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A FREE BOUNDARY VALUE PROBLEM OF EULER
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Abstract. We study a free boundary value problem of the Euler system arising in the
inviscid steady supersonic flow past a symmetric curved cone. The existence and stability
of piesewise smooth weak entropy solutions was established, provided the cone is a small
perturbation of its tangential cone with a vertex angle less than a given value determined by the
parameters of the coming flow. Since the change of the entropy of the flow is also considered,
the result in this paper gives a more preciseatiption than previous ones on such problems.

1. Introduction. This paper is devoted to the study of a free boundary value problem
of the Euler system, which arises in the irsitssteady supersonic flow past a symmetrically
curved cone. It is well-known that when a supersonic flow passes a pointed body, there
appears a shock front ahead of the body. If the body has a blunt head, the shock in front
of it is detached. Otherwise, if the body has sharp head, the shock can be attached on it. Such
phenomena have been verified by physical experiments and numerical computation. However,
the problem is solved only in some special cases. It is indicated in [5] that if the body is a
circular cone with a vertex angle less than gical value, determined by the parameters of
the coming flow, then the solution can be determined by solving a boundary value problem of
an ordinary differential equation. In this case a shock front will be generated and attached at
the tip of the cone. The shock also forms a circular cone with the same axis as the surface of
the solid body. Under the additional assumption of the weakness of the shock, the flow behind
the shock can be described by a potential equation. Under such a framework we proved in
[4] that the flow with the attached shock is stable, if the body becomes a perturbed curved
cone. This means that, we still have the existence of solutions with attached shock near the
vertex of the perturbed conical body. However, the potential equation is only a description
of an isentropic and irrotational flow. When the conical body is not an exact circular cone,
the attached shock is also not a circular cone. It turns out that the entropy in the flow is not
constant in fact. Therefore, it is natural to work with the full Euler system, which is more
precise description of the inviscid steady flow. Certainly, the problem becomes more difficult,
because generally the boundary value problendifierential system is more complicated
than the corresponding problem for a second order equation.
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In this paper, we are going to deal with the situation for a uniform supersonic flow past
a symmetricaly curved cone in the framework of the Euler system. As in [3,4], we call the
tangential circular cone as the background cone, and the solution to the coming supersonic
flow past the background cone as the background solution. Assume that the background cone
is tangential to the curved cone in higher order. Then we confirm in this paper that there exists
a local solution with a conical curved shock attached at the tip of the solid body, provided
that the vertex angle of the tangential cone is less than a critical value, determined by the
parameters of the coming flow. Besides, the flow field and the location of the shock are stable
with respect to the perturbation of the surface of the solid body. The solution obtained here
is piesewise smooth, i.e., the equation arelibundary conditions are satisfied in a classical
sense. We also mention that the author of [12] also discuss a similar problem in the BV space
by using the Glimm scheme.

Let us briefly describe the approach to solve our problem here. It is convenient to dis-
cuss our problem in the cylindrical coordinates. In the domain where a solution of the Euler
system is smooth, the system can be reduced to a symmetric hyperbolic one. On the surface
of the body the flow satisfies the rigid wall catidn, and on the shock front the well-known
Rankine-Hugoniot conditions hold. The solutiof this nonlinear problem will be obtained
through linearization and Newton'’s iteration. Hence as a necessary step we need to construct
a good first approximation, which describee #olution with high accuracy near the vertex.
Then we gradually improve the degree of approximation. Usually, the approximate solution
can be constructed by Taylor expansion with solving a series of algebraic equations. How-
ever, because of the singularity of the domain at the vertex of the cone, we have to reduce the
construction of the approximate solution to solving a series of boundary value problems of a
differential system. The first boundary value problem is a nonlinear one, and it is nothing but
the problem in a symmetric case. All other problems are linear one, and the corresponding
systems have the same principal part as the first one. Under our assumptions on the higher
order tangency, we only need to consider the solvability of the system with large index. Since
these systems with large index are symmetric positive one, and the linearized boundary con-
ditions both on the surface body and on the shaekaamissible according to the terminology
in the theory of symmetric positive systems (see [6, 8]). Therefore, all these linear problems
can be solved perfectly. By using these solutions, we obtain an approximate solution of the
original nonlinear problem with errad (zV). Afterwards, we establish the estimates for the
linearization of the nonlinear problem, and then we are led to to the expected solution of the
nonlinear problem by using Newton’s iteration.

The paper is arranged as follows. In Sectionve formulate the problem and introduce
a singular conic coordinates, which amounts to the angle in the polar coordinate system. Then
we recall some basic results on solutions of the symmetric conic shocks and state our main
theorem of this paper precisely. In Section 3, we deduce a set of boundary value problem by
using finite expansion, and then construct an approximate solution after solving these prob-
lems. In Section 4, we first rewrite the nonlinear problem and establish the energy estimates
for the linearized problem. Then in Section 5, we use the approximate solution established in



FREE BOUNDARY VALUE PROBLEM OF EULER SYSTEM 107

Section 3 as the first term in the linear iteration and obtain the local existence for the original
nonlinear problem. Meanwhile, we will also indicate that the solution is stable with respect
to the perturbation of the surface of the body.

2. Formulation of problem. The system for the axi-symmetric inviscid steady flow
in the cylindrical coordinates takes the form

puz R pur pur
d p+pu d puy 1 puziy
2.1 — T |+ = : + = : =0
@1 0z PULUF ar p+ puf r puf
u(E + p) ur(E + p) ur(E + p)

where (u., u,) stands for the velocityg? = u? + u?, p is the density,p is the pressure,
E = p(e + ¢2/2) is the total energy witle being the internal energy. Denotirtg., «,) by
(u, v), the system (2.1) can also be written as

0 J 1
—(pu) + —(pv) + —pv =0,
0z or r

ou n ou n lop
o T Vor T ooz

av n ov n 1ap
U—+v—+—— =

9z ar  p dar

] p 1, d p 1,

— Z = — z = =0
Maz (e—i— ’ + 2q )—i—var (e—i— F +2q
in the domain where the solution is smooth.

Consider a uniform flow coming from infinity and attacking a symmetrically curved cone
with its equation

(2.3) r=>(2)

0

(2.2)
0

satisfyingb(0) = 0. It is well-known that the flow generates a shock, which is attached at the
vertex of the curved cone, #f (0) is small. Otherwise, the flow generates a detached shock,
if b'(0) is large. On the boundary (2.3) the flow satisfies the boundary condition

(2.4) u, —b'(Qu, =0.

In this paper we only consider the case when the shock in front of the body is attached. The
equation of the shock is assumed as

(2.5 r=0o().

On the shock the well-known Ramigé-Hugoniot condition holds:

puz pur
2
+ pu pu iy
2.6 / PP - =0,
(26) o puu, p+ pu?

uz(pe + p + pq?/2) ur(pe + p + pg?/2)
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where[-] means the jump of the cosponding quantities in the bracket. Besides, the entropy
condition should be satisfied. The latter means that the normal component of the velosity
behind the shock is subsonic, while the one ahead of the shock is supersonic.

The problem of supersonic flow past a symmetrically curved body is now formulated
as the boundary value problem of the Euler system (2.1) in the dobiain< r < o(z).
The solution is smooth in the domain, artbald satisfy the boundary condition (2.4) on
r = b(z), and satisfy the condition (2.6) and the entropy conditiornvoa o(z). Here
the function, describing the location of the shock front is also unknown, which should be
determined together with the solution. In the sequel we shall prove the existence of a solution
of the boundary value problem (2.1), (2.4), (2.6). The conclusion is

THEOREM 2.1. Let C be an axi-symmetrically curved cone with equation r = b(z),
where b(z) is smooth and satisfies that »(0) = 0, and 8%5(0) = 0 for 2 < k < kg with
ko being a suitable integer. Assume that the coming flow is supersonic, b1 = b'(0) is less
than the critical value determined by the parameters of the coming flow, and the background
conical shock r = s1z corresponding to the cone r = b1z is a weak attached shock. Then
for sufficiently small zo we can determine a function o (z) for 0 < z < zo and the solution
of the system (2.1)in the domain b(z) < r < 0(2), 0 < z < zo, Which satisfy the boundary
conditions (2.4) on r = b(z), the boundary condition (2.6) and the entropy condition on
r = o(z). Meanwhile, the solution with such a structure is also unique and stable. Here the
stability means that the small perturbation of b(z) only causes the small perturbation of o (z)
and the unknown function U.

REMARK 2.1. Since the coming flow is uniform, we have

r
0
ahead of the shock. Then, by using the last equation of (2.2) and (2.6), the relation (2.7) holds
in the whole field. This is called Bernoulli’s relatioa+ p/p is also called the enthalpy and
usually is denoted by. In the sequel (2.7) will be applied to replace the last equation of (2.1)
or (2.2).

By using (2.7), the system (2.2) can be rewritten as a symmetric positive hyperbolic
system

1,
2.7 e+ —+ Eq = const

(2.8)

pU u 0
ad 1
+ oV 1 — v +—-1 0 | =0,
1 a2l or p "\ v

which can also be denoted as
oU ou 1

(2.9 A—+B—+-H =0,
0z ar r
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whereU ='(u, v, p) = "(uz, u,, p), anda = (3p/dp)Y/2. A, B are corresponding matrices
in (2.8), andH = KoU with

0 00
(2.10) Ko=| 0 0 0].
010

To solve the system (2.10) with boundary conditions (2.4), (2.6), we introduce new co-
ordinates

(2.11) xX=z o=-,

which blows up at the vertex of the cone. Obviously,

1 1

8Z=8x_g8a’ O = —0q = —0qy -
X X

Tz
Then in the(x, @) coordinates, the system (2.10) becomes

o 1 1
A<8x — —3a>U + B—0,U + —-KoU =0,
X X r
or
1
(2.12) (B—aA)o,U +xAdU + —KoU =0.
o
The boundary conditions (2.4) and (2.6) will be givenoos: b(x)/x anda = s(x)/x .

3. Approximatesolution. As the preparation of solving (2.1), (2.4) and (2.6) we use
the form (2.12) to derive an approximate solution with e ). Assume that/ (x, «),
b(x) ando (x) have the following finite expansions

N+1 N+1

N
(3.1) U:Zx”U,,(oz), b= Zx”bn, o= Zx"(rn.
n=1 n=1

n=0
For the convenience of our later computations we first give the following lemma.
LEMMA 3.1. Assumethat f(x) = Y o x" f, and g(x) = 3N o x"g,.. Then

N

(32) F)g(x) = fogo+ Y_(fogn + fago+ Pu(f, g)x" + 0N,
n=1
N
(3.3 F(f(x) = F(fo) + Y _(F'(fo) fu + Pa(fNx" + 0",
n=1

where P, (f, g) and P,(f) are polynomialsof all f; and g; withi < n.

The proof of the lemma is straightforward.
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Substituting (3.1) into (2.12) and to the boungleonditions (2.4), (2.6), and then letting
the coefficients o&k* vanish for allk < N, we can determine all coefficients, («), b, and
on. From the equation (2.12) we have

1
(3.4 (B —aA)pd,Upg+ —KoUg =0,
o

1
(3.9 (B —aA)0duUn + (B — 2 A)ndaUo + &KOUn +nAoU, = F,(U),

where(B — aA),, meansB — aA) (Up) - Uy, F,(U) is an expression depending b with
i <n,andvanishesit/y =-.--=U,_1=0.
To describe the boundary conditionsi@f(«) we use the notation
U, =U(b1), Uy =Un(s1).
Then the condition (2.4) is
N N
b b
Zx"vn (ﬂ> — Zb’(x)x”un (ﬂ) =0,
X X
n=0 n=0
which leads to

(3.6) vo(b1) — biug(by) =0,

(3.7) Un(b1) — baup(b1) = gn(b, u, v),
whereg, (b, u, v) is an expression depending by(j < n + 1), u;, v;(i < n), and is known
in the step of determining, ().
REMARK 3.1. Duetothe properties &f,(U) andg, (b, u, v) we have the fact that the
assumptioh; = 0(2 < j < ko) impliesU; =0(1 < j <kp—1) ando; =0(2 < j < ko).
Turning to the R-H condition oo = o (x)/x, the first three equations of (2.6) are
p(v—0'U) = —poco’qoo
(3.8) A+0)p+pv—0'w)?=1+0"?)poc + pc0'%q2, .
u+o'v=qgeo,
wheregoo, poo, Poo are the velocity, the density and the pressure of the upstream flow. There-
fore, we have
po(V — 01i40) = —Poo01q 0 »
(3.9 (1+ o) o + po(Bo — 01it0)? = (1 + 07) poc + Pec0 24, ,
Uo + 0100 = goo -
To derive the condition fot/,, we write the first three equations of (2.6) as

—0'(2)[F1+[G]=0.
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Then for generat we have
(3.10 —F'(Uo)Uy - 01+ G'(Uo)Uy, — [F]- (n + Dopt1 = ga(o, U),
whereg , (o, U) is an expression depending 65j < n + 1) andU; (i < n).

LEMMA 3.2. Theproblem(3.4), (3.6)and (3.9) correspond to the problem of the same
supersonic flow past a symmetricall circle cone with vertex angle arctanb1. Hence, when b3
islessthan a critical value, the solution of the system (3.4) satisfying (3.6) and (3.9) exists.

PrROOFE Indeed, the system (3.4) is

p(vo — auo) —a

a [ ¥
p(vo — aug) 1 7a | o
—a 1 a=2p=Y(vo — aug) po

(3.11)

0
1
( 0 )o
o
vo

The last equation indicateg =const. Omitting subscript “0”, we obtain

du ap
— — —aq—= =0,
P “”)aa aaa
a a
3.12 pw—aw)2 + P _o,
Jda  Ju
a a a 1
o + A +a%p v - ocu)—p + —v=0.
da  Jdo Ja o
Eliminatingdp/d«, we obtain
v Jdu
— +— =0,
oo + Jda

3.1
313 5 u? 2uvalv, v2
o 1——2 ua—T—a 1—; Vg +v=0,
a

which is exactly the same as the system for irrotational conical flow derived in [5]. Hence the
conclusion of the lemma is obtained from the Chapter VI of [5].

LEMMA 3.3. Thereisan integer ko, such that the system (3.5)is a symmetric positive
systemin theinterval b1 < a < o1 for n > kg. Moreover, the boundary conditions are
admissible in Friedrichs sense (see [6]). Therefore, the problem (3.5), (3.7), (3.10pdmitsa
unique solution for n > ko

PROOF Obviously, the coefficients matri@ — o A)o of 3, U, in (3.3) is symmetric.
Meanwhile, the matrixA is definitely positive, ifu > a. Therefore, (3.3) is symmetric
positive system when is greater than an integég, which depends only on the parameters
of the coming flow and the functiain(z).
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Denote bys the normal matrixB — aA)g - cov, ¥) on boundaries withv being the
outward normal direction to the boundary, and denote liiye subspace a3 defined by the
homogeneous equality corresponding to the lolauy condition (3.10). Then the abmissibility
on the boundary conditions in Friedrich’s sense requires

(319 "UnBUn > 0,

for all U, € =. Moreover, it requires that there is no other subspacef R3, so that (3.14)
holds onr1, andx is a proper subspace afi. Under such a condition the boundary value
problem (3.5), (3.7), (3.10) is uniquely solvable. Hence what we need to do is to check the
requirement (3.14) oa = b1 anda = o1 respectively.

Since = —(B —aA)gandv — au = 0 ona = b1,

0 o
(3.15 B = 0 -1
a -1 O

Itturns out' U, BU, = 2(v, — au,)p, = 0 ona = by.
Observe the condition on the shock frant o1. 8 = (B — 61A)p Ona = o1. Denote
2

_ pw — o1puU pu a ‘uw — o1
B =Gy —o1F, = —01pV pv+pw  14+a %vw ,
—01p 0 a 2w

wherew = v — o1u, the homogeneous condition corresponding to (3.10) is

(3.16) BUn —[F]- (n + 1)on41 =0.

Through a suitable elementary transformation of the matrix the equation (3.16) can be reduced
to

(3.17) BU, = (n+ Doy 1 E,
where
pw —o1
B = ow 1 , E='"(p,0u).
o1 1 a’zp’lw

(3.17) also implies
Up= 0+ 1)Uiz+1,3_1E .

Hence
"UpBUn = (n+ V207" EBIE
(319 n+1)>2%? 2
= M wo_ 1 p2 + 201 pwpu + p2w2u2 ,
A a?
where

2
A:detB:,ow(w——l—alz>.

a?
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Itis easy to check that < 0 andjw|(1+ 012)*1/2 equalgu, | — the normal component
of velocity, which is less than the sonic speed. Hendce 0.

Notice thato1 = tang, whereg is the vertex angle of the conical shock front for the
background solution. Then the quadratic form in the right side of (3.18) is

2 w? 2\ 2
(pwu — o1p)* + e —-1-0of)p
(3.19

2
= Se('Z:B ((p”|”n| - PSi”,B)Z + (”_721 - 1) p2> .
a
Denotingu?/a® by k and the angle of velocity with the axis By we have
u =qcosd > (sinB) g sin(f —0) = |un|/Sing .

Then

2
n

2 2 2
(puun—psinﬁ)2+(u——l)p2>( YPUn —pSih,B) +(”—'2'—1)p2

a a?sing a

. yk N\ 2
_(<W—sm,3) —(k—l))p )

which is positive wherk = 1, and so is it whert is near to 1. It turns out that (3.19) is
definitely positive in the case of weak shock. HehdgsU, > O.

Finally, noticing thatw < 0 ona = o1, the matrixg has two negative and one positive
eigenvalues. This means that any subspaceith dimension 2 can not be a nonb-negative
subspace of. Then the unique solvability of the problem (3.5), (3.7) and (3.10) follows from
[6]. Hence the proof of the lemma is complete.

According to Remark 3.1, for a gin b(z) satisfying the assumption = 0(2 < j < ko),
we havelU; = 0(1 < j < ko —1) ando; = 0(2 < j < ko). Since Lemma 3.3 implies that
U;(j = k) can be determined by solving the boundary value problem (3.5), (3.7) and (3.10),
we are led to the followoing conclusion

LEMMA 3.4. Under the assumption of Theorem 2.1, we can determine an approximate
solution of (2.1), (2.4)and (2.6)with error O (z") for any given number N.

4. Linearization. Starting from an approximate solution of the problem (2.1), (2.4)
and (2.6) with error0 (zV) obtained in the last section, we are going to use the iteration to
improve the degree of the approximation and finally derive the precise solution by a limiting
process.

First we make the following coordinates transformation

r—>b(z)

4.1 : = =\
(4.1 T: x=z, Py
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The transformation fixes the free boundary= o (z) to 6 = 1, while it maps the surface
r = b(z) to® = 0. The chain rule implies that

0 1 0 0 d d

_— = —_—, _— = — + d— ,

or o —baob 9z ax 200
whered = {—(o — b)b' — (r — b)(¢’ —b)}/(0 —b)2 = —{b' +6(c’ — b')}/(c — b). Then
the problem (2.1), (2.4) and (2.6) can be rewritten as

U B w1
4.2 A= dA) = + ZKoU =0,
2 8x+(cr—b+ >39+ °
4.3 v—b()u=0 on 6=0,
ou PV
(4.9) o' | preu® | —| | =0 on =1
puv p + pv?

Here we have employed Bernoulli’'s relation to replace the last equation in (2.1) as well as the
last condition in (2.6). Besides, in view 6f(0) = b(0) = 0, the coefficients o /30 in (4.2)

is singular atc = 0. To avoid singular coefficients we also often use the form

o—b

r

U AU
(4.5) (0 —b)A——+(B - b +6( — b’)A)a—e + KoU =0
X

instead of (4.2).

In what follows we are going to prove the existence of a solution to (4.2)—(4.4) and estab-
lish its energy estimate in an appropriate Sobolev space. Since the system (4.2) is degenerate
atx = 0, the weighted Sobolev norm with the weight* is available. To simplifying the
notation we introduce a further coordinate transformagfos: x, which transformsc = 0 to
t = —o0, andxd, to o;.

Write b(x) = xh(x) = ¢'h(r) ando (x) = xji(x) = €' (). In the new coordinates the
boundary value problem (4.2)—(4.4) becomes

U U w—h

4.7) v—(h+h)u=0 on =0
(4.8) MU, ) = (u+ u)[F1—[G1=0 on 6=1

whereB = B — (hy + 0(uy — hy))A — (h + 6(nw — h))A, F andG are the corresponding
vectors obtained from (4.4).

Next, we are going to solve the problem@}#-(4.8) in a weighted Sobolev space. The
Sobolev norms, which will be frequently employed in the sequel are

(4.9) IR, r= D / f 2ty

JHirtia<k

azl+12f

tdo ,
9i119i20
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T 9 f 2
2 _ —2nt. 2j
(4.10) Fegr = Z /_Ooe 2 T dt.
Jjti<k
The unknowns in the problem (4.6)—(4.8) dvét, 0) and u(¢). In order to solve the

nonlinear problem we make its linearization:

. aU U ) ) ) .
(4.11) LU, WU, )= — h)AW +Ba_9 + EoU + E1pn+ Eopy = f

whereEq = L}, E1 = E;L and Ey = E;M. Besides, the linearization of the boundary
conditions are

(4.12) v—(h+h)i=0 on 6=0,
(4.13) MU, (U, ) =Gy —(n+u)Fu)U —[Fl(i+ ) =g on 6=1.

LEMMA 4.1. Letk beany positiveinteger and T < oco. Then thereexistsan g > 0
such that for i > 7o, the solution (U, 1) of the linearized problem (4.11)—(4.13)satisfies the
following energy estimate

4.14 Ul2 U)? 1)2 <c (S )2
(4.14 nll ”k,n,T + >kJ7,T + <P«)k+1,;7,7 = Gk 7 ||f||k,;7,T + <g>k,n,T .

In addition, for £k > 2, the constant Cy in (4.14) depends only on the || - ng,n,T norms of the
coefficients of the equation (4.11).

ProoOFR  Multiply (4.11) by the factor="" and then take the inner product of (4.11)
with e~ U over the domain0, 1] x (—oco, T). In view of (u — h) > 0 and the definite
positivity of A we have

UG,z + (€U, Be " U)g=1 — (e ™" U, Be " U)y—o

(4.15) c

01 : .
<= UF13 7 + (03,1

whereBlgp—1 = B — (u + u;)A andBlg—o = B — (h + hy) A.

Like the analysis in the proof of Lemma 3.3, we estimate the boundary terms on the left
side of (4.15). BecausB|yg—o is equal to the matrix in (3.14) with replaced by: + h;, we
have

(4.16) (e™"U, Be " U)g=0 = 2(—(h + hy) pii + p) =0,
while on6 = 1 the condition (4.13) is equivalent to
4.17) BU = E(iu+ ju)+ g,

whereE = /([p], 0, [pu]/p), andg is a vector obtained from by a linear transformation. It
turns out that
(e™MU, Be " U)g—1
T
(418 - / (E, BYE)e ™21+ jur)loadt — Conld)Z 7

oo

= 8()3, 7 — Coald) .7 -
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Then, substituting (4.17) into (4.15) and takingsufficiently large, we obtain (4.14) with
k=0.

To obtain the estimate of derivatives, we first consider the gasel. Denote byD
any tangential differential operator to the boundéry 0, 1. Aplying the operatoD on the
problem (4.11)—(4.13), we derive the estimatefdy andDy..

The estimates of the derivatives in the nofrdigection can be derived from the estimates
of the derivatives in the tangential direction. Since the boundasyl is non-characteristics,
the matrix53 is non-degenerate nedr= 1. Hence the estimate of derivatives in normal
direction neap = 1 can be obtained directly from the estimate of tangential derivatives by
using (4.11). On the other hand, the maifixon the boundary = 0 takes the form

0 —(hs +h)
0 1
—(h:+h) 1 0
Then the estimate of
ap

9
(4.19 ﬁ(i; — (h+ hp)n)

26’
can be derived from (4.11). Moreover, differentiating (4.11) with respegtvee have

3 (U 3 (39U B U
(420 (p-mAZ (39>+5’@<%>+<£+ °)(ae> "

whereM represents a linear combination@f DU, 11, Dsi, and may have different expres-
sion in different equalities. Multiplying (4.19) by the vectoe= (1, h + h;, 0), and noticing
that¢5 = 0 oné = 0, we obtain on the boundaéy—= 0

d (o d (v d [(0p
421 — = M
(4.21) puat(M)—i—(h—i—h,)pu <89)+3t<89> ;
which yields the boundedness of the followmg quantlty
ou op
4.2 —+th+h —+—=M
(4.22) pu89+( + ’)p”ae+39

The estimates for (4.19) and (4.22) yield the estimates for all components (#9,
because the determinant

0 0 1
—(h+hy) 1 0
ou (hy +h) 1
does not vanish. Therefore, (4.14) is valid for 1.
The estimates for the direvatives of higher order can be established in a similar way.
Finally, the dependency of the consté&htcomes readily from the Banach algebra prop-

erty for the Sobolev spacés® with k > [1/2] and the Gagliardo-Nirenberg inequality. Hence
this concludes the proof of the lemma.
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5. Local existence. In this section, we will use Newton’s iteration to prove Theorem
2.1. Obviously, the existence of a curved conic shock solution in Theorem 2.1 is equivalent
to the existence of a solution for boundary valroblem (4.6)—(4.8). In addition, under the
transformationx = ¢’, a function f(x) = O(x*) nearx = 0 becomesf(e¢’) = O(eX)
neart = —oo. Therefore, denoting by @, @) (1@ = ¢~6©(e")) the approximate
solution constructed in Section 3, we are looking for the precise solution of (4.6)—(4.8). Since
the approximate solution satisfies (2.1), (2.4), (2.6) with ea@¢x”), (U@, 1©) satisfies
(4.6)—(4.8) with error0 (") in the (z, 6)-coordinates. Her&v can be arbitrarily large, so
the requirement of large in the sequel is allowed. Moreover, we may assume that (4.7)
is satisfied by (@ exactly. Otherwise, we can keef”, p(@ as obtaind in Section 3, and
replacev©@ by (h + h,)u'©. Since the error of such a replacement is anfy— (4 + h;)uy =
0(eN"), it does not change the property of error in the approximate expression of (4.6) and
(4.8).

Starting from(U ©, .©@), we use the iteration scheme

(5.1) L™, p®)y O, g0y = 70

(5.2) 0D (b4 h)a™P =0 on 6=0,
(5.3) MO @D 0Dy — g0 on g =1,
(5.4) gt — O L ge+d 0D O g D)
where

au© e du©

O = _ () — pyam

65) o1 90
’ LEMgm ¢ g e g o &K U™
0 1 # 2 B T e =y 0
(5.6) 9" = = MU 1)+ MP O, G

Next, we are going to establish a sequefioé”, 1™} by (5.1)—(5.3) starting from
(U9, 1), To simplify the notation we denote the right side of (4.14)|0§, /1) llx.,.7-
Then Theorem 2.1 will be proved if we can confirm the uniform boundedness in the high
norm of|| (U™, i™)|l.,.7 with largek, and the contraction in the corresponding low norm
with smallk.

LEMMA 5.1. Assumethat
(5.7) W™, £l < 0

for small 9. Then for sufficiently large n, the problem (5.2)~(5.4) has a unique solution in
(—o0, T) with T « 0. Moreover, the estimate (5.7) also hold with n replaced by n + 1.
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PROOF  Since(U©, 1) satisfies (4.6)—(4.8) with errad ('), ™ can be written
as a linear combination @™, 1™ 1 and a termD (¢""). Hence forT <« 0,

. 1 . )
1F R < c(583+ NONZ . + <u<">>,€+1,,7,T> <25,

whereC is independent of. Moreover, we have

§® = =M (U™, 1 ™) + MU, @) = My (U@, n©) + M (O, 3 ™)
=0+ C' (UM + ™)
and 1
(@)% pr = 5§+ C'eg)
whereC’ is also independent af. By using Lemma 4.1, the problem (5.1)—(5.3) is solvable.
Furthermore,

. . 1 . .
(5.8) N, @) g1 < Ck(;”f(n)”k,n,T + (g(n))k,n,T> :
HereCy with k > 2 can also be chosen as a constant independéntTdierefore, (5.7) with
indexn + 1 holds, ify is sufficiently large andyg is sufficiently small.

REMARK 5.1. Inview ofU©@ = 0, 29 = 0, we confirm (5.7) holds for every by
induction. Therefore, for any give > 2,[I(T ™, 1) |lx,.,.7 is uniformly bounded.

LEMMA 5.2. Thesequence{U™, 1™} isconvergent inthe Sobolev norml| (-, )llk.,.7
with k < ko, if the corresponding ko-th normis uniformly bounded ensured by Lemma 5.1

PROOF Let
O™, gy = (@+D _ gm0+ ey

< (n) .
Consider the following boundary boundary value problem(tor , ;i(")

):
(5.9) L(U(n), M(n))((j(n)’ ll(n)) — f(n)’
(5.10) 3D (b + hpa"td =0,
(5.11) MO, gDy = @,
where

fO = f _ fo= 4 =D, =Dy @My L™, W Myo ™, g™y,
G = g™ — gD 4 =D ™ 0y _ oG my

It is easy to verify that

1 22 ~(n) 12

;Ilf(”)llk,l,,,j H1GNE_1, 1

< IOV, @Iy, N@™, AHIE,

(5.12)
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Applying Lemma 4.1 to the problem (5.9)—(5.11), we have
(5.13) N@™, @WE g7 < Coal IO, @ E g, - 25
Hence, if we chooseyp satisfying
Cr-1C"ed < 1,
then the sequena@ ™, ™) is convergent in thék — 1)-th norm.

PROOF OFTHEOREM 2.1. Letus now summarize the above arguments to derive The-
orem 2.1. By using the result in Section 3, we construct an approximate solution of the prob-
lem (2.1), (2.4) and (2.6) with errap (xV). After a coordinate transformation we obtain the
first approximate solutiofU (@, (@) to the problem (4.6)—(4.8). Then the iteration scheme
gives us a sequenc® ™, ;1) which is convergent according to Lemma 5.2. Taking limit
for n — oo, we obtain the precise solution of (4.6)—(4.8). Correspondingly, the solution of
(4.2)—(4.4) in the coordinatés, 0) and the solution of (2.1), (2.4) and (2.6) in the coordinates
(z, r) are also obtained. We notice that in thigstee only obtain the local existence, because
the conditionT « 0 means thato = xo = e’ is sufficiently small.

Furthermore, the solution is stable with respect to the data, consisting of the parameters
of the coming flow andy, b1, ..., bv+1. To see this we review the process of deter-
mining the solution. First, the background solution is continuously depending on the data
Poos Poos> oo @Ndby. Since all linear problems introduced in Section 3 are stable with re-
spect to the terms in the right hand side, the ndi@H®, 1@ |11, 7 of the approximate
solution continuously depends on the data. Besides, in the process of Newton'’s iteration all
corresponding coefficients; in (4.14) ,Co1 in (4.15) andCoy in (4.18) can be chosen to be
independent of the perturbation of data. Hence, denotin&j,by),p the perturbation of/, j
in the iteration process, we have

L(U(n), M("))(U(er), I'L(nJrl)) — f(’l) ,

LU, WO, g0y = £
and the correspondirgpualities fromte boundary conditions. Frorhe expression (5.5) we
have

1™ = £ < CNUQ=TQ, 1@ = 5Qllyry. 0+l U™ =0, 4 — 35k p.7 -
Then, by using the energy estimate in the weighted Sobolev space we have

. . 1) . . 1
O = O ) — g B

<CIUO© - U2, 1@ — 3P Nrrr +allU® = U5, @™ = 45 N7
Inductively using (5.14) yields

(5.19

N0 =00, 3" = i Menr < 7= M0 = 02, 3 = i lesan 7,

which directly leads to the stability of the limit ¢t/ ™, ) with respect to data. Return to
the original coordinate system, we confirm that the flow ftéldnd the location of the shock
expressed by = o (z) are stable.
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