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A FREE BOUNDARY VALUE PROBLEM OF EULER
SYSTEM ARISING IN SUPERSONIC
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Abstract. We study a free boundary value problem of the Euler system arising in the
inviscid steady supersonic flow past a symmetric curved cone. The existence and stability
of piesewise smooth weak entropy solutions was established, provided the cone is a small
perturbation of its tangential cone with a vertex angle less than a given value determined by the
parameters of the coming flow. Since the change of the entropy of the flow is also considered,
the result in this paper gives a more precise description than previous ones on such problems.

1. Introduction. This paper is devoted to the study of a free boundary value problem
of the Euler system, which arises in the inviscid steady supersonic flow past a symmetrically
curved cone. It is well-known that when a supersonic flow passes a pointed body, there
appears a shock front ahead of the body. If the body has a blunt head, the shock in front
of it is detached. Otherwise, if the body has sharp head, the shock can be attached on it. Such
phenomena have been verified by physical experiments and numerical computation. However,
the problem is solved only in some special cases. It is indicated in [5] that if the body is a
circular cone with a vertex angle less than a critical value, determined by the parameters of
the coming flow, then the solution can be determined by solving a boundary value problem of
an ordinary differential equation. In this case a shock front will be generated and attached at
the tip of the cone. The shock also forms a circular cone with the same axis as the surface of
the solid body. Under the additional assumption of the weakness of the shock, the flow behind
the shock can be described by a potential equation. Under such a framework we proved in
[4] that the flow with the attached shock is stable, if the body becomes a perturbed curved
cone. This means that, we still have the existence of solutions with attached shock near the
vertex of the perturbed conical body. However, the potential equation is only a description
of an isentropic and irrotational flow. When the conical body is not an exact circular cone,
the attached shock is also not a circular cone. It turns out that the entropy in the flow is not
constant in fact. Therefore, it is natural to work with the full Euler system, which is more
precise description of the inviscid steady flow. Certainly, the problem becomes more difficult,
because generally the boundary value problem for differential system is more complicated
than the corresponding problem for a second order equation.
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In this paper, we are going to deal with the situation for a uniform supersonic flow past
a symmetricaly curved cone in the framework of the Euler system. As in [3,4], we call the
tangential circular cone as the background cone, and the solution to the coming supersonic
flow past the background cone as the background solution. Assume that the background cone
is tangential to the curved cone in higher order. Then we confirm in this paper that there exists
a local solution with a conical curved shock attached at the tip of the solid body, provided
that the vertex angle of the tangential cone is less than a critical value, determined by the
parameters of the coming flow. Besides, the flow field and the location of the shock are stable
with respect to the perturbation of the surface of the solid body. The solution obtained here
is piesewise smooth, i.e., the equation and the boundary conditions are satisfied in a classical
sense. We also mention that the author of [12] also discuss a similar problem in the BV space
by using the Glimm scheme.

Let us briefly describe the approach to solve our problem here. It is convenient to dis-
cuss our problem in the cylindrical coordinates. In the domain where a solution of the Euler
system is smooth, the system can be reduced to a symmetric hyperbolic one. On the surface
of the body the flow satisfies the rigid wall condition, and on the shock front the well-known
Rankine-Hugoniot conditions hold. The solution of this nonlinear problem will be obtained
through linearization and Newton’s iteration. Hence as a necessary step we need to construct
a good first approximation, which describes the solution with high accuracy near the vertex.
Then we gradually improve the degree of approximation. Usually, the approximate solution
can be constructed by Taylor expansion with solving a series of algebraic equations. How-
ever, because of the singularity of the domain at the vertex of the cone, we have to reduce the
construction of the approximate solution to solving a series of boundary value problems of a
differential system. The first boundary value problem is a nonlinear one, and it is nothing but
the problem in a symmetric case. All other problems are linear one, and the corresponding
systems have the same principal part as the first one. Under our assumptions on the higher
order tangency, we only need to consider the solvability of the system with large index. Since
these systems with large index are symmetric positive one, and the linearized boundary con-
ditions both on the surface body and on the shock are admissible according to the terminology
in the theory of symmetric positive systems (see [6, 8]). Therefore, all these linear problems
can be solved perfectly. By using these solutions, we obtain an approximate solution of the
original nonlinear problem with errorO(zN). Afterwards, we establish the estimates for the
linearization of the nonlinear problem, and then we are led to to the expected solution of the
nonlinear problem by using Newton’s iteration.

The paper is arranged as follows. In Section 2, we formulate the problem and introduce
a singular conic coordinates, which amounts to the angle in the polar coordinate system. Then
we recall some basic results on solutions of the symmetric conic shocks and state our main
theorem of this paper precisely. In Section 3, we deduce a set of boundary value problem by
using finite expansion, and then construct an approximate solution after solving these prob-
lems. In Section 4, we first rewrite the nonlinear problem and establish the energy estimates
for the linearized problem. Then in Section 5, we use the approximate solution established in
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Section 3 as the first term in the linear iteration and obtain the local existence for the original
nonlinear problem. Meanwhile, we will also indicate that the solution is stable with respect
to the perturbation of the surface of the body.

2. Formulation of problem. The system for the axi-symmetric inviscid steady flow
in the cylindrical coordinates takes the form

(2.1)
∂

∂z




ρuz

p + ρu2
z

ρuzur

uz(E + p)


 + ∂

∂r




ρur

ρuzur

p + ρu2
r

ur (E + p)


 + 1

r




ρur

ρuzur

ρu2
r

ur(E + p)


 = 0

where(uz, ur ) stands for the velocity,q2 = u2
r + u2

z , ρ is the density,p is the pressure,
E = ρ(e + q2/2) is the total energy withe being the internal energy. Denoting(uz, ur ) by
(u, v), the system (2.1) can also be written as

(2.2)

∂

∂z
(ρu) + ∂

∂r
(ρv) + 1

r
ρv = 0,

u
∂u

∂z
+ v

∂u

∂r
+ 1

ρ

∂p

∂z
= 0

u
∂v

∂z
+ v

∂v

∂r
+ 1

ρ

∂p

∂r
= 0

u
∂

∂z

(
e + p

ρ
+ 1

2
q2

)
+ v

∂

∂r

(
e + p

ρ
+ 1

2
q2

)
= 0

in the domain where the solution is smooth.
Consider a uniform flow coming from infinity and attacking a symmetrically curved cone

with its equation

(2.3) r = b(z)

satisfyingb(0) = 0. It is well-known that the flow generates a shock, which is attached at the
vertex of the curved cone, ifb′(0) is small. Otherwise, the flow generates a detached shock,
if b′(0) is large. On the boundary (2.3) the flow satisfies the boundary condition

(2.4) ur − b′(z)uz = 0 .

In this paper we only consider the case when the shock in front of the body is attached. The
equation of the shock is assumed as

(2.5) r = σ(z) .

On the shock the well-known Rankine-Hugoniot condition holds:

(2.6) σ ′(z)




ρuz

p + ρu2
z

ρuzur

uz(ρe + p + ρq2/2)


 −




ρur

ρuzur

p + ρu2
r

ur(ρe + p + ρq2/2)


 = 0 ,
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where[·] means the jump of the corresponding quantities in the bracket. Besides, the entropy
condition should be satisfied. The latter means that the normal component of the velosity
behind the shock is subsonic, while the one ahead of the shock is supersonic.

The problem of supersonic flow past a symmetrically curved body is now formulated
as the boundary value problem of the Euler system (2.1) in the domainb(z) ≤ r ≤ σ(z).
The solution is smooth in the domain, and should satisfy the boundary condition (2.4) on
r = b(z), and satisfy the condition (2.6) and the entropy condition onr = σ(z). Here
the function, describing the location of the shock front is also unknown, which should be
determined together with the solution. In the sequel we shall prove the existence of a solution
of the boundary value problem (2.1), (2.4), (2.6). The conclusion is

THEOREM 2.1. Let C be an axi-symmetrically curved cone with equation r = b(z),
where b(z) is smooth and satisfies that b(0) = 0, and ∂kb(0) = 0 for 2 ≤ k ≤ k0 with
k0 being a suitable integer. Assume that the coming flow is supersonic, b1 = b′(0) is less
than the critical value determined by the parameters of the coming flow, and the background
conical shock r = s1z corresponding to the cone r = b1z is a weak attached shock. Then
for sufficiently small z0 we can determine a function σ(z) for 0 < z < z0 and the solution
of the system (2.1) in the domain b(z) < r < σ(z), 0 < z < z0, which satisfy the boundary
conditions (2.4) on r = b(z), the boundary condition (2.6) and the entropy condition on
r = σ(z). Meanwhile, the solution with such a structure is also unique and stable. Here the
stability means that the small perturbation of b(z) only causes the small perturbation of σ(z)

and the unknown function U .

REMARK 2.1. Since the coming flow is uniform, we have

(2.7) e + p

ρ
+ 1

2
q2 = const.

ahead of the shock. Then, by using the last equation of (2.2) and (2.6), the relation (2.7) holds
in the whole field. This is called Bernoulli’s relation.e + p/ρ is also called the enthalpy and
usually is denoted byi. In the sequel (2.7) will be applied to replace the last equation of (2.1)
or (2.2).

By using (2.7), the system (2.2) can be rewritten as a symmetric positive hyperbolic
system 

 ρu 1
ρu

1 a−2ρ−1u


 ∂

∂z


 u

v

p




(2.8)

+

 ρv

ρv 1
1 a−2ρ−1v


 ∂

∂r


 u

v

p


 + 1

r


 0

0
v


 = 0 ,

which can also be denoted as

(2.9) A
∂U

∂z
+ B

∂U

∂r
+ 1

r
H = 0 ,
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whereU = t (u, v, p) = t (uz, ur , p), anda = (∂p/∂ρ)1/2. A,B are corresponding matrices
in (2.8), andH = K0U with

(2.10) K0 =

 0 0 0

0 0 0
0 1 0


 .

To solve the system (2.10) with boundary conditions (2.4), (2.6), we introduce new co-
ordinates

(2.11) x = z, α = r

z
,

which blows up at the vertex of the cone. Obviously,

∂z = ∂x − α

x
∂α , ∂r = 1

z
∂α = 1

x
∂α .

Then in the(x, α) coordinates, the system (2.10) becomes

A

(
∂x − α

x
∂α

)
U + B

1

x
∂αU + 1

r
K0U = 0 ,

or

(2.12) (B − αA)∂αU + xA∂xU + 1

α
K0U = 0 .

The boundary conditions (2.4) and (2.6) will be given onα = b(x)/x andα = s(x)/x .

3. Approximate solution. As the preparation of solving (2.1), (2.4) and (2.6) we use
the form (2.12) to derive an approximate solution with errorO(xN). Assume thatU(x, α),

b(x) andσ(x) have the following finite expansions

(3.1) U =
N∑

n=0

xnUn(α) , b =
N+1∑
n=1

xnbn , σ =
N+1∑
n=1

xnσn .

For the convenience of our later computations we first give the following lemma.

LEMMA 3.1. Assume that f (x) = ∑N
n=0 xnfn and g(x) = ∑N

n=0 xng n. Then

(3.2) f (x)g (x) = f0g 0 +
N∑

n=1

(f0g n + fng 0 + Pn(f, g ))xn + O(xN+1) ,

(3.3) F (f (x)) = F(f0) +
N∑

n=1

(F ′(f0)fn + Pn(f ))xn + O(xN+1) ,

where Pn(f, g ) and Pn(f ) are polynomials of all fi and g i with i < n.

The proof of the lemma is straightforward.
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Substituting (3.1) into (2.12) and to the boundary conditions (2.4), (2.6), and then letting
the coefficients ofxk vanish for allk < N , we can determine all coefficientsUn(α), bn and
σn. From the equation (2.12) we have

(3.4) (B − αA)0∂αU0 + 1

α
K0U0 = 0,

· · · · · ·
(3.5) (B − αA)0∂αUn + (B − αA)n∂αU0 + 1

α
K0Un + nA0Un = Fn(U) ,

where(B − αA)n means(B − αA)′(U0) · Un, Fn(U) is an expression depending onUi with
i < n, and vanishes ifU1 = · · · = Un−1 = 0.

To describe the boundary conditions ofUn(α) we use the notation

Un = Un(b1), Ūn = Un(s1) .

Then the condition (2.4) is

N∑
n=0

xnvn

(
b(x)

x

)
−

N∑
n=0

b′(x)xnun

(
b(x)

x

)
= 0 ,

which leads to

(3.6) v0(b1) − b1u0(b1) = 0 ,

· · · · · ·
(3.7) vn(b1) − b1un(b1) = g n(b, u, v) ,

whereg n(b, u, v) is an expression depending onbj (j < n + 1), ui, vi(i < n), and is known
in the step of determiningUn(α).

REMARK 3.1. Due to the properties ofFn(U) andg n(b, u, v) we have the fact that the
assumptionbj = 0 (2 ≤ j ≤ k0) impliesUj = 0 (1 ≤ j ≤ k0 − 1) andσj = 0 (2 ≤ j ≤ k0).

Turning to the R-H condition onα = σ(x)/x, the first three equations of (2.6) are

(3.8)

ρ(v − σ ′u) = −ρ∞σ ′q∞ ,

(1 + σ ′2)p + ρ(v − σ ′u)2 = (1 + σ ′2)p∞ + ρ∞σ ′2q2∞ ,

u + σ ′v = q∞ ,

whereq∞, ρ∞, p∞ are the velocity, the density and the pressure of the upstream flow. There-
fore, we have

(3.9)

ρ̄0(v̄ − σ1ū0) = −ρ∞σ1q∞ ,

(1 + σ 2
1 )p̄0 + ρ̄0(v̄0 − σ1ū0)

2 = (1 + σ 2
1 )p∞ + ρ∞σ 2

1 q2∞ ,

ū0 + σ1v̄0 = q∞ .

To derive the condition forUn we write the first three equations of (2.6) as

−σ ′(z)[F ] + [G] = 0 .
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Then for generaln we have

(3.10) −F ′(U0)Un · σ1 + G′(U0)Un − [F ] · (n + 1)σn+1 = g n(σ,U) ,

whereg n(σ,U) is an expression depending onσj (j < n + 1) andUi(i < n).

LEMMA 3.2. The problem (3.4), (3.6)and (3.9)correspond to the problem of the same
supersonic flow past a symmetricall circle cone with vertex angle arctanb1. Hence, when b1

is less than a critical value, the solution of the system (3.4)satisfying (3.6)and (3.9)exists.

PROOF. Indeed, the system (3.4) is



ρ(v0 − αu0) −α

ρ(v0 − αu0) 1

−α 1 a−2ρ−1(v0 − αu0)


 ∂

∂α


 u0

v0
p0




+ 1

α


 0

0
v0


 = 0 .

(3.11)

The last equation indicatess0 =const. Omitting subscript “0”, we obtain

(3.12)

ρ(v − αu)
∂u

∂α
− α

∂p

∂α
= 0 ,

ρ(v − αu)
∂v

∂α
+ ∂p

∂α
= 0 ,

−α
∂u

∂α
+ ∂v

∂α
+ a−2ρ−1(v − αu)

∂p

∂α
+ 1

α
v = 0 .

Eliminating∂p/∂α, we obtain

(3.13)

α
∂v

∂α
+ ∂u

∂α
= 0 ,

α2
(

1 − u2

a2

)
uα − 2uvα2vα

a2
− α

(
1 − v2

a2

)
vα + v = 0 ,

which is exactly the same as the system for irrotational conical flow derived in [5]. Hence the
conclusion of the lemma is obtained from the Chapter VI of [5].

LEMMA 3.3. There is an integer k0, such that the system (3.5) is a symmetric positive
system in the interval b1 < α < σ1 for n > k0. Moreover, the boundary conditions are
admissible in Friedrichs’ sense (see [6]). Therefore, the problem (3.5), (3.7), (3.10)admits a
unique solution for n > k0

PROOF. Obviously, the coefficients matrix(B − αA)0 of ∂αUn in (3.3) is symmetric.
Meanwhile, the matrixA is definitely positive, ifu > a. Therefore, (3.3) is symmetric
positive system whenn is greater than an integerk0, which depends only on the parameters
of the coming flow and the functionb(z).
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Denote byβ the normal matrix(B − αA)0 · cos(ν, �r) on boundaries withν being the
outward normal direction to the boundary, and denote byπ the subspace ofR3 defined by the
homogeneous equality corresponding to the boundary condition (3.10). Then the abmissibility
on the boundary conditions in Friedrich’s sense requires

(3.14) tUnβUn ≥ 0 ,

for all Un ∈ π . Moreover, it requires that there is no other subspaceπ1 of R3, so that (3.14)
holds onπ1, andπ is a proper subspace ofπ1. Under such a condition the boundary value
problem (3.5), (3.7), (3.10) is uniquely solvable. Hence what we need to do is to check the
requirement (3.14) onα = b1 andα = σ1 respectively.

Sinceβ = −(B − αA)0 andv − αu = 0 onα = b1,

(3.15) β =



0 α

0 −1

α −1 0


 .

It turns outtUnβUn = 2(vn − αun)pn = 0 onα = b1.
Observe the condition on the shock frontα = σ1. β = (B − σ1A)0 onα = σ1. Denote

β̃ = G′
U − σ1F

′
U =


 ρw − σ1ρu ρu a−2uw − σ1

−σ1ρv ρv + ρw 1 + a−2vw

−σ1ρ ρ a−2w


 ,

wherew = v − σ1u, the homogeneous condition corresponding to (3.10) is

(3.16) β̃Un − [F ] · (n + 1)σn+1 = 0 .

Through a suitable elementary transformation of the matrix the equation (3.16) can be reduced
to

(3.17) βUn = (n + 1)σn+1E ,

where

β =



ρw −σ1

ρw 1

−σ1 1 a−2ρ−1w


 , E = t (p, 0, u) .

(3.17) also implies
Un = (n + 1)σn+1β

−1E .

Hence

(3.18)

tUnβUn = (n + 1)2σ 2
n+1

tEβ−1E

= (n + 1)2σ 2
n+1

∆

((
w2

a2
− 1

)
p2 + 2σ1ρwpu + ρ2w2u2

)
,

where

∆ = detβ = ρw

(
w2

a2
− 1 − σ 2

1

)
.
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It is easy to check thatw < 0 and|w|(1+ σ 2
1 )−1/2 equals|un| — the normal component

of velocity, which is less than the sonic speed. Hence∆ > 0.
Notice thatσ1 = tanβ, whereβ is the vertex angle of the conical shock front for the

background solution. Then the quadratic form in the right side of (3.18) is

(3.19)

(ρwu − σ1p)2 +
(

w2

a2 − 1 − σ 2
1

)
p2

= sec2 β

(
(ρu|un| − p sinβ)2 +

(
u2

n

a2 − 1

)
p2

)
.

Denotingu2
n/a

2 by k and the angle of velocity with the axis byθ , we have

u = q cosθ > (sinβ)−1q sin(β − θ) = |un|/ sinβ .

Then

(ρuun − p sinβ)2 +
(

u2
n

a2 − 1

)
p2 >

(
γpu2

n

a2 sinβ
− p sinβ

)2

+
(

u2
n

a2 − 1

)
p2

=
((

γ k

sinβ
− sinβ

)2

− (k − 1)

)
p2 ,

which is positive whenk = 1, and so is it whenk is near to 1. It turns out that (3.19) is
definitely positive in the case of weak shock. HencetUnβUn ≥ 0.

Finally, noticing thatw < 0 onα = σ1, the matrixβ has two negative and one positive
eigenvalues. This means that any subspaceπ1 with dimension 2 can not be a nonb-negative
subspace ofβ. Then the unique solvability of the problem (3.5), (3.7) and (3.10) follows from
[6]. Hence the proof of the lemma is complete.

According to Remark 3.1, for a given b(z) satisfying the assumptionbj = 0(2 ≤ j ≤ k0),
we haveUj = 0(1 ≤ j ≤ k0 − 1) andσj = 0(2 ≤ j ≤ k0). Since Lemma 3.3 implies that
Uj(j ≥ k) can be determined by solving the boundary value problem (3.5), (3.7) and (3.10),
we are led to the followoing conclusion

LEMMA 3.4. Under the assumption of Theorem 2.1, we can determine an approximate
solution of (2.1), (2.4)and (2.6)with error O(zN) for any given number N .

4. Linearization. Starting from an approximate solution of the problem (2.1), (2.4)
and (2.6) with errorO(zN) obtained in the last section, we are going to use the iteration to
improve the degree of the approximation and finally derive the precise solution by a limiting
process.

First we make the following coordinates transformationT

(4.1) T : x = z , θ = r − b(z)

σ (z) − b(z)
.
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The transformation fixes the free boundaryr = σ(z) to θ = 1, while it maps the surface
r = b(z) to θ = 0. The chain rule implies that

∂

∂r
= 1

σ − b

∂

∂θ
,

∂

∂z
= ∂

∂x
+ d

∂

∂θ
,

whered = {−(σ − b)b′ − (r − b)(σ ′ − b′)}/(σ − b)2 = −{b′ + θ(σ ′ − b′)}/(σ − b). Then
the problem (2.1), (2.4) and (2.6) can be rewritten as

(4.2) A
∂U

∂x
+

(
B

σ − b
+ dA

)
∂U

∂θ
+ 1

r
K0U = 0 ,

(4.3) v − b′(x)u = 0 on θ = 0 ,

(4.4) σ ′(x)




ρu

p + ρu2

ρuv


 −




ρv

ρuv

p + ρv2


 = 0 on θ = 1 .

Here we have employed Bernoulli’s relation to replace the last equation in (2.1) as well as the
last condition in (2.6). Besides, in view ofσ(0) = b(0) = 0, the coefficients of∂/∂θ in (4.2)
is singular atx = 0. To avoid singular coefficients we also often use the form

(4.5) (σ − b)A
∂U

∂x
+ (B − (b′ + θ(σ ′ − b′)A)

∂U

∂θ
+ σ − b

r
K0U = 0

instead of (4.2).
In what follows we are going to prove the existence of a solution to (4.2)–(4.4) and estab-

lish its energy estimate in an appropriate Sobolev space. Since the system (4.2) is degenerate
at x = 0, the weighted Sobolev norm with the weightx−k is available. To simplifying the
notation we introduce a further coordinate transformationet = x, which transformsx = 0 to
t = −∞, andx∂x to ∂t .

Write b(x) = xh̃(x) = eth(t) andσ(x) = xµ̃(x) = etµ(t). In the new coordinates the
boundary value problem (4.2)–(4.4) becomes

(4.6) L(U,µ) ≡ (µ − h)A
∂U

∂t
+ B ∂U

∂θ
+ µ − h

h + θ(µ − h)
K0U = 0

(4.7) v − (h + ht )u = 0 on θ = 0

(4.8) Ms (U,µ) ≡ (µ + µt)[F ] − [G] = 0 on θ = 1

whereB = B − (ht + θ(µt − ht ))A − (h + θ(µ − h))A, F andG are the corresponding
vectors obtained from (4.4).

Next, we are going to solve the problem (4.6)–(4.8) in a weighted Sobolev space. The
Sobolev norms, which will be frequently employed in the sequel, are

(4.9) ‖f ‖2
k,η,T ≡

∑
j+i1+i2≤k

∫ T

−∞

∫ 1

0
e−2ηtη2j

∣∣∣∣ ∂i1+i2f

∂i1t∂i2θ

∣∣∣∣
2

dtdθ ,
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(4.10) 〈f 〉2
k,η,T ≡

∑
j+i≤k

∫ T

−∞
e−2ηtη2j

∣∣∣∣∂
if

∂it

∣∣∣∣
2

dt .

The unknowns in the problem (4.6)–(4.8) areU(t, θ) andµ(t). In order to solve the
nonlinear problem we make its linearization:

(4.11) L(U,µ)(U̇ , µ̇) ≡ (µ − h)A
∂U̇

∂t
+ B ∂U̇

∂θ
+ E0U̇ + E1µ̇ + E2µ̇t = ḟ ,

whereE0 = L′
U ,E1 = L′

µ and E2 = L′
µt

. Besides, the linearization of the boundary
conditions are

(4.12) v̇ − (h + ht )u̇ = 0 on θ = 0 ,

(4.13) Ms(U,µ)(U̇ , µ̇) ≡ (G′
U − (µ + µt )F

′
U)U̇ − [F ](µ̇ + µ̇t ) = ġ on θ = 1 .

LEMMA 4.1. Let k be any positive integer and T < ∞. Then there exists an η0 > 0
such that for η > η0, the solution (U̇ , µ̇) of the linearized problem (4.11)–(4.13)satisfies the
following energy estimate

(4.14) η‖U̇‖2
k,η,T + 〈U̇ 〉2

k,η,T + 〈µ̇〉2
k+1,η,T ≤ Ck

(
1

η
‖ḟ ‖2

k,η,T + 〈ġ 〉2
k,η,T

)
.

In addition, for k ≥ 2, the constant Ck in (4.14) depends only on the ‖ · ‖2
k,η,T norms of the

coefficients of the equation (4.11).

PROOF. Multiply (4.11) by the factore−ηt and then take the inner product of (4.11)
with e−ηt U̇ over the domain[0, 1] × (−∞, T ). In view of (µ − h) > 0 and the definite
positivity of A we have

η‖U̇‖2
0,η,T + 〈e−ηt U̇ ,Be−ηt U̇〉θ=1 − 〈e−ηt U̇ ,Be−ηt U̇〉θ=0

≤ C01

η
(‖ḟ ‖2

0,η,T + 〈µ̇〉2
1,η,T ) ,

(4.15)

whereB|θ=1 = B − (µ + µt)A andB|θ=0 = B − (h + ht )A.
Like the analysis in the proof of Lemma 3.3, we estimate the boundary terms on the left

side of (4.15). BecauseB|θ=0 is equal to the matrix in (3.14) withα replaced byh + ht , we
have

(4.16) 〈e−ηt U̇ ,Be−ηt U̇〉θ=0 = 2(−(h + ht )ṗu̇ + ṗv̇) = 0 ,

while onθ = 1 the condition (4.13) is equivalent to

(4.17) BU̇ = E(µ̇ + µ̇t ) + ˜̇g ,

whereE = t ([p], 0, [ρu]/ρ), and ˜̇g is a vector obtained froṁg by a linear transformation. It
turns out that

〈e−ηt U̇ ,Be−ηt U̇〉θ=1

(4.18) =
∫ T

−∞
(E,B−1E)e−2ηt (µ̇ + µ̇t )

2|θ=1dt − C02〈ġ 〉2
0,η,T

= δ〈µ̇〉2
1,η,T − C02〈ġ 〉2

0,η,T .
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Then, substituting (4.17) into (4.15) and takingη sufficiently large, we obtain (4.14) with
k = 0.

To obtain the estimate of derivatives, we first consider the casek = 1. Denote byD
any tangential differential operator to the boundaryθ = 0, 1. Aplying the operatorD on the
problem (4.11)–(4.13), we derive the estimate forDU̇ andDµ̇.

The estimates of the derivatives in the normal direction can be derived from the estimates
of the derivatives in the tangential direction. Since the boundaryθ = 1 is non-characteristics,
the matrixB is non-degenerate nearθ = 1. Hence the estimate of derivatives in normal
direction nearθ = 1 can be obtained directly from the estimate of tangential derivatives by
using (4.11). On the other hand, the matrixB on the boundaryθ = 0 takes the form


0 −(ht + h)

0 1

−(ht + h) 1 0


 .

Then the estimate of

(4.19)
∂ṗ

∂θ
,

∂

∂θ
(v̇ − (h + ht )u̇)

can be derived from (4.11). Moreover, differentiating (4.11) with respect toθ , we have

(4.20) (µ − h)A
∂

∂t

(
∂U̇

∂θ

)
+ B ∂

∂θ

(
∂U̇

∂θ

)
+

(
∂B
∂θ

+ E0

) (
∂U̇

∂θ

)
= M ,

whereM represents a linear combination ofU̇ ,DU̇ , µ̇,Dµ̇, and may have different expres-
sion in different equalities. Multiplying (4.19) by the vector = (1, h + ht , 0), and noticing
thatB = 0 onθ = 0, we obtain on the boundaryθ = 0

(4.21) ρu
∂

∂t

(
∂u̇

∂θ

)
+ (h + ht )ρu

∂

∂t

(
∂v̇

∂θ

)
+ ∂

∂t

(
∂ṗ

∂θ

)
= M ,

which yields the boundedness of the following quantity

(4.22) ρu
∂u̇

∂θ
+ (h + ht )ρu

∂v̇

∂θ
+ ∂ṗ

∂θ
= M .

The estimates for (4.19) and (4.22) yield the estimates for all components of∂U̇/∂θ ,
because the determinant ∣∣∣∣∣∣∣

0 0 1

−(h + ht ) 1 0

ρu (ht + h) 1

∣∣∣∣∣∣∣
does not vanish. Therefore, (4.14) is valid fork = 1.

The estimates for the direvatives of higher order can be established in a similar way.
Finally, the dependency of the constantCk comes readily from the Banach algebra prop-

erty for the Sobolev spacesHk with k > [n/2] and the Gagliardo-Nirenberg inequality. Hence
this concludes the proof of the lemma.
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5. Local existence. In this section, we will use Newton’s iteration to prove Theorem
2.1. Obviously, the existence of a curved conic shock solution in Theorem 2.1 is equivalent
to the existence of a solution for boundary value problem (4.6)–(4.8). In addition, under the
transformationx = et , a functionf (x) = O(xk) nearx = 0 becomesf (et ) = O(ekt)

neart = −∞. Therefore, denoting by(U(0), µ(0)) ( µ(0) = e−t σ (0)(et )) the approximate
solution constructed in Section 3, we are looking for the precise solution of (4.6)–(4.8). Since
the approximate solution satisfies (2.1), (2.4), (2.6) with errorO(xN), (U(0), µ(0)) satisfies
(4.6)–(4.8) with errorO(eNt ) in the (t, θ)-coordinates. HereN can be arbitrarily large, so
the requirement of largeη in the sequel is allowed. Moreover, we may assume that (4.7)
is satisfied byU(0) exactly. Otherwise, we can keepu(0), p(0) as obtaind in Section 3, and
replacev(0) by (h+ht )u

(0). Since the error of such a replacement is onlyvN − (h+ht )uN =
O(eNt ), it does not change the property of error in the approximate expression of (4.6) and
(4.8).

Starting from(U(0), µ(0)), we use the iteration scheme

(5.1) L(U(n), µ(n))(U̇ (n+1), µ̇(n+1)) = ḟ (n) ,

(5.2) v̇(n+1) − (h + ht )u̇
(n+1) = 0 on θ = 0 ,

(5.3) M(n)
s (U̇ (n+1), µ̇(n+1)) = ġ (n) on θ = 1 ,

(5.4) U(n+1) = U(0) + U̇ (n+1), µ(n+1) = µ(0) + µ̇(n+1) ,

where

(5.5)
ḟ (n) = −(µ(n) − h)A(n) ∂U(0)

∂t
− B(n) ∂U(0)

∂θ

+E
(n)
0 U̇ (n) + E

(n)
1 µ̇(n) + E

(n)
2 µ̇

(n)
t − µ(n) − h

h + θ(µ(n) − h)
K0U̇

(n)

(5.6) ġ (n) = −Ms(U
(n), µ(n)) + M(n)

s (U̇ (n), µ̇(n)) .

Next, we are going to establish a sequence{U(n), µ(n)} by (5.1)–(5.3) starting from
(U(0), µ(0)). To simplify the notation we denote the right side of (4.14) by|||(U̇ , µ̇)|||k,η,T .

Then Theorem 2.1 will be proved if we can confirm the uniform boundedness in the high
norm of|||(U̇ (n), µ̇(n))|||k,η,T with largek, and the contraction in the corresponding low norm
with smallk.

LEMMA 5.1. Assume that

(5.7) |||(U̇ (n), µ̇(n))|||k,η,T < ε0

for small ε0. Then for sufficiently large η, the problem (5.2)–(5.4) has a unique solution in
(−∞, T ) with T � 0. Moreover, the estimate (5.7)also hold with n replaced by n + 1.
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PROOF. Since(U(0), µ(0)) satisfies (4.6)–(4.8) with errorO(eNt ), ḟ (n) can be written
as a linear combination oḟU(n), µ̇(n), µ̇

(n)
t and a termO(eNt ). Hence forT � 0,

‖ḟ (n)‖2
k,η,T < C

(
1

2
ε2

0 + ‖U̇ (n)‖2
k,η,T + 〈µ̇(n)〉2

k+1,η,T

)
< 2ε2

0 ,

whereC is independent ofn. Moreover, we have

ġ (n) = −Ms(U
(n), µ(n)) + Ms (U

(0), µ(0)) − Ms(U
(0), µ(0)) + M

(n)
s (U̇ (n), µ̇(n))

= O(eNt ) + C′(|U̇ (n)|2 + |µ̇(n)|2)
and

〈ġ (n)〉2
k,η,T ≤ 1

2
(ε2

0 + C′ε4
0) ,

whereC′ is also independent ofn. By using Lemma 4.1, the problem (5.1)–(5.3) is solvable.
Furthermore,

(5.8) |||(U̇ (n+1), µ̇(n+1))|||k,η,T ≤ Ck

(
1

η
‖ḟ (n)‖k,η,T + 〈ġ (n)〉k,η,T

)
.

HereCk with k > 2 can also be chosen as a constant independent ofk. Therefore, (5.7) with
indexn + 1 holds, ifη is sufficiently large andε0 is sufficiently small.

REMARK 5.1. In view ofU̇ (0) = 0, µ̇(0) = 0, we confirm (5.7) holds for everyn by
induction. Therefore, for any givenk0 > 2,|||(U̇ (n), µ̇(n))|||k0,η,T is uniformly bounded.

LEMMA 5.2. The sequence {U̇ (n), µ̇(n)} is convergent in the Sobolev norm|||(·, ·)|||k,η,T

with k < k0, if the corresponding k0-th norm is uniformly bounded ensured by Lemma 5.1.

PROOF. Let

(Ũ (n), µ̃(n)) = (U̇ (n+1) − U̇ (n), µ̇(n+1) − µ̇(n)) .

Consider the following boundary boundary value problem for( ˜̇U(n)
, ˜̇µ(n)

):

(5.9) L(U(n), µ(n))(Ũ (n), µ̃(n)) = f̃ (n),

(5.10) ṽ(n+1) − (h + ht )ũ
(n+1) = 0 ,

(5.11) M(n)
s (Ũ (n+1), µ̃(n+1)) = g̃ (n) ,

where

f̃ (n) = ḟ (n) − ḟ (n−1) + L(U(n−1), µ(n−1))(U̇ (n), µ̇(n)) − L(U(n), µ(n))(U̇ (n), µ̇(n)) ,

g̃ (n) = ġ (n) − ġ (n−1) + M(n−1)
s (U̇ (n), µ̇(n)) − M(n)

s (U̇ (n), µ̇(n)) .

It is easy to verify that

1

η
‖f̃ (n)‖2

k−1,η,T + ‖g̃ (n)‖2
k−1,η,T

≤ C′′|||(Ũ (n−1), µ̃(n−1))|||2k−1,η,T |||(U̇ (n), µ̇(n))|||2k,η,T .

(5.12)
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Applying Lemma 4.1 to the problem (5.9)–(5.11), we have

(5.13) |||(Ũ (n), µ̃(n))|||2k−1,η,T ≤ Ck−1C
′′|||(Ũ (n−1), µ̃(n−1))|||2k−1,η,T · ε2

0 .

Hence, if we chooseε0 satisfying

Ck−1C
′′ε2

0 < 1 ,

then the sequence(Ũ (n), µ̃(n)) is convergent in the(k − 1)-th norm.

PROOF OFTHEOREM 2.1. Let us now summarize the above arguments to derive The-
orem 2.1. By using the result in Section 3, we construct an approximate solution of the prob-
lem (2.1), (2.4) and (2.6) with errorO(xN). After a coordinate transformation we obtain the
first approximate solution(U(0), µ(0)) to the problem (4.6)–(4.8). Then the iteration scheme
gives us a sequence(U̇ (n), µ̇(n)), which is convergent according to Lemma 5.2. Taking limit
for n → ∞, we obtain the precise solution of (4.6)–(4.8). Correspondingly, the solution of
(4.2)–(4.4) in the coordinates(x, θ) and the solution of (2.1), (2.4) and (2.6) in the coordinates
(z, r) are also obtained. We notice that in this step we only obtain the local existence, because
the conditionT � 0 means thatz0 = x0 = eT is sufficiently small.

Furthermore, the solution is stable with respect to the data, consisting of the parameters
of the coming flow andb1, bk0+1, . . . , bN+1. To see this we review the process of deter-
mining the solution. First, the background solution is continuously depending on the data
ρ∞, p∞, u∞ andb1. Since all linear problems introduced in Section 3 are stable with re-
spect to the terms in the right hand side, the norm|||U(0), µ(0)|||k+1,η,T of the approximate
solution continuously depends on the data. Besides, in the process of Newton’s iteration all
corresponding coefficientsCk in (4.14) ,C01 in (4.15) andC02 in (4.18) can be chosen to be
independent of the perturbation of data. Hence, denoting byU̇p, µ̇p the perturbation oḟU , µ̇

in the iteration process, we have

L(U(n), µ(n))(U̇ (n+1), µ̇(n+1)) = ḟ (n) ,

L(U(n)
p , µ(n)

p )(U̇ (n+1)
p , µ̇(n+1)

p ) = ḟ (n)
p ,

and the correspondingequalities from the boundary conditions. From the expression (5.5) we
have

‖ḟ (n)− ḟ (n)
p ‖k,η,T ≤ C|||U(0)−U̇ (0)

p , µ(0)−µ̇(0)
p |||k+1,η,T +α|||U̇ (n)−U̇ (n)

p , µ̇(n)−µ̇(n)
p |||k,η,T .

Then, by using the energy estimate in the weighted Sobolev space we have

(5.14)
|||U̇ (n+1) − U̇

(n+1)
p , µ̇(n+1) − µ̇

(n+1)
p |||k,η,T

≤ C|||U(0) − U̇
(0)
p , µ(0) − µ̇

(0)
p |||k+1,η,T + α|||U̇ (n) − U̇

(n)
p , µ̇(n) − µ̇

(n)
p |||k,η,T , .

Inductively using (5.14) yields

|||U̇ (n) − U̇ (n)
p , µ̇(n) − µ̇(n)

p |||k,η,T ≤ C

1 − α
|||U̇ (0) − U̇ (0)

p , µ̇(0) − µ̇(0)
p |||k+1,η,T ,

which directly leads to the stability of the limit of(U̇ (n), µ̇(n)) with respect to data. Return to
the original coordinate system, we confirm that the flow fieldU and the location of the shock
expressed byr = σ(z) are stable.
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