71;7€do}

of (o), whereg istheraylNo. Asin (1.4.1), letD; C A denote the subalgebra of functions
constant on parallels to the lile Then, according to Lemma 1.5, the minimal extension
sheafF* on ¥ is determined by

T Fpi=E;, T+ F!:= A} ®ps E; fort € do

and the obvious restriction homomorphisms; it satisfile6X) = A* ®p. E;, = F;. Fur-
thermore, the shedf* inherits an intersection product frofil|;, = F°*|3, asin 6.1.

For simplicity, we interpret the mappingin 6.1 as an inclusio; C F; and identify
F* with its direct image sheaf on the affine fém) with respect to the refinement mapping
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¥ — (o). Then the decompositioR; = E: @& K" of (6.1.2) corresponds to a decomposition
of sheavesF* = £* @ K* with £ = ,£* and the sheak* := ,£* ® K* supported by the
pointo, cf. Section 2. In particular, there is an inclusion

E(.U,BU) - F(.U,BU) = E(.J,Bo) @K. ’

andF('a)aa) is a freeA*-module.

We thus obtain a natural commutative diagram

0 — E(.a,aa)

N N II2

— E;, — E;, — O

(] )" (] (]
0 — F(a,aa) — F; — F;, — 0

consisting of free resolutions of th&-moduleEs; = F;_.

Using the very definition of TaY (%, R*) and the fact thak?, ., — E; isthe zero map
sinceE:, — Ej, is an isomorphism, we obtain identifications
E;, = coked) = Ej, and Ej,,, = Ton(Ej;,.R) = ker(d).

o

On the other hand, we may rewrit?maa) = gF; = F}[-2], whereg € A%2(X) is
some piecewise linear function ai with do as zero set: In the descriptiott = B;[T] of
(0.D.2), we may assume that the kernellbfe A2 intersectss in the point 0 only. Then,
for r € (30)""1, we setg; = T — f., wheref; € A2 = A2 coincides withT ont and is
constant on parallels t i.e., f; € B;.

We note that

E(.J,Bo) C E(.U,BU) ® K= F(.U,BU) = ng; = Fz;[_z]
determines the desired homomorphism
9 E(‘a,ao) — F[-2]
and leads to an evaluation map
[ . 77[—2] .
E(o,ao) — F}[-2] — A’[-2n].

Moreover, we hav&k 2" = 0 because of the isomorphism

EX oy SREFL, =F72
and the vanishingﬁif’éw = 0, which yields thatk* C FG, o0 is contained in the kernel of
the mapF('U’aa) — A°[—2n]. Next we remark that the first part of the diagram
Ey X Ej 0y — Ef, 4, — A'[-21]
(6.4.3) n n I
F} x F(.a,aa) — F(.o,ao) E] A°[—2n]
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need not be commutative, sinée is not necessarily closed under the intersection product in
F?. Nevertheless, commutativity holds after evaluation (where the two evaluation maps are
scaled in such a way that the right square is commutative). This is true since the difference of
the products in the first and second row is an elemeitiinaccording to the construction.

As the intersection product if; is A*(X)-linear, we may replace, ,  in the diagram
(6.4.3) with F2[—2] and, combining with (6.4.1), we arrive at the following pairingArt
modules

E’ x EEU’BU) — F; x F)[-2] = F)[-2] = A*[-2n].
Passing to the quotients modutg,, we obtain (6.4.2), wherg: F%[—2] — F3 is induced
by multiplication with the functiory € A*(X). O
PROOF OFLEMMA 6.5. To simplify notation, we introduce the abbreviatidh :=
A*[—2n]. We have to show that the “global” duality homomorphism
®: E) — Homye (Efy 5 0). A*)

induced by the pairing (6.1.3) is an isomorphism. To that end, we embed itinto a commutative
diagram of the following form:

0— E3 — %4048y — Ccl(a,04; &%)
(6.5.1) l@ ln]f l()
~ ~ A ~
0—> HOM(E} , 4, A) — g Hom(E;, ,,,, A*) — 29 HOM(EY, ). A%[2D) -
g n Te n—

Here Hom abbreviates Hom, and¥ and® are the respective duality homomorphisms cor-
responding to the collections of dual pairings

ES X El; 95y = Els95) = A® T€SP. EZ X EU 40y = E{ 57y = AL[2]

with suitably chosen evaluation maps. The proof now will run along the following lines: The
upper row of diagram (6.5.1) is exact, while the lower one is a complex with an injective
mapk. The homomorphisn# and® are isomorphisms, and thus, a simple diagram chase
yields that the same holds far, which will end the proof of the Lemma 6.5.

The exactness of the upper row in (6.5.1) follows immediately from Theorem 4.34ince
is quasi-convex. We now describe the choice of the evaluation maps: The evaluation map
e: Efy 5y — A induces a systert,)ocan Of mapse, : E, 4,0 C Efy gq) — A°. If we
can show that each), is an evaluation map, then the direct sum of the corresponding duality
homomorphismg/, : E; — Hom(EEU’aU), A®) is an isomorphism, since Poincaré duality
ono holds by hypothesis. We thus have to shgwez 0 for eachr. That follows immediately
from the fact that the maR = F(Z(’j)aa) — F%Z)M) = R induced by the homomorphism
E 50y = Elaan is an isomorphism, see Lemma 6.6. The system of duality isomorphisms

Y,: EX — Hom(E(a)aa), A*) thus provides the isomorphisth.
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The mapc associates to a homomorphigm Etxon = A* its restrictions to the sub-
modulesEy, ;) of E¢, ;4. Itis injective, since&P,4n EY, 4,) = E7 is a submod-

(A,Af"_l)
ule of maximal rank inE? : Forh = ]_[Tdn,lhr, whereh, € A2 \ {0} vanishes on
V. C V, we have

(A,04)"

hE{5 54 C E{p p=n-1y-

This ends the discussion of the first rectangle in (6.5.1).
The maph will be composed of “restriction homomorphisms”

A7 HOM(E?, o). A%) — HOM(EY 4. AS[2D). @ or,

wherer is a facet olc € A”. In order to define.?, we fix a euclidean norm ol and thus
also onV* = A2. Leth, € A2 be the unique linear form of norm 1 that vanisheserand
is positive ons. Then we use three exact sequences, starting with

0 — El, 40y = E5 — Ej, — 0.
The second one is composed of the multiplication witrand the projection onto the coker-
nel:
0 » A" A2] —» A2) — o.
Eventually the subfaf,o := 9o \ {r} of do yields the exact sequence
(6.5.2 0 — E(.‘(,B‘[) - Ej, — Eé,a — 0.

The associated Hom-sequences provide a diagram

EX(E; A*)
(6.5.3) l
Hom(E;, A)  — Hom(Ey, ,, . A*) = EXY(E},, A*)

1#

HOM(E;, ;.. A*[2]) —HOm(E;, .. A3[2]) LExt(E(-LBT),A-) — EXU(E], 5. A*[2])

with Ext = Ext};.. We show thay is an isomorphism; we then may set

A=y lopoa.

Indeed the rightmost arrow in the bottom row is the zero homomaorphism, since itis induced by

multiplication with 2., which annihilates':"zt’ar). On the other hand, th&;-moduIeE&’ar)

is a torsion module ovet*, so that HomE(‘T!BT), A*[2]) vanishes.

An explicit description of.7 is as follows: For a homomorphispx E7_ ) — A*, the
“restriction” A (¢) = ¢;: E('T’ar) — A;[Z] is this: Tog € E('T’ar), we associate a section
g € E; such thaj |y, is the trivial extension 0§ to do; theny; (g) = @(h:§)|:.

For the definition of., we apply the standa@ech coboundary construction to the family
(A2), making the lower row of diagram (6.5.1) a complex. We may do so since the following
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compatibility condition is satisfied: For two different cones= o1, 02 € A" with intersection
T € A"1 the description of, implies that the compositions

(6.5.4)  HOM(E?, 5, A®) — HOM(E, 5. A%) — HOM(E, ;.. A3[2]), i = 1,2

coincide.
In particular, the homomorphisms
~ °n—1
er =21 (go): El gy~ A}2] , T €A
do not depend on the choice 6f >1 t. It remains to verify that, is not the zero homo-
morphism, i.e., we have to see thtis injective in degree 0. In diagram (6.5.3), we have to
show thaix andg are injective in degree 0. By 5.4, the vector spak@svanish forg > 2n;
hence,E: can be generated by elements of degre@n, and that yields the vanishing of
Hom(E: ; A*) in degree 0. According to Lemma 6.7, the exact sequence

0 — EEU,B,U) —- E, — Ez.),a — 0

(see (6.5.2)) isafree resolutionEgra, in particular, the module EXtE; _, A*) is a quotient

00
of Hom(E('(r 8:0)" A*), which is trivial in degree 0, since according to Lemma 6.7, we have
EZ2 —0.

(0,0:0) —

— Fort € A"1, the evaluation homomorphisms induce isomorphisms
O : E} —> HOM(E;, ;.. A3[2]) .

which constitute the isomorphisem.

Finally the commutativity of the second square in the diagram (6.5.1) follows from the
above explicit description of the restriction homomorphisthsind the appropriate choice of
the evaluation homomorphisnas. O

6.6 LEMMA. If A < A are quasi-convex fans, then the trivial extension of sections
ETp 0n) CElA g induces an isomorphism

~ T2 = 72 ~
(661) R:E(/‘l\,i?/\) — E(iaA):R

PROOF Let us first assume that is complete. To the complementary farf < A
generated by the cones i’ \ A" corresponds an exact sequence

0 = Efyon ZElya — Ey — Ey — 0,

which induces an exact sequengg; ,, — E%' — EZ.. The fanA“ is quasi-convex

according to Corollary 4.7, ii) and necomplete. Hence, the last te@'ﬁ vanishes according
to Corollary 5.4, and thuB = EZ, , , — EZ' = Ris onto resp. an isomorphism.

We now assume that admits a completiomt. We consider the composed map
2 =2 =2n
E(Z’M) — E(Z,M) — EA— .

=R

Since it is an isomorphism, so R = F(Z'j‘)a/‘) N F(Z'Al’am
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In the general case, we choose a refinementmag — A whereA admits a comple-
tion, see 0.A. Hence, it suffices to verify that (6.6.1) is an isomorphism for the cadple)
as that holds fotA, A) according to the second step. By the Geometric Decomposition The-
orem 2.5, we can writé* := n*(év") = &* @ G*. From Corollary 5.4 and the very definition
of the direct image sheaf stem isomorphisms

—2n
~ . . ~ T2n ~ T=2n —=2n ~ 2
R=EGad = Flaon = Eaon®Glas = ROGH 4

— —~2n — —
and thus,G?, ,,) = 0 andE ;54 = F24 5, = EZ4 ). The corresponding isomor-
phisms also hold fort instead ofA. Combining these isomorphisms, we obtain the isomor-
phism (6.6.1). O

The following result has been used in the proof of Lemma 6.5. For the notation, we refer
to (0.D.1).

6.7 LEMMA. Leto bea coneof dimensionn and A C do be a fan such that 7(A)
is a quasi-convex subfan of A,. Then EL 4 isafree A*-module, and, if in addition A isa

proper subfan, E, ,) = 0for ¢ > 2n.

PROOF As in (0.D.2), we writeA* = B:[T] with a linear formT < A2. The exact
sequence ofi*-modules

0— E,, > E; - E} - 0
induces an exact Tor-sequence
Tory"(E3.R*) — Tor{"(Ef, 4. R) = 0— Tor{ (E4.R") — E, 4 — Ej

sinceE;, is a freed*-module. If Tog" (E;,, R*) vanishes, then so does TotE;, , . R*), and
E% 4 is a freeA*-module by Section 0.B. Since the f&an) is not complete, we haveé? = 0
for ¢ > 2n by 5.4; if the same vanishing holds for JorE*,, R*), then it follows forEy, 4,
as well. It thus remains to determine jf‘E)(E' , R*). As in the proof of Theorem 4.3, we use

the exact sequence
(6.7.1) 0 - R[T][-2] - R[T] - R — 0

of A*-module homomorphisms of degree 0; th&¥T7] is interpreted as thel*-module
A*/(mps A®) = B; /mps[T] for the maximal homogeneous ideag. := B;O of B;. Com-
ing back to the identity (4.8.2) witli's, instead off, we obtain

Tor*"(Es RIT]) = Tor™ (B4, R) = 0 fori>1,
sinceE’, is a freeB; -module. Hence, from (6.7.1) stem exact sequences
0— Tord' (B4, R) — Tor (£, R'[-2]) - 0 for i > 1,

and

0 — Torf" (E5. R) > E% ®ps R1-21 “D B @p R



COMBINATORIAL INTERSECTION COHOMOLOGY FOR FANS 39

This yields the desired description:

TOI’-A.(E° R = ker(u(T): E;& ®Bs R [-2] — E;‘ ®Bs R*), If l =1
i 0 if i >2.

bl

Eventually, ifr(A) C A, is not complete, then the vector spatk ® g» R*[—2] vanishes in
degrees> 2n; hence, the same vanishing holds forfl’c(lE‘ ,R"). O

This ends the proof of the auxiliary Lemmata, hence the proof of the Poincaré duality
theorem 6.3.

6.8 REMARK. Forevery purelyi-dimensional fam, we can define an evaluation map
El, 54 — A'[—2n] as the composition

E(.A,aA) C E(.AVE)AV) = E(.A,BA) D = E.A_ d A'[—Zn] )

where A is a refinement ofA admitting a completionA. It provides a homomorphism
Ej — Hom(EY, ;,). A*[—2n]) via the intersection pairing. In accordance with the proof
of Lemma 6.5, that is an isomorphism whenev#?(A, 34; £*) = 0, or equivalently, if
HO%A,,3A,; R) = 0 holds for each cone € A (see Remark 3.5). In more geometri-
cal terms,A has to be both facet-connected and locédlget-connected, where we call a fan
locally facet-connected if, for each non-zero cone € A, the transversal fan,, is facet-
connected.

The smallest example of a three-dimensidaa that is both facet-connected and locally
facet-connected, but not quasi-convex, is preditly the fan swept out by the “vertical” facets
of a triangular prism.

Since the dual pairing’s, x E('A_M) — A°[—2n] of A*-modules induces a dual pairing

of real vector spaceE'A X EZA,aA) — R°*[—2n], we obtain the following consequence.

6.9 COROLLARY. If A isaquasi-convex fan of dimension n, then we have

by(4) = dimEY, = dimffgj;A) ‘= boy_g(A,04);

rephrased in terms of Poincaré polynomials, we have the identity
Piagn(t) = 1" PaG™Y).

We finally are prepared to prove the “Combinatorial Hard Lefschetz” Theorem 5.6.

PROOF OF THE“COMBINATORIAL HARD LEFSCHETZ THEOREM5.6. Sincef is
strictly convex, its graphi’s in V x R is the support of the boundary fan of the (n + 1)-
dimensional cong := y(f) in V x Ras we have seenin 0.D. L&t be a minimal extension
sheaf oy andg: A — 9y, the map induced by idx f: V — V x R. Theng.(F*) is
a minimal extension sheaf ofi, which we thus may identify witl*. Analoguous to (5.3.2),
the residue class module of tIAE[T]-moduIeFa'y satisfies

Fy, = Ey/fEy =cokelfiy : Ey[-2] — EY)
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whereE*, = (A*/m) ®4+ E%. Now the vanishing conditioN'(y) yields the surjectivity of

ﬁiﬂ for 2¢ > n — 1. On the other hand, the maygy is selfadjoint with respect to the dual

pairing £ x E3 — A*[—2n] as well asz; with respect taE% x E% — R°[—2n]. Hence

by Poincaré duality the surjectivity (ﬁfff’ for 2¢ > n — 1 implies the injectivity ofﬁ?f’ for

29 <n-—1. O
ADDED IN PROOE  While we were reading the final galley proof for the present article,

Kalle Karu announced a proof of the Hard Lefschetz Theorem for non-rational polytopes (see
his e-printmat h. AG/ 0112087).
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